首页 > 最新文献

Current Opinion in Chemical Biology最新文献

英文 中文
Rational design of lipid nanoparticles: overcoming physiological barriers for selective intracellular mRNA delivery 合理设计脂质纳米颗粒:克服生理障碍,选择性地在细胞内输送 mRNA。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-13 DOI: 10.1016/j.cbpa.2024.102499
Yu Zhao , Zeyu Morgan Wang , Donghui Song , Mengting Chen, Qiaobing Xu

This review introduces the typical delivery process of messenger RNA (mRNA) nanomedicines and concludes that the delivery involves a at least four-step SCER cascade and that high efficiency at every step is critical to guarantee high overall therapeutic outcomes. This SCER cascade process includes selective organ-targeting delivery, cellular uptake, endosomal escape, and cytosolic mRNA release. Lipid nanoparticles (LNPs) have emerged as a state-of-the-art vehicle for in vivo mRNA delivery. The review emphasizes the importance of LNPs in achieving selective, efficient, and safe mRNA delivery. The discussion then extends to the technical and clinical considerations of LNPs, detailing the roles of individual components in the SCER cascade process, especially ionizable lipids and helper phospholipids. The review aims to provide an updated overview of LNP-based mRNA delivery, outlining recent innovations and addressing challenges while exploring future developments for clinical translation over the next decade.

这篇综述介绍了信使核糖核酸(mRNA)纳米药物的典型递送过程,并得出结论认为,递送过程涉及至少四个步骤的 SCER 级联,而每个步骤的高效率是保证高总体治疗效果的关键。这一 SCER 级联过程包括选择性器官靶向递送、细胞摄取、内体逸出和细胞膜 mRNA 释放。脂质纳米颗粒(LNPs)已成为体内递送 mRNA 的最先进载体。综述强调了 LNPs 在实现选择性、高效和安全递送 mRNA 方面的重要性。然后讨论了 LNPs 的技术和临床考虑因素,详细介绍了 SCER 级联过程中各个成分的作用,尤其是可电离脂质和辅助磷脂。本综述旨在提供基于 LNP 的 mRNA 递送的最新概况,概述最近的创新并应对挑战,同时探讨未来十年临床转化的发展。
{"title":"Rational design of lipid nanoparticles: overcoming physiological barriers for selective intracellular mRNA delivery","authors":"Yu Zhao ,&nbsp;Zeyu Morgan Wang ,&nbsp;Donghui Song ,&nbsp;Mengting Chen,&nbsp;Qiaobing Xu","doi":"10.1016/j.cbpa.2024.102499","DOIUrl":"10.1016/j.cbpa.2024.102499","url":null,"abstract":"<div><p>This review introduces the typical delivery process of messenger RNA (mRNA) nanomedicines and concludes that the delivery involves a at least four-step <strong>SCER</strong> cascade and that high efficiency at every step is critical to guarantee high overall therapeutic outcomes. This <strong>SCER</strong> cascade process includes selective organ-targeting delivery, cellular uptake, endosomal escape, and cytosolic mRNA release. Lipid nanoparticles (LNPs) have emerged as a state-of-the-art vehicle for <em>in vivo</em> mRNA delivery. The review emphasizes the importance of LNPs in achieving selective, efficient, and safe mRNA delivery. The discussion then extends to the technical and clinical considerations of LNPs, detailing the roles of individual components in the SCER cascade process, especially ionizable lipids and helper phospholipids. The review aims to provide an updated overview of LNP-based mRNA delivery, outlining recent innovations and addressing challenges while exploring future developments for clinical translation over the next decade.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102499"},"PeriodicalIF":6.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial glycoengineering: Cell-based and cell-free routes for producing biopharmaceuticals with customized glycosylation 细菌糖工程:以细胞为基础和无细胞途径生产定制糖基化生物制药。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-10 DOI: 10.1016/j.cbpa.2024.102500
Jaymee A. Palma , Mehman I. Bunyatov , Sophia W. Hulbert , Michael C. Jewett , Matthew P. DeLisa

Glycosylation plays a pivotal role in tuning the folding and function of proteins. Because most human therapeutic proteins are glycosylated, understanding and controlling glycosylation is important for the design, optimization, and manufacture of biopharmaceuticals. Unfortunately, natural eukaryotic glycosylation pathways are complex and often produce heterogeneous glycan patterns, making the production of glycoproteins with chemically precise and homogeneous glycan structures difficult. To overcome these limitations, bacterial glycoengineering has emerged as a simple, cost-effective, and scalable approach to produce designer glycoprotein therapeutics and vaccines in which the glycan structures are engineered to reduce heterogeneity and improve biological and biophysical attributes of the protein. Here, we discuss recent advances in bacterial cell-based and cell-free glycoengineering that have enabled the production of biopharmaceutical glycoproteins with customized glycan structures.

糖基化在调整蛋白质的折叠和功能方面起着举足轻重的作用。由于大多数人类治疗蛋白都是糖基化的,因此了解和控制糖基化对生物制药的设计、优化和生产非常重要。遗憾的是,天然真核生物糖基化途径非常复杂,通常会产生异质的糖基模式,因此很难生产出化学结构精确、糖基结构均匀的糖蛋白。为了克服这些局限性,细菌糖工程已成为一种简单、经济、可扩展的方法,用于生产设计型糖蛋白治疗剂和疫苗,在这种方法中,通过设计糖蛋白结构来减少异质性并改善蛋白质的生物和生物物理属性。在这里,我们将讨论基于细菌细胞和无细胞糖工程的最新进展,这些进展使得生产具有定制聚糖结构的生物制药糖蛋白成为可能。
{"title":"Bacterial glycoengineering: Cell-based and cell-free routes for producing biopharmaceuticals with customized glycosylation","authors":"Jaymee A. Palma ,&nbsp;Mehman I. Bunyatov ,&nbsp;Sophia W. Hulbert ,&nbsp;Michael C. Jewett ,&nbsp;Matthew P. DeLisa","doi":"10.1016/j.cbpa.2024.102500","DOIUrl":"10.1016/j.cbpa.2024.102500","url":null,"abstract":"<div><p>Glycosylation plays a pivotal role in tuning the folding and function of proteins. Because most human therapeutic proteins are glycosylated, understanding and controlling glycosylation is important for the design, optimization, and manufacture of biopharmaceuticals. Unfortunately, natural eukaryotic glycosylation pathways are complex and often produce heterogeneous glycan patterns, making the production of glycoproteins with chemically precise and homogeneous glycan structures difficult. To overcome these limitations, bacterial glycoengineering has emerged as a simple, cost-effective, and scalable approach to produce designer glycoprotein therapeutics and vaccines in which the glycan structures are engineered to reduce heterogeneity and improve biological and biophysical attributes of the protein. Here, we discuss recent advances in bacterial cell-based and cell-free glycoengineering that have enabled the production of biopharmaceutical glycoproteins with customized glycan structures.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102500"},"PeriodicalIF":6.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in boron difluoride formazanate dyes for biological imaging 用于生物成像的二氟化硼甲臢酸盐染料的研究进展。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-09 DOI: 10.1016/j.cbpa.2024.102473
Shudan Yang , Kang Lu , Han Xiao

In the past decade, boron difluoride formazanate dyes have gained considerable attention due to their redox activity, high absorption and emission intensities, chemical stability across a broad range of conditions, and the ease to fine-tune their optical and electronic characteristics. Over the past five years, boron difluoride formazanate dyes have demonstrated their extended emission wavelengths in the near-infrared region, suggesting their potential applications in the field of biological imaging. This review provides an overview of the evolution of boron difluoride formazanate dyes, encompassing the structural variations and corresponding optical properties, while also highlighting their current applications in biological imaging fields.

在过去的十年中,二氟化硼甲臢酸盐染料因其氧化还原活性、高吸收和发射强度、在广泛条件下的化学稳定性以及易于微调其光学和电子特性而受到广泛关注。在过去的五年中,二氟化硼甲臢酸盐染料在近红外区域展示了其扩展的发射波长,这表明它们在生物成像领域具有潜在的应用前景。本综述概述了二氟化硼甲臢酸盐染料的演变过程,包括其结构变化和相应的光学特性,同时还重点介绍了它们目前在生物成像领域的应用。
{"title":"Advancements in boron difluoride formazanate dyes for biological imaging","authors":"Shudan Yang ,&nbsp;Kang Lu ,&nbsp;Han Xiao","doi":"10.1016/j.cbpa.2024.102473","DOIUrl":"10.1016/j.cbpa.2024.102473","url":null,"abstract":"<div><p>In the past decade, boron difluoride formazanate dyes have gained considerable attention due to their redox activity, high absorption and emission intensities, chemical stability across a broad range of conditions, and the ease to fine-tune their optical and electronic characteristics. Over the past five years, boron difluoride formazanate dyes have demonstrated their extended emission wavelengths in the near-infrared region, suggesting their potential applications in the field of biological imaging. This review provides an overview of the evolution of boron difluoride formazanate dyes, encompassing the structural variations and corresponding optical properties, while also highlighting their current applications in biological imaging fields.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102473"},"PeriodicalIF":6.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial overview: Recent advances in metabolomics 编辑综述:代谢组学的最新进展。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-08 DOI: 10.1016/j.cbpa.2024.102498
James S.O. McCullagh, Hector C. Keun
{"title":"Editorial overview: Recent advances in metabolomics","authors":"James S.O. McCullagh,&nbsp;Hector C. Keun","doi":"10.1016/j.cbpa.2024.102498","DOIUrl":"10.1016/j.cbpa.2024.102498","url":null,"abstract":"","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102498"},"PeriodicalIF":6.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent strides in macromolecular targeted photodynamic therapy for cancer 癌症大分子靶向光动力疗法的最新进展
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-05 DOI: 10.1016/j.cbpa.2024.102497
Maxwell B. Quaye, Girgis Obaid

The recent approval of Akalux® for antibody-targeted photodynamic therapy (PDT) in Japan (also known as photoimmunotherapy), and the recent approval of Cytalux® for folate-specific image guided surgery by the FDA have motivated the continued development of macromolecular targeted PDT for cancer management. This review spotlights some of the most recent advances in macromolecular targeted PDT since 2021, exploring the latest advances in protein engineering, adaptive macromolecular constructs and nanotechnology, adoption of immune checkpoint inhibitors, and targeting using biomimetic membranes. These strategies summarized here attempt to expand the functionality, benefit, and success of macromolecular targeting for PDT to advance the technology beyond what has already entered into the clinical realm.

最近,Akalux®抗体靶向光动力疗法(PDT)在日本获得批准(也称为光免疫疗法),Cytalux®用于叶酸特异性图像引导手术也获得美国食品药品管理局批准,这些都推动了用于癌症治疗的大分子靶向光动力疗法的持续发展。本综述将重点介绍自2021年以来大分子靶向PDT领域的一些最新进展,探讨蛋白质工程、自适应大分子构建和纳米技术、免疫检查点抑制剂的采用以及使用仿生膜进行靶向治疗等方面的最新进展。本文总结的这些策略试图扩大大分子靶向PDT的功能、益处和成功率,以推动该技术超越已进入临床领域的技术。
{"title":"Recent strides in macromolecular targeted photodynamic therapy for cancer","authors":"Maxwell B. Quaye,&nbsp;Girgis Obaid","doi":"10.1016/j.cbpa.2024.102497","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102497","url":null,"abstract":"<div><p>The recent approval of Akalux® for antibody-targeted photodynamic therapy (PDT) in Japan (also known as photoimmunotherapy), and the recent approval of Cytalux® for folate-specific image guided surgery by the FDA have motivated the continued development of macromolecular targeted PDT for cancer management. This review spotlights some of the most recent advances in macromolecular targeted PDT since 2021, exploring the latest advances in protein engineering, adaptive macromolecular constructs and nanotechnology, adoption of immune checkpoint inhibitors, and targeting using biomimetic membranes. These strategies summarized here attempt to expand the functionality, benefit, and success of macromolecular targeting for PDT to advance the technology beyond what has already entered into the clinical realm.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102497"},"PeriodicalIF":6.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000735/pdfft?md5=abb39fc10d3de6fdc5c0ae66b349a979&pid=1-s2.0-S1367593124000735-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies in engineering sustainable biochemical synthesis through microbial systems 通过微生物系统进行可持续生化合成的工程战略。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-05 DOI: 10.1016/j.cbpa.2024.102493
Yoseb Song, Kristala L.J. Prather

Growing environmental concerns and the urgency to address climate change have increased demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach for achieving this goal. This review discusses the coupling of systems and synthetic biology to enable the elucidation and manipulation of microbial phenotypes for the production of chemicals that can substitute for petroleum-derived counterparts and contribute to advancing green biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate precise and data-driven design of biosynthetic pathways is also discussed, along with the identification of current limitations and proposition of strategies for optimizing biosystems, thereby propelling the field of chemical biology towards sustainable chemical production.

对环境的日益关注和应对气候变化的紧迫性,增加了对开发化石燃料和化学品可持续替代品的需求。拥有固有生物合成能力的微生物系统为实现这一目标提供了一种前景广阔的方法。本综述将讨论如何将系统生物学与合成生物学结合起来,以阐明和操纵微生物表型,从而生产出可替代石油衍生化学品的化学品,并推动绿色生物技术的发展。此外,还讨论了人工智能与代谢工程的结合,以促进生物合成途径的精确和数据驱动设计,同时确定了当前的局限性,并提出了优化生物系统的策略,从而推动化学生物学领域朝着可持续化学品生产的方向发展。
{"title":"Strategies in engineering sustainable biochemical synthesis through microbial systems","authors":"Yoseb Song,&nbsp;Kristala L.J. Prather","doi":"10.1016/j.cbpa.2024.102493","DOIUrl":"10.1016/j.cbpa.2024.102493","url":null,"abstract":"<div><p>Growing environmental concerns and the urgency to address climate change have increased demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach for achieving this goal. This review discusses the coupling of systems and synthetic biology to enable the elucidation and manipulation of microbial phenotypes for the production of chemicals that can substitute for petroleum-derived counterparts and contribute to advancing green biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate precise and data-driven design of biosynthetic pathways is also discussed, along with the identification of current limitations and proposition of strategies for optimizing biosystems, thereby propelling the field of chemical biology towards sustainable chemical production.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102493"},"PeriodicalIF":6.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How are hydrogen peroxide messages relayed to affect cell signalling? 过氧化氢如何传递信息以影响细胞信号?
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-02 DOI: 10.1016/j.cbpa.2024.102496
Elizabeth A. Veal , Paraskevi Kritsiligkou

H2O2 signals trigger adaptive responses affecting cell division, differentiation, migration, and survival. These signals are transduced by selective oxidation of cysteines on specific target proteins, with redox-sensitive cysteines now identified in many proteins, including both kinases and phosphatases. Assessing the contribution of these oxidation events to cell signalling presents several challenges including understanding how and when the selective oxidation of specific proteins takes place in vivo. In recent years, a combination of biochemical, structural, genetic, and computational approaches in fungi, plants, and animals have revealed different ways in which thiol peroxidases (peroxiredoxins) are bypassed or utilised in relaying these signals. Together, these mechanisms provide a conceptual framework for selectively oxidising proteins that will further advance understanding of how redox modifications contribute to health and disease.

H2O2 信号会触发影响细胞分裂、分化、迁移和存活的适应性反应。这些信号是通过特定目标蛋白质上的半胱氨酸选择性氧化传导的,目前已在许多蛋白质(包括激酶和磷酸酶)中发现了对氧化还原敏感的半胱氨酸。评估这些氧化事件对细胞信号的贡献面临着一些挑战,包括了解特定蛋白质在体内如何以及何时发生选择性氧化。近年来,真菌、植物和动物的生化、结构、遗传和计算方法相结合,揭示了硫醇过氧化物酶(过氧化还原酶)在传递这些信号时被绕过或利用的不同方式。这些机制共同提供了一个选择性氧化蛋白质的概念框架,将进一步推动人们对氧化还原修饰如何促进健康和疾病的理解。
{"title":"How are hydrogen peroxide messages relayed to affect cell signalling?","authors":"Elizabeth A. Veal ,&nbsp;Paraskevi Kritsiligkou","doi":"10.1016/j.cbpa.2024.102496","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102496","url":null,"abstract":"<div><p>H<sub>2</sub>O<sub>2</sub> signals trigger adaptive responses affecting cell division, differentiation, migration, and survival. These signals are transduced by selective oxidation of cysteines on specific target proteins, with redox-sensitive cysteines now identified in many proteins, including both kinases and phosphatases. Assessing the contribution of these oxidation events to cell signalling presents several challenges including understanding how and when the selective oxidation of specific proteins takes place <em>in vivo</em>. In recent years, a combination of biochemical, structural, genetic, and computational approaches in fungi, plants, and animals have revealed different ways in which thiol peroxidases (peroxiredoxins) are bypassed or utilised in relaying these signals. Together, these mechanisms provide a conceptual framework for selectively oxidising proteins that will further advance understanding of how redox modifications contribute to health and disease.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102496"},"PeriodicalIF":6.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000723/pdfft?md5=0f60fd470519d7a47684751d6879061a&pid=1-s2.0-S1367593124000723-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymatic strategies for selenium incorporation into biological molecules 将硒纳入生物分子的酶促策略
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-01 DOI: 10.1016/j.cbpa.2024.102495
Chase M. Kayrouz , Mohammad R. Seyedsayamdost

The trace element selenium (Se) is essential to the physiology of most organisms on the planet. The most well documented of Se's biological forms are selenoproteins, where selenocysteine often serves as the catalytic center for crucial redox processes. Se is also found in several other classes of biological molecules, including nucleic acids, sugars, and modified amino acids, although its role in the function of these metabolites is less understood. Despite its prevalence, only a small number of Se-specific biosynthetic pathways have been discovered. Around half of these were first characterized in the past three years, suggesting that the selenometabolome may be more diverse than previously appreciated. Here, we review the recent advances in our understanding of this intriguing biochemical space, and discuss prospects for future discovery efforts.

微量元素硒(Se)对地球上大多数生物的生理机能至关重要。硒在生物体内最常见的形式是硒蛋白,其中的硒半胱氨酸通常是关键氧化还原过程的催化中心。硒还存在于其他几类生物分子中,包括核酸、糖和修饰氨基酸,但人们对硒在这些代谢物功能中的作用了解较少。尽管硒普遍存在,但目前只发现了少量硒特异性生物合成途径。其中约有一半是在过去三年中首次表征的,这表明硒代谢组可能比以前认识到的更加多样化。在此,我们回顾了我们对这一有趣的生化领域的最新理解进展,并讨论了未来发现工作的前景。
{"title":"Enzymatic strategies for selenium incorporation into biological molecules","authors":"Chase M. Kayrouz ,&nbsp;Mohammad R. Seyedsayamdost","doi":"10.1016/j.cbpa.2024.102495","DOIUrl":"https://doi.org/10.1016/j.cbpa.2024.102495","url":null,"abstract":"<div><p>The trace element selenium (Se) is essential to the physiology of most organisms on the planet. The most well documented of Se's biological forms are selenoproteins, where selenocysteine often serves as the catalytic center for crucial redox processes. Se is also found in several other classes of biological molecules, including nucleic acids, sugars, and modified amino acids, although its role in the function of these metabolites is less understood. Despite its prevalence, only a small number of Se-specific biosynthetic pathways have been discovered. Around half of these were first characterized in the past three years, suggesting that the selenometabolome may be more diverse than previously appreciated. Here, we review the recent advances in our understanding of this intriguing biochemical space, and discuss prospects for future discovery efforts.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102495"},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines 非核糖体肽组装线中活性氨基酸的生物合成和招募。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-26 DOI: 10.1016/j.cbpa.2024.102494
Friedrich Johannes Ehinger , Christian Hertweck

Reactive amino acid side chains play important roles in the binding of peptides to specific targets. In addition, their reactivity enables selective peptide conjugation and functionalization for pharmaceutical purposes. Diverse reactive amino acids are incorporated into nonribosomal peptides, which serve as a source for drug candidates. Notable examples include (poly)unsaturated (enamine, alkyne, and furyl) and halogenated residues, strained carbacycles (cyclopropyl and cyclopropanol), small heterocycles (oxirane and aziridine), and reactive N–N functionalities (hydrazones, diazo compounds, and diazeniumdiolates). Their biosynthesis requires diverse biocatalysts for sophisticated reaction mechanisms. Several avenues have been identified for their incorporation into peptides, the recruitment by adenylation domains or ligases, on-line modifications, and enzymatic tailoring reactions. Combined with protein engineering approaches, this knowledge provides new opportunities in synthetic biology and bioorthogonal chemistry.

活性氨基酸侧链在肽与特定目标的结合中发挥着重要作用。此外,活性氨基酸的反应性还能使肽键合和功能化具有选择性,从而达到制药目的。非核糖体肽中含有多种活性氨基酸,可作为候选药物的来源。著名的例子包括(多)不饱和(烯胺、炔烃和呋喃基)和卤化残基、应变碳环(环丙基和环丙醇)、小杂环(环氧乙烷和氮丙啶)以及反应性 N-N 功能(肼酮、重氮化合物和重氮二醇)。它们的生物合成需要不同的生物催化剂来实现复杂的反应机制。目前已经确定了将它们加入肽、腺苷酸化结构域或连接酶的招募、在线修饰和酶定制反应的几种途径。这些知识与蛋白质工程方法相结合,为合成生物学和生物正交化学提供了新的机遇。
{"title":"Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines","authors":"Friedrich Johannes Ehinger ,&nbsp;Christian Hertweck","doi":"10.1016/j.cbpa.2024.102494","DOIUrl":"10.1016/j.cbpa.2024.102494","url":null,"abstract":"<div><p>Reactive amino acid side chains play important roles in the binding of peptides to specific targets. In addition, their reactivity enables selective peptide conjugation and functionalization for pharmaceutical purposes. Diverse reactive amino acids are incorporated into nonribosomal peptides, which serve as a source for drug candidates. Notable examples include (poly)unsaturated (enamine, alkyne, and furyl) and halogenated residues, strained carbacycles (cyclopropyl and cyclopropanol), small heterocycles (oxirane and aziridine), and reactive N–N functionalities (hydrazones, diazo compounds, and diazeniumdiolates). Their biosynthesis requires diverse biocatalysts for sophisticated reaction mechanisms. Several avenues have been identified for their incorporation into peptides, the recruitment by adenylation domains or ligases, on-line modifications, and enzymatic tailoring reactions. Combined with protein engineering approaches, this knowledge provides new opportunities in synthetic biology and bioorthogonal chemistry.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102494"},"PeriodicalIF":6.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes 通过自由基 SAM-RiPP 酶获取和探索不寻常的化学性质。
IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-24 DOI: 10.1016/j.cbpa.2024.102483
Qianqian Guo, Brandon I. Morinaka

Radical SAM enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides catalyze unusual transformations that lead to unique peptide scaffolds and building blocks. Several natural products from these pathways show encouraging antimicrobial activities and represent next-generation therapeutics for infectious diseases. These systems are uniquely configured to benefit from genome-mining approaches because minimal substrate and cognate modifying enzyme expression can reveal unique, chemically complex transformations that outperform late-stage chemical reactions. This report highlights the main strategies used to reveal these enzymatic transformations, which have relied mainly on genome mining using enzyme-first approaches. We describe the general biosynthetic components for rSAM enzymes and highlight emerging approaches that may broaden the discovery and study of rSAM-RiPP enzymes. The large number of uncharacterized rSAM proteins, coupled with their unpredictable transformations, will continue to be an essential and exciting resource for enzyme discovery.

参与核糖体合成和翻译后修饰肽生物合成的激肽 SAM 酶会催化不寻常的转化,从而产生独特的肽支架和构件。来自这些途径的一些天然产物显示出令人鼓舞的抗菌活性,是治疗传染性疾病的新一代疗法。这些系统配置独特,可以从基因组挖掘方法中获益,因为最低限度的底物和同源修饰酶表达可以揭示独特的、化学上复杂的转化过程,其效果优于后期的化学反应。本报告重点介绍了用于揭示这些酶转化的主要策略,这些策略主要依赖于使用酶优先方法进行基因组挖掘。我们描述了 rSAM 酶的一般生物合成成分,并重点介绍了可扩大 rSAM-RiPP 酶发现和研究范围的新兴方法。大量未表征的 rSAM 蛋白,加上它们不可预测的转化,将继续成为发现酶的重要和令人兴奋的资源。
{"title":"Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes","authors":"Qianqian Guo,&nbsp;Brandon I. Morinaka","doi":"10.1016/j.cbpa.2024.102483","DOIUrl":"10.1016/j.cbpa.2024.102483","url":null,"abstract":"<div><p>Radical SAM enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides catalyze unusual transformations that lead to unique peptide scaffolds and building blocks. Several natural products from these pathways show encouraging antimicrobial activities and represent next-generation therapeutics for infectious diseases. These systems are uniquely configured to benefit from genome-mining approaches because minimal substrate and cognate modifying enzyme expression can reveal unique, chemically complex transformations that outperform late-stage chemical reactions. This report highlights the main strategies used to reveal these enzymatic transformations, which have relied mainly on genome mining using enzyme-first approaches. We describe the general biosynthetic components for rSAM enzymes and highlight emerging approaches that may broaden the discovery and study of rSAM-RiPP enzymes. The large number of uncharacterized rSAM proteins, coupled with their unpredictable transformations, will continue to be an essential and exciting resource for enzyme discovery.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102483"},"PeriodicalIF":6.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1