首页 > 最新文献

Precision Chemistry最新文献

英文 中文
Tailoring ZnO x Species Confined on ZrO2 Support for Enhanced CO Hydrogenation. 限制在ZrO2载体上的ZnO x物种的裁剪促进CO加氢。
IF 6.2 Pub Date : 2025-05-30 eCollection Date: 2025-09-22 DOI: 10.1021/prechem.5c00022
Le Lin, Xiaoyuan Sun, Haoran Jia, Xiaohui Feng, Yingjie Wang, Rentao Mu, Qiang Fu, Xinhe Bao

ZnZrO x is a promising oxide component for direct syngas conversion via oxide-zeolite bifunctional catalysis, while rational design of active centers within the composite oxide remains limited. In this study, through ab initio thermodynamics, molecular dynamics, and microkinetic modeling, we find that diverse subnanometer ZnO x species, including single-site, single-chain, and single-layer configurations, can form on active ZrO2 surfaces under the reaction conditions. These confined ZnO x species weaken CO adsorption but enhance heterolytic H2 dissociative adsorption, favoring continuous hydrogenation of CO to methanol over direct or H-assisted CO dissociation. For single-layer ZnO x structures, a double-chain film grows on a monoclinic ZrO2 (m-ZrO2) surface while a graphene-like film emerges on tetragonal ZrO2 (t-ZrO2). These single-layer ZnO x species exhibit higher methanol formation activity than their single-chain or single-site counterparts, which benefit from sufficient sites for adsorption of intermediates and a suitable space for bonding of H with C in CHO. Furthermore, the double-chain ZnO x film confined on m-ZrO2 exposes octahedral Znoct sites, which are more reactive than the triangular Zntri sites in the graphene-like ZnO x on t-ZrO2, despite both sites being nominally three-coordinate. These findings provide insights for the precise design of composite oxide/oxide catalysts through fine-tuning overlayer coverage and/or support surface properties.

ZnZrO x是一种很有前途的氧化物组分,可以通过氧化物-沸石双功能催化直接转化合成气,但复合氧化物中活性中心的合理设计仍然有限。本研究通过从头算热力学、分子动力学和微动力学建模,发现在反应条件下,活性ZrO2表面可以形成多种亚纳米氧化锌,包括单位点、单链和单层构型。这些受限的氧化锌削弱了CO的吸附,但增强了异裂解H2的解离吸附,比直接或h辅助CO解离更有利于CO连续加氢成甲醇。对于单层ZnO x结构,双链薄膜生长在单斜ZrO2 (m-ZrO2)表面,而石墨烯薄膜出现在四边形ZrO2 (t-ZrO2)表面。与单链或单位点的氧化锌相比,这些单层氧化锌具有更高的甲醇生成活性,这得益于在CHO中有足够的吸附中间体的位置和H与C成键的合适空间。此外,限制在m-ZrO2上的双链ZnO x薄膜暴露出八面体Znoct位点,这些位点比t-ZrO2上的类石墨烯ZnO x中的三角形Zntri位点更具活性,尽管这两个位点名义上都是三坐标的。这些发现为通过微调覆盖层和/或载体表面性质来精确设计复合氧化物/氧化物催化剂提供了见解。
{"title":"Tailoring ZnO <sub><i>x</i></sub> Species Confined on ZrO<sub>2</sub> Support for Enhanced CO Hydrogenation.","authors":"Le Lin, Xiaoyuan Sun, Haoran Jia, Xiaohui Feng, Yingjie Wang, Rentao Mu, Qiang Fu, Xinhe Bao","doi":"10.1021/prechem.5c00022","DOIUrl":"10.1021/prechem.5c00022","url":null,"abstract":"<p><p>ZnZrO <sub><i>x</i></sub> is a promising oxide component for direct syngas conversion via oxide-zeolite bifunctional catalysis, while rational design of active centers within the composite oxide remains limited. In this study, through ab initio thermodynamics, molecular dynamics, and microkinetic modeling, we find that diverse subnanometer ZnO <sub><i>x</i></sub> species, including single-site, single-chain, and single-layer configurations, can form on active ZrO<sub>2</sub> surfaces under the reaction conditions. These confined ZnO <sub><i>x</i></sub> species weaken CO adsorption but enhance heterolytic H<sub>2</sub> dissociative adsorption, favoring continuous hydrogenation of CO to methanol over direct or H-assisted CO dissociation. For single-layer ZnO <sub><i>x</i></sub> structures, a double-chain film grows on a monoclinic ZrO<sub>2</sub> (m-ZrO<sub>2</sub>) surface while a graphene-like film emerges on tetragonal ZrO<sub>2</sub> (t-ZrO<sub>2</sub>). These single-layer ZnO <sub><i>x</i></sub> species exhibit higher methanol formation activity than their single-chain or single-site counterparts, which benefit from sufficient sites for adsorption of intermediates and a suitable space for bonding of H with C in CHO. Furthermore, the double-chain ZnO <sub><i>x</i></sub> film confined on m-ZrO<sub>2</sub> exposes octahedral Zn<sub>oct</sub> sites, which are more reactive than the triangular Zn<sub>tri</sub> sites in the graphene-like ZnO <sub><i>x</i></sub> on t-ZrO<sub>2</sub>, despite both sites being nominally three-coordinate. These findings provide insights for the precise design of composite oxide/oxide catalysts through fine-tuning overlayer coverage and/or support surface properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 9","pages":"525-534"},"PeriodicalIF":6.2,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145151143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Synthesis and Modulation of Ion Diffusion Interface. 离子扩散界面的精密合成与调制。
IF 6.2 Pub Date : 2025-05-29 eCollection Date: 2025-10-27 DOI: 10.1021/prechem.5c00030
Jingchi Gao, Changshui Huang, Xinlong Fu, JingXiang Yang, Xiaodong Li, Jinchong Xiao, Wenjing Liu, Zhihui Zhang, Yuliang Li

The development of electrochemical energy storage systems with high-density storage sites is the key and core technology to achieve transformative breakthroughs in battery performance. Herein, we immobilize redox-active naphthalene diamides (TBNDI) within 2D graphdiyne (GDY) to construct carbon-based TBNDI-GDY composite electrodes. This approach creates a hierarchical ion diffusion pathway and enables tunable electronic modulation through a strategic molecular design. The multiredox center electrodes demonstrate prominent kinetic processes, superior interfacial compatibility, and fast desolvation capability. The as-prepared electrodes with pseudocapacitive processes display ultrahigh specific capacity up to 2079 mAh/g at 0.1 A/g, remarkable rate capacity, and ultralong stability for 10,000 cycles even at 5 A/g. Dynamic kinetic tracking and lithium active site visualization confirm that capacity contribution originates from reversible lithium-ion capture as well as Li-C orbital coupling in the sloping voltage regions, nanopore filling, and graphitic region interaction in the subsequent voltage region. Moreover, C=O-N groups with lone pair electron delocalization could modulate the electronic structure and promote reversible redox activities. Our findings highlight that the rational design of the ion diffusion interface from the basic chemical structure can provide giant evolution on the properties of the electrode material for high performance batteries.

开发具有高密度存储位点的电化学储能系统是实现电池性能变革性突破的关键和核心技术。在此,我们将氧化还原活性萘二胺(TBNDI)固定在二维石墨炔(GDY)中,构建碳基TBNDI-GDY复合电极。这种方法创建了一个分层离子扩散途径,并通过战略分子设计实现可调谐的电子调制。多氧化还原中心电极表现出明显的动力学过程、良好的界面相容性和快速脱溶能力。采用假电容工艺制备的电极在0.1 A/g时具有高达2079 mAh/g的超高比容量,具有显著的倍率容量,并且即使在5 A/g时也具有10,000次循环的超长稳定性。动态动力学跟踪和锂离子活性位点可视化证实,容量贡献来自可逆锂离子捕获、倾斜电压区Li-C轨道耦合、纳米孔填充和后续电压区石墨区相互作用。此外,具有孤对电子离域的C=O-N基团可以调节电子结构,促进可逆氧化还原活性。我们的研究结果强调,从基本化学结构上合理设计离子扩散界面可以为高性能电池电极材料的性能提供巨大的发展。
{"title":"Precision Synthesis and Modulation of Ion Diffusion Interface.","authors":"Jingchi Gao, Changshui Huang, Xinlong Fu, JingXiang Yang, Xiaodong Li, Jinchong Xiao, Wenjing Liu, Zhihui Zhang, Yuliang Li","doi":"10.1021/prechem.5c00030","DOIUrl":"10.1021/prechem.5c00030","url":null,"abstract":"<p><p>The development of electrochemical energy storage systems with high-density storage sites is the key and core technology to achieve transformative breakthroughs in battery performance. Herein, we immobilize redox-active naphthalene diamides (TBNDI) within 2D graphdiyne (GDY) to construct carbon-based TBNDI-GDY composite electrodes. This approach creates a hierarchical ion diffusion pathway and enables tunable electronic modulation through a strategic molecular design. The multiredox center electrodes demonstrate prominent kinetic processes, superior interfacial compatibility, and fast desolvation capability. The as-prepared electrodes with pseudocapacitive processes display ultrahigh specific capacity up to 2079 mAh/g at 0.1 A/g, remarkable rate capacity, and ultralong stability for 10,000 cycles even at 5 A/g. Dynamic kinetic tracking and lithium active site visualization confirm that capacity contribution originates from reversible lithium-ion capture as well as Li-C orbital coupling in the sloping voltage regions, nanopore filling, and graphitic region interaction in the subsequent voltage region. Moreover, C=O-N groups with lone pair electron delocalization could modulate the electronic structure and promote reversible redox activities. Our findings highlight that the rational design of the ion diffusion interface from the basic chemical structure can provide giant evolution on the properties of the electrode material for high performance batteries.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 10","pages":"619-630"},"PeriodicalIF":6.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12569949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145410144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose Tissue-Derived Extracellular Vesicle MicroRNAs: Diagnostic Biomarkers for the Pathophysiology Associated with Obesity. 脂肪组织来源的细胞外小泡microrna:与肥胖相关的病理生理学诊断生物标志物。
IF 6.2 Pub Date : 2025-05-28 eCollection Date: 2025-09-22 DOI: 10.1021/prechem.5c00007
Lei Yang, Shaoning Jiang

Obesity is a global health problem that increases the risk of type 2 diabetes, cardiovascular diseases, fatty liver disease, and cancer. The pathological outcomes of obesity and the responses to weight loss interventions vary significantly among individuals. The use of noninvasive biomarkers is critical for the early risk prediction of diseases associated with obesity and monitoring disease progression. MicroRNAs (miRNAs) are small noncoding RNAs that play pivotal roles in biological processes of adipose development, inflammation, and function. Dysregulation of numerous miRNAs has been implicated in the pathogenesis of obesity and associated diseases. In addition to exerting their function in the cytoplasm, mature miRNAs can be packaged into vesicles, released into extracellular space and body fluids, and act as paracrine and endocrine factors mediating intercellular and interorgan crosstalk. Encapsulation of miRNAs in extracellular vesicles (EVs) protects them from degradation and enhances their stability in body fluids. Moreover, the unique EV-miRNA signature reflects the state of the origin cells and is functionally related to disease pathology, supporting their potential as sensitive and specific biomarkers for clinical diagnostics. Adipose tissue is the main source of circulating EV-miRNAs in Obesity. Here we highlight the implication of adipose tissue-derived EV-miRNAs in metabolic disorders associated with obesity. Current understanding of the molecular mechanisms governing the sorting of miRNAs into EVs and recent advancements in relevant techniques are reviewed. In addition, limitations and future perspectives in this field are discussed.

肥胖是一个全球性的健康问题,它会增加患2型糖尿病、心血管疾病、脂肪肝疾病和癌症的风险。肥胖的病理结果和对减肥干预的反应在个体之间差异很大。使用无创生物标志物对于肥胖相关疾病的早期风险预测和监测疾病进展至关重要。MicroRNAs (miRNAs)是一种小的非编码rna,在脂肪发育、炎症和功能的生物学过程中起着关键作用。许多mirna的失调与肥胖和相关疾病的发病机制有关。成熟的mirna除了在细胞质中发挥作用外,还可以被包装成囊泡,释放到细胞外空间和体液中,作为介导细胞间和器官间串扰的旁分泌和内分泌因子。在细胞外囊泡(ev)中封装mirna可保护它们免受降解并增强其在体液中的稳定性。此外,独特的EV-miRNA特征反映了起源细胞的状态,并在功能上与疾病病理相关,支持它们作为临床诊断的敏感和特异性生物标志物的潜力。脂肪组织是肥胖中循环ev - mirna的主要来源。在这里,我们强调脂肪组织来源的ev - mirna在与肥胖相关的代谢紊乱中的意义。综述了目前对mirna进入ev的分子机制的理解以及相关技术的最新进展。此外,还讨论了该领域的局限性和未来前景。
{"title":"Adipose Tissue-Derived Extracellular Vesicle MicroRNAs: Diagnostic Biomarkers for the Pathophysiology Associated with Obesity.","authors":"Lei Yang, Shaoning Jiang","doi":"10.1021/prechem.5c00007","DOIUrl":"10.1021/prechem.5c00007","url":null,"abstract":"<p><p>Obesity is a global health problem that increases the risk of type 2 diabetes, cardiovascular diseases, fatty liver disease, and cancer. The pathological outcomes of obesity and the responses to weight loss interventions vary significantly among individuals. The use of noninvasive biomarkers is critical for the early risk prediction of diseases associated with obesity and monitoring disease progression. MicroRNAs (miRNAs) are small noncoding RNAs that play pivotal roles in biological processes of adipose development, inflammation, and function. Dysregulation of numerous miRNAs has been implicated in the pathogenesis of obesity and associated diseases. In addition to exerting their function in the cytoplasm, mature miRNAs can be packaged into vesicles, released into extracellular space and body fluids, and act as paracrine and endocrine factors mediating intercellular and interorgan crosstalk. Encapsulation of miRNAs in extracellular vesicles (EVs) protects them from degradation and enhances their stability in body fluids. Moreover, the unique EV-miRNA signature reflects the state of the origin cells and is functionally related to disease pathology, supporting their potential as sensitive and specific biomarkers for clinical diagnostics. Adipose tissue is the main source of circulating EV-miRNAs in Obesity. Here we highlight the implication of adipose tissue-derived EV-miRNAs in metabolic disorders associated with obesity. Current understanding of the molecular mechanisms governing the sorting of miRNAs into EVs and recent advancements in relevant techniques are reviewed. In addition, limitations and future perspectives in this field are discussed.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 9","pages":"480-491"},"PeriodicalIF":6.2,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145151029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
Kei Kwan Li, Jianlong He, Qijia Huang, Seth Kinoshita, Yong Ding and Younan Xia*, 
{"title":"","authors":"Kei Kwan Li,&nbsp;Jianlong He,&nbsp;Qijia Huang,&nbsp;Seth Kinoshita,&nbsp;Yong Ding and Younan Xia*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
Yudan Chen, Yuanhua Sun, Sicheng Li, Xiaokang Liu, Wei Zhang, Qiquan Luo, Dong Liu*, Tao Ding* and Tao Yao*, 
{"title":"","authors":"Yudan Chen,&nbsp;Yuanhua Sun,&nbsp;Sicheng Li,&nbsp;Xiaokang Liu,&nbsp;Wei Zhang,&nbsp;Qiquan Luo,&nbsp;Dong Liu*,&nbsp;Tao Ding* and Tao Yao*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/pcv003i005_1939934","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144362190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
Zhenxun Xu, Suriguga Meng, Zhiyu Zhang, Shuqin Han*, Fenghua Bai*, Yanping Dong, Yoshifumi Hashikawa* and Chaolumen*, 
{"title":"","authors":"Zhenxun Xu,&nbsp;Suriguga Meng,&nbsp;Zhiyu Zhang,&nbsp;Shuqin Han*,&nbsp;Fenghua Bai*,&nbsp;Yanping Dong,&nbsp;Yoshifumi Hashikawa* and Chaolumen*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.5c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
James D. Holladay, Zachary A. Berkheimer, Michael K. Haggard, Jacob B. Nielsen, Gregory P. Nordin and Adam T. Woolley*, 
{"title":"","authors":"James D. Holladay,&nbsp;Zachary A. Berkheimer,&nbsp;Michael K. Haggard,&nbsp;Jacob B. Nielsen,&nbsp;Gregory P. Nordin and Adam T. Woolley*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
Juanjuan Jia*, 
{"title":"","authors":"Juanjuan Jia*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.5c00039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144362195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-05-26
Enyu Zhang, Liping Bai, Zhiping Chen, Aobo Zhang, Yingbo Tang, Jushang Ran, Shuai Wang, Jinying Wang*, Chuancheng Jia* and Xuefeng Guo*, 
{"title":"","authors":"Enyu Zhang,&nbsp;Liping Bai,&nbsp;Zhiping Chen,&nbsp;Aobo Zhang,&nbsp;Yingbo Tang,&nbsp;Jushang Ran,&nbsp;Shuai Wang,&nbsp;Jinying Wang*,&nbsp;Chuancheng Jia* and Xuefeng Guo*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144448199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Precision Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1