首页 > 最新文献

Precision Chemistry最新文献

英文 中文
Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity 甲基丙烯酸甲酯与配体的质子转移阴离子聚合及其对分子量和弹性的双重控制
Pub Date : 2024-10-15 DOI: 10.1021/prechem.4c0006610.1021/prechem.4c00066
Katsutoshi Sagawa, Mineto Uchiyama*, Hironobu Watanabe, Chihiro Homma and Masami Kamigaito*, 

Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C–H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (rr/mr/mm = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA (rr ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA (mm ≈ 32%). Molecular weight control of PMMA was achieved (Đ = 1.1–1.2) by adding 1,1-diphenylethanol as a reversible terminator while maintaining control of the tacticity with the above ligands. Stereoblock PMMA consisting of atactic and syndiotactic segments was successfully synthesized via sequential PTAP using macroinitiator/macro-CTA methods.

本文研究了甲基丙烯酸甲酯(MMA)质子转移阴离子聚合(PTAP)过程中,在0℃甲苯中,以大体积钾碱催化剂和具有弱酸性C - h键的有机化合物为休眠物的情况下,采用不同配体对分子量和弹性的双重控制。无配体制备的聚(MMA) (PMMA)的弹性几乎为零(rr/mr/mm = 22/54/24)。然而,使用18-冠-6作为配体可获得主要的顺规PMMA (rr≈58%),而使用手性双(恶唑啉)配体可获得稍富等规的PMMA (mm≈32%)。通过加入1,1-二苯乙醇作为可逆终止剂,在保持与上述配体的亲和性控制的同时,实现了PMMA的分子量控制(Đ = 1.1-1.2)。采用macroinitiator/macro-CTA方法,通过序贯PTAP成功合成了由无规段和共规段组成的立体嵌段PMMA。
{"title":"Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity","authors":"Katsutoshi Sagawa,&nbsp;Mineto Uchiyama*,&nbsp;Hironobu Watanabe,&nbsp;Chihiro Homma and Masami Kamigaito*,&nbsp;","doi":"10.1021/prechem.4c0006610.1021/prechem.4c00066","DOIUrl":"https://doi.org/10.1021/prechem.4c00066https://doi.org/10.1021/prechem.4c00066","url":null,"abstract":"<p >Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C–H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (<i>rr</i>/<i>mr</i>/<i>mm</i> = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA (<i>rr</i> ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA (<i>mm</i> ≈ 32%). Molecular weight control of PMMA was achieved (<i>Đ</i> = 1.1–1.2) by adding 1,1-diphenylethanol as a reversible terminator while maintaining control of the tacticity with the above ligands. Stereoblock PMMA consisting of atactic and syndiotactic segments was successfully synthesized via sequential PTAP using macroinitiator/macro-CTA methods.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"628–633 628–633"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity. 甲基丙烯酸甲酯与配体的质子转移阴离子聚合及其对分子量和弹性的双重控制。
Pub Date : 2024-10-15 eCollection Date: 2024-12-23 DOI: 10.1021/prechem.4c00066
Katsutoshi Sagawa, Mineto Uchiyama, Hironobu Watanabe, Chihiro Homma, Masami Kamigaito

Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (rr/mr/mm = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA (rr ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA (mm ≈ 32%). Molecular weight control of PMMA was achieved (Đ = 1.1-1.2) by adding 1,1-diphenylethanol as a reversible terminator while maintaining control of the tacticity with the above ligands. Stereoblock PMMA consisting of atactic and syndiotactic segments was successfully synthesized via sequential PTAP using macroinitiator/macro-CTA methods.

本文研究了甲基丙烯酸甲酯(MMA)质子转移阴离子聚合(PTAP)过程中,在0℃甲苯中,以大体积钾碱催化剂和具有弱酸性C- h键的有机化合物为休眠物的情况下,采用不同配体对分子量和弹性的双重控制。无配体制备的聚(MMA) (PMMA)的弹性几乎为零(rr/mr/mm = 22/54/24)。然而,使用18-冠-6作为配体可获得主要的顺规PMMA (rr≈58%),而使用手性双(恶唑啉)配体可获得稍富等规的PMMA (mm≈32%)。通过加入1,1-二苯乙醇作为可逆终止剂,在保持与上述配体的亲和性控制的同时,实现了PMMA的分子量控制(Đ = 1.1-1.2)。采用macroinitiator/macro-CTA方法,通过序贯PTAP成功合成了由无规段和共规段组成的立体嵌段PMMA。
{"title":"Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity.","authors":"Katsutoshi Sagawa, Mineto Uchiyama, Hironobu Watanabe, Chihiro Homma, Masami Kamigaito","doi":"10.1021/prechem.4c00066","DOIUrl":"10.1021/prechem.4c00066","url":null,"abstract":"<p><p>Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (<i>rr</i>/<i>mr</i>/<i>mm</i> = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA (<i>rr</i> ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA (<i>mm</i> ≈ 32%). Molecular weight control of PMMA was achieved (<i>Đ</i> = 1.1-1.2) by adding 1,1-diphenylethanol as a reversible terminator while maintaining control of the tacticity with the above ligands. Stereoblock PMMA consisting of atactic and syndiotactic segments was successfully synthesized via sequential PTAP using macroinitiator/macro-CTA methods.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"628-633"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO2 Photoreduction 调控共价有机框架中单个 Co(II)位点周围的配位阴离子,促进二氧化碳光反应
Pub Date : 2024-10-14 DOI: 10.1021/prechem.4c0005810.1021/prechem.4c00058
Nan Dai, Yunyang Qian, Denan Wang, Jiajia Huang, Xinyu Guan, Zhongyuan Lin, Weijie Yang, Rui Wang*, Jier Huang, Shuang-Quan Zang and Hai-Long Jiang*, 

While photocatalytic CO2 reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO2 photoreduction remain limited. Herein, different coordinated anions (F, Cl, OAc, and NO3) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO3), for photocatalytic CO2 reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO2 adsorption capacity, and low energy barrier for CO2 activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.

虽然光催化二氧化碳还原的研究一直很深入,但有关配位到催化金属位点的阴离子对二氧化碳光还原影响的报道仍然有限。在此,我们合成了安装在基于双吡啶的三组分共价有机框架(COF)上的单个 Co 位点周围的不同配位阴离子(F-、Cl-、OAc- 和 NO3-),得到了用于光催化二氧化碳还原的 TBD-COF-Co-X(X = F、Cl、OAc 和 NO3)。值得注意的是,这些配位阴离子在 Co 位点上的存在极大地影响了光催化性能,其中 TBD-COF-Co-F 的活性优于同类产品。综合实验和理论结果表明,TBD-COF-Co-F 活性的增强归功于其高效的电荷转移、高二氧化碳吸附能力和低二氧化碳活化能垒。这项研究为通过催化金属位点周围的配位阴离子调节来促进 COF 光催化提供了一种新策略。
{"title":"Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO2 Photoreduction","authors":"Nan Dai,&nbsp;Yunyang Qian,&nbsp;Denan Wang,&nbsp;Jiajia Huang,&nbsp;Xinyu Guan,&nbsp;Zhongyuan Lin,&nbsp;Weijie Yang,&nbsp;Rui Wang*,&nbsp;Jier Huang,&nbsp;Shuang-Quan Zang and Hai-Long Jiang*,&nbsp;","doi":"10.1021/prechem.4c0005810.1021/prechem.4c00058","DOIUrl":"https://doi.org/10.1021/prechem.4c00058https://doi.org/10.1021/prechem.4c00058","url":null,"abstract":"<p >While photocatalytic CO<sub>2</sub> reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO<sub>2</sub> photoreduction remain limited. Herein, different coordinated anions (F<sup>–</sup>, Cl<sup>–</sup>, OAc<sup>–</sup>, and NO<sub>3</sub><sup>–</sup>) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO<sub>3</sub>), for photocatalytic CO<sub>2</sub> reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO<sub>2</sub> adsorption capacity, and low energy barrier for CO<sub>2</sub> activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 11","pages":"600–609 600–609"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO2 Photoreduction. 共价有机框架中Co(II)单位点周围阴离子配位促进CO2光还原的调控。
Pub Date : 2024-10-14 eCollection Date: 2024-11-25 DOI: 10.1021/prechem.4c00058
Nan Dai, Yunyang Qian, Denan Wang, Jiajia Huang, Xinyu Guan, Zhongyuan Lin, Weijie Yang, Rui Wang, Jier Huang, Shuang-Quan Zang, Hai-Long Jiang

While photocatalytic CO2 reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO2 photoreduction remain limited. Herein, different coordinated anions (F-, Cl-, OAc-, and NO3 -) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO3), for photocatalytic CO2 reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO2 adsorption capacity, and low energy barrier for CO2 activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.

虽然光催化CO2还原已经得到了深入的研究,但关于阴离子配位到催化金属位点对CO2光还原的影响的报道仍然有限。在本研究中,在安装在联吡啶基三组分共价有机框架(COFs)上的单个Co位点周围合成了不同的配位阴离子(F-、Cl-、OAc-和NO3 -),形成了TBD-COF-Co-X (X = F、Cl、OAc和NO3),用于光催化CO2还原。值得注意的是,这些配位阴离子在Co位点上的存在显著影响了光催化性能,其中TBD-COF-Co-F表现出优于其对应物的活性。实验与理论相结合的结果表明,TBD-COF-Co-F的活性增强是由于其高效的电荷转移、高的CO2吸附能力和低的CO2活化能垒。该研究提供了一种通过在催化金属位点周围的阴离子调节来促进COF光催化的新策略。
{"title":"Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO<sub>2</sub> Photoreduction.","authors":"Nan Dai, Yunyang Qian, Denan Wang, Jiajia Huang, Xinyu Guan, Zhongyuan Lin, Weijie Yang, Rui Wang, Jier Huang, Shuang-Quan Zang, Hai-Long Jiang","doi":"10.1021/prechem.4c00058","DOIUrl":"10.1021/prechem.4c00058","url":null,"abstract":"<p><p>While photocatalytic CO<sub>2</sub> reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO<sub>2</sub> photoreduction remain limited. Herein, different coordinated anions (F<sup>-</sup>, Cl<sup>-</sup>, OAc<sup>-</sup>, and NO<sub>3</sub> <sup>-</sup>) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO<sub>3</sub>), for photocatalytic CO<sub>2</sub> reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO<sub>2</sub> adsorption capacity, and low energy barrier for CO<sub>2</sub> activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 11","pages":"600-609"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure 具有紧密排列的交叉层状结构的独立超薄银纳米线薄膜的机械稳定性和抗损伤性
Pub Date : 2024-10-13 DOI: 10.1021/prechem.4c0005310.1021/prechem.4c00053
Si-Chao Zhang, Huai-Ling Gao, Long Zhang, Yin-Bo Zhu, Ya-Dong Wu, Jian-Wei Liu, Li-Bo Mao, Mei Feng, Liang Dong, Zhao Pan, Xiang-Sen Meng, Yang Lu* and Shu-Hong Yu*, 

One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design. Here, we successfully prepared a mechanically stabilized monolamella silver nanowire (Ag NW) film, based on a facile bubble-mediated assembly and nondestructive transfer strategy with the assistance of a porous mixed cellulose ester substrate, inspired by the hierarchical structure of biomaterial. Owing to the closely packed arrangement of Ag NWs combined with their weak interfaces, the monolamellar Ag NW film can be transferred to arbitrary substrates without damage. Furthermore, freestanding multilamellar Ag NW films with impressive damage resistance can be obtained from the monolamellar Ag NW film, through the introduction of bioinspired closely packed crossed-lamellar (CPCL) structure. This CPCL structure maximizes intra- and interlamellar interactions among Ag NWs ensuring efficient stress transfer and uniform electron transport, resulting in excellent mechanical durability and stable electrical properties of the multilamellar Ag NW films.

一维功能纳米线由于其独特的功能被广泛用作组装先进纳米器件的纳米级构件。然而,以往的研究主要集中在纳米线的功能上,而忽略了纳米线组件的结构稳定性和抗损伤性,而这对纳米器件的长期运行至关重要。生物材料通过复杂的结构设计实现了优异的机械稳定性和抗损伤性。在这里,我们成功地制备了一种机械稳定的单胞银纳米线(Ag NW)薄膜,基于简单的气泡介导组装和无损转移策略,在多孔混合纤维素酯底物的帮助下,受生物材料的层次结构的启发。由于银纳米硅的紧密排列和弱界面的结合,单层银纳米硅薄膜可以在不损坏的情况下转移到任意基底上。此外,通过引入仿生紧密排列的交叉片层(CPCL)结构,可以从单层银NW膜中获得具有令人印象深刻的抗损伤性的独立多层银NW膜。这种CPCL结构最大限度地提高了Ag NW膜层内和层间的相互作用,确保了有效的应力传递和均匀的电子传递,从而使Ag NW膜具有优异的机械耐久性和稳定的电学性能。
{"title":"Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure","authors":"Si-Chao Zhang,&nbsp;Huai-Ling Gao,&nbsp;Long Zhang,&nbsp;Yin-Bo Zhu,&nbsp;Ya-Dong Wu,&nbsp;Jian-Wei Liu,&nbsp;Li-Bo Mao,&nbsp;Mei Feng,&nbsp;Liang Dong,&nbsp;Zhao Pan,&nbsp;Xiang-Sen Meng,&nbsp;Yang Lu* and Shu-Hong Yu*,&nbsp;","doi":"10.1021/prechem.4c0005310.1021/prechem.4c00053","DOIUrl":"https://doi.org/10.1021/prechem.4c00053https://doi.org/10.1021/prechem.4c00053","url":null,"abstract":"<p >One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design. Here, we successfully prepared a mechanically stabilized monolamella silver nanowire (Ag NW) film, based on a facile bubble-mediated assembly and nondestructive transfer strategy with the assistance of a porous mixed cellulose ester substrate, inspired by the hierarchical structure of biomaterial. Owing to the closely packed arrangement of Ag NWs combined with their weak interfaces, the monolamellar Ag NW film can be transferred to arbitrary substrates without damage. Furthermore, freestanding multilamellar Ag NW films with impressive damage resistance can be obtained from the monolamellar Ag NW film, through the introduction of bioinspired closely packed crossed-lamellar (CPCL) structure. This CPCL structure maximizes intra- and interlamellar interactions among Ag NWs ensuring efficient stress transfer and uniform electron transport, resulting in excellent mechanical durability and stable electrical properties of the multilamellar Ag NW films.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"634–643 634–643"},"PeriodicalIF":0.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure. 具有紧密排列的交叉层状结构的独立超薄银纳米线薄膜的机械稳定性和抗损伤性。
Pub Date : 2024-10-13 eCollection Date: 2024-12-23 DOI: 10.1021/prechem.4c00053
Si-Chao Zhang, Huai-Ling Gao, Long Zhang, Yin-Bo Zhu, Ya-Dong Wu, Jian-Wei Liu, Li-Bo Mao, Mei Feng, Liang Dong, Zhao Pan, Xiang-Sen Meng, Yang Lu, Shu-Hong Yu

One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design. Here, we successfully prepared a mechanically stabilized monolamella silver nanowire (Ag NW) film, based on a facile bubble-mediated assembly and nondestructive transfer strategy with the assistance of a porous mixed cellulose ester substrate, inspired by the hierarchical structure of biomaterial. Owing to the closely packed arrangement of Ag NWs combined with their weak interfaces, the monolamellar Ag NW film can be transferred to arbitrary substrates without damage. Furthermore, freestanding multilamellar Ag NW films with impressive damage resistance can be obtained from the monolamellar Ag NW film, through the introduction of bioinspired closely packed crossed-lamellar (CPCL) structure. This CPCL structure maximizes intra- and interlamellar interactions among Ag NWs ensuring efficient stress transfer and uniform electron transport, resulting in excellent mechanical durability and stable electrical properties of the multilamellar Ag NW films.

一维功能纳米线由于其独特的功能被广泛用作组装先进纳米器件的纳米级构件。然而,以往的研究主要集中在纳米线的功能上,而忽略了纳米线组件的结构稳定性和抗损伤性,而这对纳米器件的长期运行至关重要。生物材料通过复杂的结构设计实现了优异的机械稳定性和抗损伤性。在这里,我们成功地制备了一种机械稳定的单胞银纳米线(Ag NW)薄膜,基于简单的气泡介导组装和无损转移策略,在多孔混合纤维素酯底物的帮助下,受生物材料的层次结构的启发。由于银纳米硅的紧密排列和弱界面的结合,单层银纳米硅薄膜可以在不损坏的情况下转移到任意基底上。此外,通过引入仿生紧密排列的交叉片层(CPCL)结构,可以从单层银NW膜中获得具有令人印象深刻的抗损伤性的独立多层银NW膜。这种CPCL结构最大限度地提高了Ag NW膜层内和层间的相互作用,确保了有效的应力传递和均匀的电子传递,从而使Ag NW膜具有优异的机械耐久性和稳定的电学性能。
{"title":"Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure.","authors":"Si-Chao Zhang, Huai-Ling Gao, Long Zhang, Yin-Bo Zhu, Ya-Dong Wu, Jian-Wei Liu, Li-Bo Mao, Mei Feng, Liang Dong, Zhao Pan, Xiang-Sen Meng, Yang Lu, Shu-Hong Yu","doi":"10.1021/prechem.4c00053","DOIUrl":"10.1021/prechem.4c00053","url":null,"abstract":"<p><p>One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design. Here, we successfully prepared a mechanically stabilized monolamella silver nanowire (Ag NW) film, based on a facile bubble-mediated assembly and nondestructive transfer strategy with the assistance of a porous mixed cellulose ester substrate, inspired by the hierarchical structure of biomaterial. Owing to the closely packed arrangement of Ag NWs combined with their weak interfaces, the monolamellar Ag NW film can be transferred to arbitrary substrates without damage. Furthermore, freestanding multilamellar Ag NW films with impressive damage resistance can be obtained from the monolamellar Ag NW film, through the introduction of bioinspired closely packed crossed-lamellar (CPCL) structure. This CPCL structure maximizes intra- and interlamellar interactions among Ag NWs ensuring efficient stress transfer and uniform electron transport, resulting in excellent mechanical durability and stable electrical properties of the multilamellar Ag NW films.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"634-643"},"PeriodicalIF":0.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Synthesis and Phase Transition Mechanisms of Palladium Selenide: A First-Principles Study. 硒化钯的受控合成和相变机制:第一原理研究。
Pub Date : 2024-09-30 eCollection Date: 2024-10-28 DOI: 10.1021/prechem.4c00049
Mingxiang Zhang, Aixinye Zhang, Hao Ren, Wenyue Guo, Feng Ding, Wen Zhao

Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe2, T-phase PdSe2, and Pd2Se3-phase. We found that the stability of Penta PdSe2 increases with the number of layers. The Penta PdSe2, T-phase PdSe2, and Pd2Se3 monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd2Se3 phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd-Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe2 and other transition metal chalcogenides.

利用密度泛函理论,我们仔细计算了 Penta PdSe2、T 相 PdSe2 和 Pd2Se3 相的单层、少层和簇结构的相对稳定性。我们发现,Penta PdSe2 的稳定性随着层数的增加而增加。Penta PdSe2、T 相 PdSe2 和 Pd2Se3 单层都是半导体,带隙分别为 1.77、0.81 和 0.65 eV。考虑到硒化钯簇的尺寸、化学计量和化学环境,计算了具有不同相结构的硒化钯簇的形成能。结果发现,在典型的实验条件下,Pd2Se3 相团簇占主导地位,在所有考虑的相中具有最低的形成能,而且随着团簇尺寸的增大,这种主导地位也会增强。调整环境中的钯-硒比例可以控制特定硒化钯相的合成,为 PdSe2 和其他过渡金属瑀的成核机制提供了理论依据。
{"title":"Controlled Synthesis and Phase Transition Mechanisms of Palladium Selenide: A First-Principles Study.","authors":"Mingxiang Zhang, Aixinye Zhang, Hao Ren, Wenyue Guo, Feng Ding, Wen Zhao","doi":"10.1021/prechem.4c00049","DOIUrl":"10.1021/prechem.4c00049","url":null,"abstract":"<p><p>Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub>-phase. We found that the stability of Penta PdSe<sub>2</sub> increases with the number of layers. The Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub> monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd<sub>2</sub>Se<sub>3</sub> phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd-Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe<sub>2</sub> and other transition metal chalcogenides.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"545-552"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Synthesis and Phase Transition Mechanisms of Palladium Selenide: A First-Principles Study 硒化钯的受控合成和相变机制:第一原理研究
Pub Date : 2024-09-30 DOI: 10.1021/prechem.4c0004910.1021/prechem.4c00049
Mingxiang Zhang, Aixinye Zhang, Hao Ren, Wenyue Guo, Feng Ding and Wen Zhao*, 

Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe2, T-phase PdSe2, and Pd2Se3-phase. We found that the stability of Penta PdSe2 increases with the number of layers. The Penta PdSe2, T-phase PdSe2, and Pd2Se3 monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd2Se3 phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd–Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe2 and other transition metal chalcogenides.

利用密度泛函理论,我们仔细计算了 Penta PdSe2、T 相 PdSe2 和 Pd2Se3 相的单层、少层和簇结构的相对稳定性。我们发现,Penta PdSe2 的稳定性随着层数的增加而增加。Penta PdSe2、T 相 PdSe2 和 Pd2Se3 单层都是半导体,带隙分别为 1.77、0.81 和 0.65 eV。考虑到硒化钯簇的尺寸、化学计量和化学环境,计算了具有不同相结构的硒化钯簇的形成能。结果发现,在典型的实验条件下,Pd2Se3 相团簇占主导地位,在所有考虑的相中具有最低的形成能,而且随着团簇尺寸的增大,这种主导地位也会增强。调整环境中的钯硒比可以控制特定硒化钯相的合成,从而为 PdSe2 和其他过渡金属瑀的成核机制提供理论依据。
{"title":"Controlled Synthesis and Phase Transition Mechanisms of Palladium Selenide: A First-Principles Study","authors":"Mingxiang Zhang,&nbsp;Aixinye Zhang,&nbsp;Hao Ren,&nbsp;Wenyue Guo,&nbsp;Feng Ding and Wen Zhao*,&nbsp;","doi":"10.1021/prechem.4c0004910.1021/prechem.4c00049","DOIUrl":"https://doi.org/10.1021/prechem.4c00049https://doi.org/10.1021/prechem.4c00049","url":null,"abstract":"<p >Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub>-phase. We found that the stability of Penta PdSe<sub>2</sub> increases with the number of layers. The Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub> monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd<sub>2</sub>Se<sub>3</sub> phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd–Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe<sub>2</sub> and other transition metal chalcogenides.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"545–552 545–552"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Linear α-Macro-olefins in Ethylene Polymerization through Precisely Tuned Bis(imino)pyridylcobalt Precatalysts with Steric and Electronic Parameters 通过具有空间和电子参数的精确调谐双(亚胺)吡啶基钴预催化剂在乙烯聚合中获得线性α-大烯烃
Pub Date : 2024-09-26 DOI: 10.1021/prechem.4c0006710.1021/prechem.4c00067
Kainat Fatima Tahir, Yanping Ma*, Qaiser Mahmood*, Geng Ren, Areej Khalid, Yizhou Wang, Song Zou, Tongling Liang and Wen-Hua Sun*, 

Synthesis of functional polyethylene from ethylene alone is tricky and heavily dependent on both the type and structure of the precatalyst and the choice of cocatalyst used in the polymerization. In the present study, a series of cobalt precatalysts was prepared and investigated for ethylene polymerization under various conditions. By incorporation of strong electron-withdrawing groups (F and NO2) and a steric component (benzhydryl) into the parent bis(imino)pyridine ligand, the catalytic performance of these precatalysts was optimized. On activation with MAO or MMAO, these precatalysts with relatively open structure achieved unprecedented ethylene polymerization rates at 60 °C (up to 27.6 × 106 g mol–1 h–1) and remained effective at temperatures up to 100 °C. Chain growth reactions were moderate, resulting in polyethylene with molecular weights up to 61.0 kg/mol and broad bimodal dispersity index. High crystallinity and melt temperature indicated a strictly linear microstructure, as further confirmed by high-temperature 1H/13C NMR measurements. Of significant note that chain termination predominantly occurred through β-elimination (up to 84.5%), yielding vinyl-terminated long-chain olefins. These functional α-macro-olefins are valuable as precursors for postfunctionalization, expanding the potential applications of polyethylene across various sectors.

仅从乙烯合成功能聚乙烯是非常棘手的,并且在很大程度上取决于预催化剂的类型和结构以及聚合中使用的助催化剂的选择。本研究制备了一系列钴预催化剂,并对其在不同条件下的乙烯聚合进行了研究。通过在母体双(亚)吡啶配体中加入强吸电子基团(F和NO2)和立体组分(苯并羟基),优化了这些预催化剂的催化性能。在MAO或MMAO的活化下,这些具有相对开放结构的预催化剂在60°C(高达27.6 × 106 g mol-1 h-1)下实现了前所未有的乙烯聚合速率,并且在高达100°C的温度下保持有效。链生长反应温和,聚乙烯分子量可达61.0 kg/mol,双峰分散指数较宽。高结晶度和高熔体温度表明了严格的线性微观结构,高温1H/13C核磁共振进一步证实了这一点。值得注意的是,链终止主要通过β消除(高达84.5%)发生,生成端乙烯基长链烯烃。这些功能化α-巨烯烃作为后功能化前体具有重要价值,扩大了聚乙烯在各个领域的潜在应用。
{"title":"Achieving Linear α-Macro-olefins in Ethylene Polymerization through Precisely Tuned Bis(imino)pyridylcobalt Precatalysts with Steric and Electronic Parameters","authors":"Kainat Fatima Tahir,&nbsp;Yanping Ma*,&nbsp;Qaiser Mahmood*,&nbsp;Geng Ren,&nbsp;Areej Khalid,&nbsp;Yizhou Wang,&nbsp;Song Zou,&nbsp;Tongling Liang and Wen-Hua Sun*,&nbsp;","doi":"10.1021/prechem.4c0006710.1021/prechem.4c00067","DOIUrl":"https://doi.org/10.1021/prechem.4c00067https://doi.org/10.1021/prechem.4c00067","url":null,"abstract":"<p >Synthesis of functional polyethylene from ethylene alone is tricky and heavily dependent on both the type and structure of the precatalyst and the choice of cocatalyst used in the polymerization. In the present study, a series of cobalt precatalysts was prepared and investigated for ethylene polymerization under various conditions. By incorporation of strong electron-withdrawing groups (F and NO<sub>2</sub>) and a steric component (benzhydryl) into the parent bis(imino)pyridine ligand, the catalytic performance of these precatalysts was optimized. On activation with MAO or MMAO, these precatalysts with relatively open structure achieved unprecedented ethylene polymerization rates at 60 °C (up to 27.6 × 10<sup>6</sup> g mol<sup>–1</sup> h<sup>–1</sup>) and remained effective at temperatures up to 100 °C. Chain growth reactions were moderate, resulting in polyethylene with molecular weights up to 61.0 kg/mol and broad bimodal dispersity index. High crystallinity and melt temperature indicated a strictly linear microstructure, as further confirmed by high-temperature <sup>1</sup>H/<sup>13</sup>C NMR measurements. Of significant note that chain termination predominantly occurred through β-elimination (up to 84.5%), yielding vinyl-terminated long-chain olefins. These functional α-macro-olefins are valuable as precursors for postfunctionalization, expanding the potential applications of polyethylene across various sectors.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"655–668 655–668"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Linear α-Macro-olefins in Ethylene Polymerization through Precisely Tuned Bis(imino)pyridylcobalt Precatalysts with Steric and Electronic Parameters. 通过具有空间和电子参数的精确调谐双(亚胺)吡啶基钴预催化剂在乙烯聚合中获得线性α-大烯烃。
Pub Date : 2024-09-26 eCollection Date: 2024-12-23 DOI: 10.1021/prechem.4c00067
Kainat Fatima Tahir, Yanping Ma, Qaiser Mahmood, Geng Ren, Areej Khalid, Yizhou Wang, Song Zou, Tongling Liang, Wen-Hua Sun

Synthesis of functional polyethylene from ethylene alone is tricky and heavily dependent on both the type and structure of the precatalyst and the choice of cocatalyst used in the polymerization. In the present study, a series of cobalt precatalysts was prepared and investigated for ethylene polymerization under various conditions. By incorporation of strong electron-withdrawing groups (F and NO2) and a steric component (benzhydryl) into the parent bis(imino)pyridine ligand, the catalytic performance of these precatalysts was optimized. On activation with MAO or MMAO, these precatalysts with relatively open structure achieved unprecedented ethylene polymerization rates at 60 °C (up to 27.6 × 106 g mol-1 h-1) and remained effective at temperatures up to 100 °C. Chain growth reactions were moderate, resulting in polyethylene with molecular weights up to 61.0 kg/mol and broad bimodal dispersity index. High crystallinity and melt temperature indicated a strictly linear microstructure, as further confirmed by high-temperature 1H/13C NMR measurements. Of significant note that chain termination predominantly occurred through β-elimination (up to 84.5%), yielding vinyl-terminated long-chain olefins. These functional α-macro-olefins are valuable as precursors for postfunctionalization, expanding the potential applications of polyethylene across various sectors.

仅从乙烯合成功能聚乙烯是非常棘手的,并且在很大程度上取决于预催化剂的类型和结构以及聚合中使用的助催化剂的选择。本研究制备了一系列钴预催化剂,并对其在不同条件下的乙烯聚合进行了研究。通过在母体双(亚)吡啶配体中加入强吸电子基团(F和NO2)和立体组分(苯并羟基),优化了这些预催化剂的催化性能。在MAO或MMAO的活化下,这些具有相对开放结构的预催化剂在60°C(高达27.6 × 106 g mol-1 h-1)下实现了前所未有的乙烯聚合速率,并且在高达100°C的温度下保持有效。链生长反应温和,聚乙烯分子量可达61.0 kg/mol,双峰分散指数较宽。高结晶度和高熔体温度表明了严格的线性微观结构,高温1H/13C核磁共振进一步证实了这一点。值得注意的是,链终止主要通过β消除(高达84.5%)发生,生成端乙烯基长链烯烃。这些功能化α-巨烯烃作为后功能化前体具有重要价值,扩大了聚乙烯在各个领域的潜在应用。
{"title":"Achieving Linear α-Macro-olefins in Ethylene Polymerization through Precisely Tuned Bis(imino)pyridylcobalt Precatalysts with Steric and Electronic Parameters.","authors":"Kainat Fatima Tahir, Yanping Ma, Qaiser Mahmood, Geng Ren, Areej Khalid, Yizhou Wang, Song Zou, Tongling Liang, Wen-Hua Sun","doi":"10.1021/prechem.4c00067","DOIUrl":"10.1021/prechem.4c00067","url":null,"abstract":"<p><p>Synthesis of functional polyethylene from ethylene alone is tricky and heavily dependent on both the type and structure of the precatalyst and the choice of cocatalyst used in the polymerization. In the present study, a series of cobalt precatalysts was prepared and investigated for ethylene polymerization under various conditions. By incorporation of strong electron-withdrawing groups (F and NO<sub>2</sub>) and a steric component (benzhydryl) into the parent bis(imino)pyridine ligand, the catalytic performance of these precatalysts was optimized. On activation with MAO or MMAO, these precatalysts with relatively open structure achieved unprecedented ethylene polymerization rates at 60 °C (up to 27.6 × 10<sup>6</sup> g mol<sup>-1</sup> h<sup>-1</sup>) and remained effective at temperatures up to 100 °C. Chain growth reactions were moderate, resulting in polyethylene with molecular weights up to 61.0 kg/mol and broad bimodal dispersity index. High crystallinity and melt temperature indicated a strictly linear microstructure, as further confirmed by high-temperature <sup>1</sup>H/<sup>13</sup>C NMR measurements. Of significant note that chain termination predominantly occurred through β-elimination (up to 84.5%), yielding vinyl-terminated long-chain olefins. These functional α-macro-olefins are valuable as precursors for postfunctionalization, expanding the potential applications of polyethylene across various sectors.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"655-668"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Precision Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1