首页 > 最新文献

Current Opinion in Chemical Biology最新文献

英文 中文
Genome mining for new enediyne antibiotics 基因组挖掘新的烯啶抗生素。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-24 DOI: 10.1016/j.cbpa.2024.102481
Esther J. Han , Mohammad R. Seyedsayamdost

Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.

烯啶抗生素是大自然化学创造力的缩影。它们含有复杂的分子结构,并具有涉及双链 DNA 分裂的强大生物活性。最近,微生物基因组序列的爆炸性增长揭示了大量新型烯二炔类化合物。然而,虽然可以检测到数百个烯二炔生物合成基因簇(BGCs),但迄今表征的天然产物却不足二十种,因为许多基因簇在标准实验室生长条件下保持沉默或很少表达。本综述将重点介绍最近发现新型烯二炔类化合物的四种不同策略:稀有来源的表型筛选、生物合成操作、基于基因组特征的 PCR 筛选,以及通过高通量诱导剂筛选激活沉默 BGCs 的 DNA 裂解测定。随着烯二炔 BGCs 的丰富和获取它们的新方法的出现,新的烯二炔天然产品和对其生物发生的进一步了解迫在眉睫。
{"title":"Genome mining for new enediyne antibiotics","authors":"Esther J. Han ,&nbsp;Mohammad R. Seyedsayamdost","doi":"10.1016/j.cbpa.2024.102481","DOIUrl":"10.1016/j.cbpa.2024.102481","url":null,"abstract":"<div><p>Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102481"},"PeriodicalIF":6.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity 脂质氢过氧化物的反应及其对铁中毒敏感性的影响
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-21 DOI: 10.1016/j.cbpa.2024.102478
Dmitry D. Saraev, Derek A. Pratt

The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell – be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.

长期以来,脂质氢过氧化物(LOOHs)的积累与多种病症有关,最近的研究表明,脂质氢过氧化物会导致一种特殊类型的细胞死亡,这种细胞死亡被称为铁变态反应(ferroptosis)。在与谷胱甘肽过氧化物酶的解毒作用竞争时,LOOHs 可与单电子还原剂和单电子氧化剂发生反应,产生自由基,从而引发脂质过氧化(LPO)连锁反应,产生更多的 LOOH。这些自由基还可以发生各种反应(主要是非分子反应),生成亲电物种,破坏膜的稳定性和/或与细胞亲核物发生反应。虽然导致脂质衍生亲电物的某些反应机制早已为人所知,但其他反应机制直到最近才被阐明。由于 LOOH(以及相关的过氧化物,LOOL)以不同的速率发生这些不同的反应,从而产生其结构所特有的不同产物分布,因此并非所有的 LOOH(和 LOOL)都会给细胞带来同样的问题--不管是引发进一步的 LPO 还是破碎成亲电体、导致细胞膜渗透和最终细胞死亡。在此,我们简要回顾一下 LOOH 的命运,并讨论它们如何通过不同的脂质调节细胞对铁变态反应的敏感性。
{"title":"Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity","authors":"Dmitry D. Saraev,&nbsp;Derek A. Pratt","doi":"10.1016/j.cbpa.2024.102478","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102478","url":null,"abstract":"<div><p>The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell – be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102478"},"PeriodicalIF":6.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000541/pdfft?md5=ce43e60434833511550b3e2a240cf1ab&pid=1-s2.0-S1367593124000541-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding ways into the cytosol: Peptide-mediated approaches for delivering proteins into cells 寻找进入细胞质的途径:以肽为媒介将蛋白质送入细胞的方法
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.cbpa.2024.102482
Yoshimasa Kawaguchi, Shiroh Futaki

The delivery of functional proteins, including antibodies, into cells opens up many opportunities to regulate cellular events, with significant implications for studies in chemical biology and therapeutics. The inside of cells is isolated from the outside by the cell membrane. The hydrophilic nature of proteins prevents direct permeation of proteins through the cell membrane by passive diffusion. Therefore, delivery routes using endocytic uptake followed by endosomal escape have been explored. Alternatively, delivery concepts using transient permeabilization of cell membranes or effective promotion of endocytic uptake and endosomal escape using modified membrane-lytic peptides have been reported in recent years. Non-canonical protein delivery concepts, such as the use of liquid droplets or coacervates, have also been proposed. This review highlights some of the topics in peptide-mediated intracellular protein delivery.

将包括抗体在内的功能蛋白质输送到细胞中,为调节细胞事件提供了许多机会,对化学生物学和治疗学研究具有重要意义。细胞内部由细胞膜与外部隔离。蛋白质的亲水性使其无法通过被动扩散直接渗透细胞膜。因此,人们探索了利用内细胞摄取后内膜逸出的递送途径。另外,近年来也有报道称,利用瞬时渗透细胞膜或利用改性膜溶解肽有效促进内吞和内泌体逸出的递送概念。此外,还提出了一些非传统的蛋白质递送概念,如使用液滴或凝聚剂。本综述将重点介绍肽介导的细胞内蛋白质递送方面的一些课题。
{"title":"Finding ways into the cytosol: Peptide-mediated approaches for delivering proteins into cells","authors":"Yoshimasa Kawaguchi,&nbsp;Shiroh Futaki","doi":"10.1016/j.cbpa.2024.102482","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102482","url":null,"abstract":"<div><p>The delivery of functional proteins, including antibodies, into cells opens up many opportunities to regulate cellular events, with significant implications for studies in chemical biology and therapeutics. The inside of cells is isolated from the outside by the cell membrane. The hydrophilic nature of proteins prevents direct permeation of proteins through the cell membrane by passive diffusion. Therefore, delivery routes using endocytic uptake followed by endosomal escape have been explored. Alternatively, delivery concepts using transient permeabilization of cell membranes or effective promotion of endocytic uptake and endosomal escape using modified membrane-lytic peptides have been reported in recent years. Non-canonical protein delivery concepts, such as the use of liquid droplets or coacervates, have also been proposed. This review highlights some of the topics in peptide-mediated intracellular protein delivery.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102482"},"PeriodicalIF":6.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141434921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent applications of fluorescence correlation spectroscopy in live cells 荧光相关光谱在活细胞中的最新应用
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.cbpa.2024.102480
Adam W. Smith

As a time-domain analogue of fluorescence imaging, FCS offers valuable insights into molecular dynamics, interactions, and concentrations within living cells. The primary insight generated by FCS is molecular mobility and concentration, which makes it useful for investigating molecular-scale details without the need for enrichment or separation. A specific strength of FCS is the ability to probe protein–protein interactions in live cells and several recent applications in this area are summarized. FCS is also used to investigate plasma membrane protein organization, with many applications to cell surface receptors and the mechanisms of drug binding. Finally, FCS is undergoing continual methodological innovations, such as imaging FCS, SPIM-FCS PIE-FCCS, STED-FCS, three-color FCS, and massively parallel FCS, which extend the capabilities to investigate molecular dynamics at different spatial and temporal scales. These innovations enable detailed examinations of cellular processes, including cellular transport and the spatial organization of membrane proteins.

作为荧光成像的时域类似物,FCS 为了解活细胞内的分子动态、相互作用和浓度提供了宝贵的视角。荧光定量成像技术的主要洞察点是分子流动性和浓度,这使其无需富集或分离就可用于研究分子尺度的细节。FCS 的一个特殊优势是能够探测活细胞中蛋白质与蛋白质之间的相互作用,本文总结了这一领域的几项最新应用。FCS 还可用于研究质膜蛋白质组织,在细胞表面受体和药物结合机制方面有许多应用。最后,FCS 在方法上也在不断创新,如成像 FCS、SPIM-FCS PIE-FCCS、STED-FCS、三色 FCS 和大规模并行 FCS,它们扩展了在不同空间和时间尺度上研究分子动力学的能力。通过这些创新技术,可以对细胞过程进行详细研究,包括细胞运输和膜蛋白的空间组织。
{"title":"Recent applications of fluorescence correlation spectroscopy in live cells","authors":"Adam W. Smith","doi":"10.1016/j.cbpa.2024.102480","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102480","url":null,"abstract":"<div><p>As a time-domain analogue of fluorescence imaging, FCS offers valuable insights into molecular dynamics, interactions, and concentrations within living cells. The primary insight generated by FCS is molecular mobility and concentration, which makes it useful for investigating molecular-scale details without the need for enrichment or separation. A specific strength of FCS is the ability to probe protein–protein interactions in live cells and several recent applications in this area are summarized. FCS is also used to investigate plasma membrane protein organization, with many applications to cell surface receptors and the mechanisms of drug binding. Finally, FCS is undergoing continual methodological innovations, such as imaging FCS, SPIM-FCS PIE-FCCS, STED-FCS, three-color FCS, and massively parallel FCS, which extend the capabilities to investigate molecular dynamics at different spatial and temporal scales. These innovations enable detailed examinations of cellular processes, including cellular transport and the spatial organization of membrane proteins.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102480"},"PeriodicalIF":6.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141434922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA nanotechnology on the horizon: Self-assembly, chemical modifications, and functional applications 地平线上的 RNA 纳米技术:自组装、化学修饰和功能应用。
IF 7.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-17 DOI: 10.1016/j.cbpa.2024.102479
Jaimie Marie Stewart

RNA nanotechnology harnesses the unique chemical and structural properties of RNA to build nanoassemblies and supramolecular structures with dynamic and functional capabilities. This review focuses on design and assembly approaches to building RNA structures, the RNA chemical modifications used to enhance stability and functionality, and modern-day applications in therapeutics, biosensing, and bioimaging.

RNA 纳米技术利用 RNA 独特的化学和结构特性,构建具有动态和功能性的纳米组装体和超分子结构。本综述重点介绍构建 RNA 结构的设计和组装方法、用于增强稳定性和功能性的 RNA 化学修饰,以及在治疗、生物传感和生物成像方面的现代应用。
{"title":"RNA nanotechnology on the horizon: Self-assembly, chemical modifications, and functional applications","authors":"Jaimie Marie Stewart","doi":"10.1016/j.cbpa.2024.102479","DOIUrl":"10.1016/j.cbpa.2024.102479","url":null,"abstract":"<div><p>RNA nanotechnology harnesses the unique chemical and structural properties of RNA to build nanoassemblies and supramolecular structures with dynamic and functional capabilities. This review focuses on design and assembly approaches to building RNA structures, the RNA chemical modifications used to enhance stability and functionality, and modern-day applications in therapeutics, biosensing, and bioimaging.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102479"},"PeriodicalIF":7.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000553/pdfft?md5=1a781e0068b6a195e0e0cc742548b945&pid=1-s2.0-S1367593124000553-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in engineering microorganisms for the production of natural food colorants 利用微生物工程技术生产天然食用色素的最新进展
IF 7.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-14 DOI: 10.1016/j.cbpa.2024.102477
Philip Tinggaard Thomsen, Susanne Roenfeldt Nielsen, Irina Borodina

Food colorants are frequently added to processed foods since color is an important tool in the marketing of food products, influencing consumer perceptions, preferences, and purchasing behavior. While synthetic dyes currently dominate the food colorant market, consumer concern regarding their safety and sustainability is driving a demand for their replacement with naturally derived alternatives. However, natural colorants are costly compared to their synthetic counterparts as the pigment content in the native sources is usually very low and extraction can be challenging. Recent advances in the engineering of microbial metabolism have sparked interest in the development of cell factories capable of producing natural colorants from renewable resources. This review summarizes major developments within metabolic engineering for the production of nature-identical food colorants by fermentation. Additionally, it highlights common applications, formulations, and physicochemical characteristics of prevalent pigment classes. Lastly, it outlines a workflow for accelerating the optimization of cell factories for the production or derivatization of nature-identical food colorants.

食品着色剂经常被添加到加工食品中,因为颜色是食品营销的重要工具,会影响消费者的认知、偏好和购买行为。虽然合成染料目前在食品着色剂市场上占主导地位,但消费者对其安全性和可持续性的担忧推动了用天然替代品取代合成染料的需求。然而,与合成色素相比,天然色素的成本较高,因为天然色素的色素含量通常很低,提取也很困难。微生物新陈代谢工程学的最新进展激发了人们对开发能够利用可再生资源生产天然着色剂的细胞工厂的兴趣。本综述总结了通过发酵生产天然色素的新陈代谢工程的主要进展。此外,它还重点介绍了常见色素的应用、配方和理化特性。最后,它还概述了加速优化细胞工厂的工作流程,以生产或衍生自然相同的食品着色剂。
{"title":"Recent advances in engineering microorganisms for the production of natural food colorants","authors":"Philip Tinggaard Thomsen,&nbsp;Susanne Roenfeldt Nielsen,&nbsp;Irina Borodina","doi":"10.1016/j.cbpa.2024.102477","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102477","url":null,"abstract":"<div><p>Food colorants are frequently added to processed foods since color is an important tool in the marketing of food products, influencing consumer perceptions, preferences, and purchasing behavior. While synthetic dyes currently dominate the food colorant market, consumer concern regarding their safety and sustainability is driving a demand for their replacement with naturally derived alternatives. However, natural colorants are costly compared to their synthetic counterparts as the pigment content in the native sources is usually very low and extraction can be challenging. Recent advances in the engineering of microbial metabolism have sparked interest in the development of cell factories capable of producing natural colorants from renewable resources. This review summarizes major developments within metabolic engineering for the production of nature-identical food colorants by fermentation. Additionally, it highlights common applications, formulations, and physicochemical characteristics of prevalent pigment classes. Lastly, it outlines a workflow for accelerating the optimization of cell factories for the production or derivatization of nature-identical food colorants.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102477"},"PeriodicalIF":7.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136759312400053X/pdfft?md5=550500d4cecdf2232739957a8c7489f4&pid=1-s2.0-S136759312400053X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The non-catalytic domains of O-GlcNAc cycling enzymes present new opportunities for function-specific control O-GlcNAc 循环酶的非催化结构域为特异性功能控制提供了新机遇
IF 7.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-10 DOI: 10.1016/j.cbpa.2024.102476
Chia-Wei Hu, Ke Wang, Jiaoyang Jiang

O-GlcNAcylation is an essential protein glycosylation governed by two O-GlcNAc cycling enzymes: O-GlcNAc transferase (OGT) installs a single sugar moiety N-acetylglucosamine (GlcNAc) on protein serine and threonine residues, and O-GlcNAcase (OGA) removes them. Aberrant O-GlcNAcylation has been implicated in various diseases. However, the large repertoire of more than 1000 O-GlcNAcylated proteins and the elusive mechanisms of OGT/OGA in substrate recognition present significant challenges in targeting the dysregulated O-GlcNAcylation for therapeutic development. Recently, emerging evidence suggested that the non-catalytic domains play critical roles in regulating the functional specificity of OGT/OGA via modulating their protein interactions and substrate recognition. Here, we discuss recent studies on the structures, mechanisms, and related tools of the OGT/OGA non-catalytic domains, highlighting new opportunities for function-specific control.

O-GlcNAcylation是一种重要的蛋白质糖基化,由两种O-GlcNAc循环酶控制:O-GlcNAc转移酶(OGT)将单糖分子N-乙酰葡糖胺(GlcNAc)安装在蛋白质丝氨酸和苏氨酸残基上,而O-GlcNAc酶(OGA)则将其去除。异常的 O-GlcNAcylation 与多种疾病有关。然而,超过 1000 种 O-GlcNAcylated 蛋白的庞大谱系以及 OGT/OGA 在底物识别方面难以捉摸的机制,给针对失调的 O-GlcNAcylation 进行治疗开发带来了巨大挑战。最近,新出现的证据表明,非催化结构域通过调节蛋白质相互作用和底物识别,在调节 OGT/OGA 的功能特异性方面发挥着关键作用。在此,我们将讨论最近关于 OGT/OGA 非催化结构域的结构、机制和相关工具的研究,突出功能特异性控制的新机遇。
{"title":"The non-catalytic domains of O-GlcNAc cycling enzymes present new opportunities for function-specific control","authors":"Chia-Wei Hu,&nbsp;Ke Wang,&nbsp;Jiaoyang Jiang","doi":"10.1016/j.cbpa.2024.102476","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102476","url":null,"abstract":"<div><p>O-GlcNAcylation is an essential protein glycosylation governed by two O-GlcNAc cycling enzymes: O-GlcNAc transferase (OGT) installs a single sugar moiety <em>N-</em>acetylglucosamine (GlcNAc) on protein serine and threonine residues, and O-GlcNAcase (OGA) removes them. Aberrant O-GlcNAcylation has been implicated in various diseases. However, the large repertoire of more than 1000 O-GlcNAcylated proteins and the elusive mechanisms of OGT/OGA in substrate recognition present significant challenges in targeting the dysregulated O-GlcNAcylation for therapeutic development. Recently, emerging evidence suggested that the non-catalytic domains play critical roles in regulating the functional specificity of OGT/OGA via modulating their protein interactions and substrate recognition. Here, we discuss recent studies on the structures, mechanisms, and related tools of the OGT/OGA non-catalytic domains, highlighting new opportunities for function-specific control.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102476"},"PeriodicalIF":7.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications 探测生命系统中金属酶的动态:荧光成像工具和应用的当代进展
IF 7.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-08 DOI: 10.1016/j.cbpa.2024.102475
Sky Price, Emily L. Que

Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes in vitro presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution in situ. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.

金属酶对细胞功能至关重要,它们的过度表达或活化增强是潜在的治疗目标。然而,体外研究金属酶面临着各种挑战,因此许多人开发了在原生细胞环境中研究金属酶的工具。小分子荧光探针常用于原位监测金属酶的功能、活性和分布。这些探针包括基于活性的探针(荧光由酶的活性介导)或基于结合的探针(荧光由金属辅助因子结合后与酶的相互作用介导)。我们讨论了克服关键设计挑战的最新创新,例如基于活性的探针的快速扩散、探测氧化还原活性酶的困难、基于结合的探针的选择性以及荧光的穿透深度差,并介绍了这些工具的新型应用。
{"title":"Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications","authors":"Sky Price,&nbsp;Emily L. Que","doi":"10.1016/j.cbpa.2024.102475","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102475","url":null,"abstract":"<div><p>Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes <em>in vitro</em> presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution <em>in situ</em>. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102475"},"PeriodicalIF":7.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular anchoring and fluorescent labeling in animals compatible with tissue clearing for 3D imaging 在动物体内进行分子锚定和荧光标记,与三维成像的组织清理兼容
IF 7.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-04 DOI: 10.1016/j.cbpa.2024.102474
Takeharu Mino , Hiroshi Nonaka , Itaru Hamachi

Analyzing the quantity and distribution of molecules throughout intact biological tissue is crucial for understanding various biological phenomena. Traditional methods involving destructive extraction result in the loss of spatial information. Conversely, tissue-clearing techniques combined with fluorescence imaging have recently emerged as a powerful tool for deep tissue imaging without sacrificing spatial coverage. Key to this approach is the anchoring and labeling of targets in intact tissue. In this review, methods for anchoring and labeling proteins, lipids, carbohydrates, and small molecules are presented. Future directions include the development of activity-based probes that work in vivo and mark transient events with spatial information to enable a deeper understanding of biological phenomena.

分析完整生物组织中分子的数量和分布对于理解各种生物现象至关重要。传统的破坏性提取方法会导致空间信息的丢失。相反,组织清除技术与荧光成像技术相结合,最近已成为在不牺牲空间覆盖率的情况下进行深层组织成像的有力工具。这种方法的关键在于锚定和标记完整组织中的目标。本综述介绍了锚定和标记蛋白质、脂类、碳水化合物和小分子的方法。未来的发展方向包括开发基于活动的探针,这种探针可在体内工作,并利用空间信息标记瞬时事件,从而加深对生物现象的理解。
{"title":"Molecular anchoring and fluorescent labeling in animals compatible with tissue clearing for 3D imaging","authors":"Takeharu Mino ,&nbsp;Hiroshi Nonaka ,&nbsp;Itaru Hamachi","doi":"10.1016/j.cbpa.2024.102474","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102474","url":null,"abstract":"<div><p>Analyzing the quantity and distribution of molecules throughout intact biological tissue is crucial for understanding various biological phenomena. Traditional methods involving destructive extraction result in the loss of spatial information. Conversely, tissue-clearing techniques combined with fluorescence imaging have recently emerged as a powerful tool for deep tissue imaging without sacrificing spatial coverage. Key to this approach is the anchoring and labeling of targets in intact tissue. In this review, methods for anchoring and labeling proteins, lipids, carbohydrates, and small molecules are presented. Future directions include the development of activity-based probes that work in vivo and mark transient events with spatial information to enable a deeper understanding of biological phenomena.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102474"},"PeriodicalIF":7.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000504/pdfft?md5=36af80453465d5781e5a415a7c90e9f8&pid=1-s2.0-S1367593124000504-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Site-specific bioconjugation and nuclear imaging 特定位点生物结合与核成像
IF 7.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-03 DOI: 10.1016/j.cbpa.2024.102471
Joni Sebastiano , Zachary V. Samuels , Wei-Siang Kao , Brian M. Zeglis

Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior in vivo performance than their randomly modified progenitors. In this Current Opinion in Chemical Biology review, we will examine recent advances in this field, including the development — and, in some cases, clinical translation — of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.

事实证明,单克隆抗体和抗体片段是将放射性核素输送到正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)靶组织的高效载体。然而,传统上用于将放射性同位素附着到这些生物大分子上的随机方法不可避免地会产生定义不清和异质的探针,并会损害免疫球蛋白与其分子靶标结合的能力。为了应对这一挑战,人们开发出了一系列创新的位点特异性和位点选择性生物共轭策略,这些方法已多次被证明能产生定义更明确、更均质的放射免疫共轭物,其体内性能优于随机修饰的原代产物。在这篇《化学生物学时事评论》中,我们将探讨这一领域的最新进展,包括利用针对重链聚糖、肽标签和非天然氨基酸的策略开发核成像放射标记物,并在某些情况下将其应用于临床。
{"title":"Site-specific bioconjugation and nuclear imaging","authors":"Joni Sebastiano ,&nbsp;Zachary V. Samuels ,&nbsp;Wei-Siang Kao ,&nbsp;Brian M. Zeglis","doi":"10.1016/j.cbpa.2024.102471","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102471","url":null,"abstract":"<div><p>Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior <em>in vivo</em> performance than their randomly modified progenitors. In this <em>Current Opinion in Chemical Biology</em> review, we will examine recent advances in this field, including the development — and, in some cases, clinical translation — of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102471"},"PeriodicalIF":7.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000474/pdfft?md5=1845bb97421825784919bf8d45590ec7&pid=1-s2.0-S1367593124000474-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1