Pub Date : 2024-08-10DOI: 10.1016/j.cbpa.2024.102510
Nikolai A. Löhr , Lukas Platz , Dirk Hoffmeister , Michael Müller
Mushroom-forming fungi exhibit a distinctive ecology, which is unsurprisingly also reflected in unique and divergent biosynthetic pathways. We review this phenomenon through the lens of the polyketide metabolism, where mushrooms often deviate from established principles and challenge conventional paradigms. This is evident not only by non-canonical enzyme architectures and functions but also by their propensity for multi-product synthases rather than single-product pathways. Nevertheless, mushrooms also feature many polyketides familiar from plants, bacteria, and fungi of their sister division Ascomycota, which, however, are the result of an independent evolution. In this regard, the captivating biosynthetic pathways of mushrooms might even help us understand the biological pressures that led to the simultaneous production of the same natural products (via convergent evolution, co-evolution, and/or metaevolution) and thus address the question of their raison d'être.
{"title":"From the forest floor to the lab: Insights into the diversity and complexity of mushroom polyketide synthases","authors":"Nikolai A. Löhr , Lukas Platz , Dirk Hoffmeister , Michael Müller","doi":"10.1016/j.cbpa.2024.102510","DOIUrl":"10.1016/j.cbpa.2024.102510","url":null,"abstract":"<div><p>Mushroom-forming fungi exhibit a distinctive ecology, which is unsurprisingly also reflected in unique and divergent biosynthetic pathways. We review this phenomenon through the lens of the polyketide metabolism, where mushrooms often deviate from established principles and challenge conventional paradigms. This is evident not only by non-canonical enzyme architectures and functions but also by their propensity for multi-product synthases rather than single-product pathways. Nevertheless, mushrooms also feature many polyketides familiar from plants, bacteria, and fungi of their sister division Ascomycota, which, however, are the result of an independent evolution. In this regard, the captivating biosynthetic pathways of mushrooms might even help us understand the biological pressures that led to the simultaneous production of the same natural products (via convergent evolution, co-evolution, and/or metaevolution) and thus address the question of their <em>raison d'être</em>.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"82 ","pages":"Article 102510"},"PeriodicalIF":6.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000863/pdfft?md5=fa57ba35ff5b4bbb74531c3b64a4107a&pid=1-s2.0-S1367593124000863-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102503
Yuxin Li , Hongming Chen , Jiuxiang Gao , Peng Wu , Senlian Hong
Advances in immunotherapy have revolutionized modern medical care paradigms. However, many patients respond poorly to the current FDA-approved treatment regimens that primarily target protein-based antigens or checkpoints. Current progress in developing therapeutic strategies that target disease-associated glycans has pinpointed a new class of glycoimmune checkpoints that function orthogonally to the established protein-immune checkpoints. Glycoengineering using chemical, enzymatic, and genetic methods is also increasingly recognized for its massive potential to improve biopharmaceuticals, such as tailoring therapies with antigen-targeting agents. Here, we review the recent development and applications of glycoengineering of antibodies and cells to suit therapeutic applications. We highlight living-cell glycoengineering strategies on cancer and immune cells for better therapeutic efficacy against specific antigens by leveraging the pre-existing immune machinery or instructing de novo creation of targeting agents. We also discuss glycoengineering strategies for studying basic immuno-oncology. Collectively, glycoengineering has a significant contribution to the design of antigen-specific immunotherapies.
{"title":"Glycoengineering in antigen-specific immunotherapies","authors":"Yuxin Li , Hongming Chen , Jiuxiang Gao , Peng Wu , Senlian Hong","doi":"10.1016/j.cbpa.2024.102503","DOIUrl":"10.1016/j.cbpa.2024.102503","url":null,"abstract":"<div><p>Advances in immunotherapy have revolutionized modern medical care paradigms. However, many patients respond poorly to the current FDA-approved treatment regimens that primarily target protein-based antigens or checkpoints. Current progress in developing therapeutic strategies that target disease-associated glycans has pinpointed a new class of glycoimmune checkpoints that function orthogonally to the established protein-immune checkpoints. Glycoengineering using chemical, enzymatic, and genetic methods is also increasingly recognized for its massive potential to improve biopharmaceuticals, such as tailoring therapies with antigen-targeting agents. Here, we review the recent development and applications of glycoengineering of antibodies and cells to suit therapeutic applications. We highlight living-cell glycoengineering strategies on cancer and immune cells for better therapeutic efficacy against specific antigens by leveraging the pre-existing immune machinery or instructing <em>de novo</em> creation of targeting agents. We also discuss glycoengineering strategies for studying basic immuno-oncology. Collectively, glycoengineering has a significant contribution to the design of antigen-specific immunotherapies.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102503"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102507
Bo Zhang, Hui Ming Ge
Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.
{"title":"Recent progresses in the cyclization and oxidation of polyketide biosynthesis","authors":"Bo Zhang, Hui Ming Ge","doi":"10.1016/j.cbpa.2024.102507","DOIUrl":"10.1016/j.cbpa.2024.102507","url":null,"abstract":"<div><p>Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102507"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102506
Melina Grau , Ernst Wagner
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
{"title":"Strategies and mechanisms for endosomal escape of therapeutic nucleic acids","authors":"Melina Grau , Ernst Wagner","doi":"10.1016/j.cbpa.2024.102506","DOIUrl":"10.1016/j.cbpa.2024.102506","url":null,"abstract":"<div><p>Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102506"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000826/pdfft?md5=2b89c2b69ecf385ac782b8ed8112060e&pid=1-s2.0-S1367593124000826-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102504
Jiawang Liu, Youcai Hu
[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co–crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.
{"title":"Discovery and evolution of [4 + 2] cyclases","authors":"Jiawang Liu, Youcai Hu","doi":"10.1016/j.cbpa.2024.102504","DOIUrl":"10.1016/j.cbpa.2024.102504","url":null,"abstract":"<div><p>[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co–crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102504"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102509
Jacob A. Wolfe, W. Seth Horne
Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored—but similarly powerful—is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.
{"title":"Application of artificial backbone connectivity in the development of metalloenzyme mimics","authors":"Jacob A. Wolfe, W. Seth Horne","doi":"10.1016/j.cbpa.2024.102509","DOIUrl":"10.1016/j.cbpa.2024.102509","url":null,"abstract":"<div><p>Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by <em>de novo</em> designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored—but similarly powerful—is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102509"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000851/pdfft?md5=7682c3330f9c6aad812ea489aee31afc&pid=1-s2.0-S1367593124000851-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102508
Iori Morita, Thomas R. Ward
Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) in vivo catalysis. Thanks to significant progress in computational protein design, ArMs based on de novo–designed proteins and tailored chimeric proteins promise a bright future for this exciting field.
{"title":"Recent advances in the design and optimization of artificial metalloenzymes","authors":"Iori Morita, Thomas R. Ward","doi":"10.1016/j.cbpa.2024.102508","DOIUrl":"10.1016/j.cbpa.2024.102508","url":null,"abstract":"<div><p>Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) <em>in vivo</em> catalysis. Thanks to significant progress in computational protein design, ArMs based on <em>de novo</em>–designed proteins and tailored chimeric proteins promise a bright future for this exciting field.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102508"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cbpa.2024.102505
Hanfeng Lin , Lingfei Wang , Xiqian Jiang , Jin Wang
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
{"title":"Glutathione dynamics in subcellular compartments and implications for drug development","authors":"Hanfeng Lin , Lingfei Wang , Xiqian Jiang , Jin Wang","doi":"10.1016/j.cbpa.2024.102505","DOIUrl":"10.1016/j.cbpa.2024.102505","url":null,"abstract":"<div><p>Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102505"},"PeriodicalIF":6.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.cbpa.2024.102502
D. Mustafov , M.S. Ahmad , A. Serrano , M. Braoudaki , S.S. Siddiqui
Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.
{"title":"MicroRNA:Siglec crosstalk in cancer progression","authors":"D. Mustafov , M.S. Ahmad , A. Serrano , M. Braoudaki , S.S. Siddiqui","doi":"10.1016/j.cbpa.2024.102502","DOIUrl":"10.1016/j.cbpa.2024.102502","url":null,"abstract":"<div><p>Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102502"},"PeriodicalIF":6.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000784/pdfft?md5=fa5f5ed0a0c37a6bae4a3703795bb511&pid=1-s2.0-S1367593124000784-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.cbpa.2024.102501
Nefeli Batistatou, Joshua A. Kritzer
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
{"title":"Recent advances in methods for quantifying the cell penetration of macromolecules","authors":"Nefeli Batistatou, Joshua A. Kritzer","doi":"10.1016/j.cbpa.2024.102501","DOIUrl":"10.1016/j.cbpa.2024.102501","url":null,"abstract":"<div><p>As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102501"},"PeriodicalIF":6.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}