Pub Date : 2023-09-07DOI: 10.1021/acsorginorgau.3c00026
Yuanfei Liu, Hitoshi Ube*, Kenichi Endo and Mitsuhiko Shionoya*,
Although stereochemical control of carbon centers is a well-established technique in modern synthetic chemistry, that of tetrahedral metal complexes with a stereogenic metal center remains difficult due to the dynamic nature of their coordination bonds. Here we report the synthesis of a tetrahedral d8 high-spin chiral-at-nickel(II) complex composed exclusively of achiral ligands and the supramolecular control of its temperature-dependent spontaneous resolution in crystals. Under certain conditions, complex molecules with the same absolute configuration of the nickel(II) center grow into conglomerate crystals with a helically arranged structure due to intermolecular hydrogen bonding. This process is highly spontaneous, does not require any chiral sources, and is closely related to the origin of homochirality in biological systems. The obtained enantiopure nickel(II) complex will be a new type of redox-active chiral source for asymmetric synthetic chemistry.
{"title":"Temperature-Dependent Spontaneous Resolution of a Tetrahedral Chiral-at-Nickel(II) Complex under Supramolecular Control","authors":"Yuanfei Liu, Hitoshi Ube*, Kenichi Endo and Mitsuhiko Shionoya*, ","doi":"10.1021/acsorginorgau.3c00026","DOIUrl":"10.1021/acsorginorgau.3c00026","url":null,"abstract":"<p >Although stereochemical control of carbon centers is a well-established technique in modern synthetic chemistry, that of tetrahedral metal complexes with a stereogenic metal center remains difficult due to the dynamic nature of their coordination bonds. Here we report the synthesis of a tetrahedral <i>d</i><sup>8</sup> high-spin chiral-at-nickel(II) complex composed exclusively of achiral ligands and the supramolecular control of its temperature-dependent spontaneous resolution in crystals. Under certain conditions, complex molecules with the same absolute configuration of the nickel(II) center grow into conglomerate crystals with a helically arranged structure due to intermolecular hydrogen bonding. This process is highly spontaneous, does not require any chiral sources, and is closely related to the origin of homochirality in biological systems. The obtained enantiopure nickel(II) complex will be a new type of redox-active chiral source for asymmetric synthetic chemistry.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 6","pages":"371–376"},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121155454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1021/acsorginorgau.3c00029
Yi Yang, Alexis Taponard, Julien. C. Vantourout* and Anis Tlili*,
This Account highlights the recent contributions made by our laboratory in the development of novel strategies to synthesize fluorinated amines. These strategies allow the practitioner to efficiently access carbamoyl fluorides, thiocarbamoyl fluorides as well as trifluoromethylamines using CO2 or CS2 as benign C1 sources. In addition, a novel N(SCF3)CF3 moiety was synthesized. Noteworthy, we demonstrated that this reagent could also be used in radical- or electrophilic-based trifluoromethylthiolation reactions.
{"title":"Synthesis of Fluorinated Amines: A Personal Account","authors":"Yi Yang, Alexis Taponard, Julien. C. Vantourout* and Anis Tlili*, ","doi":"10.1021/acsorginorgau.3c00029","DOIUrl":"10.1021/acsorginorgau.3c00029","url":null,"abstract":"<p >This Account highlights the recent contributions made by our laboratory in the development of novel strategies to synthesize fluorinated amines. These strategies allow the practitioner to efficiently access carbamoyl fluorides, thiocarbamoyl fluorides as well as trifluoromethylamines using CO<sub>2</sub> or CS<sub>2</sub> as benign C1 sources. In addition, a novel N(SCF<sub>3</sub>)CF<sub>3</sub> moiety was synthesized. Noteworthy, we demonstrated that this reagent could also be used in radical- or electrophilic-based trifluoromethylthiolation reactions.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 6","pages":"364–370"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132345107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1021/acsorginorgau.3c00037
Yohei Ogiwara*, and , Kotohiro Nomura,
A catalytic chemical upcycling methodology for polyesters has been developed. Commodity polyesters, such as polyethylene terephthalate (PET), are depolymerized with morpholine by using a Cp*TiCl3 catalyst under ambient pressure without any additives, which provides morpholine amides exclusively. The method can also apply to other polyesters, polybutylene terephthalate (PBT), polyethylene adipate (PEA), polybutylene adipate (PBA), and polybutylene succinate (PBS), as well as an actual PET waste of a 50 g postconsumer beverage bottle. The product, morpholine amide, is a versatile building block in organic chemistry, and the synthetic utility has thus been demonstrated by further transformations, such as hydrolysis, selective reductive conversions, and Grignard reaction.
{"title":"Chemical Upcycling of PET into a Morpholine Amide as a Versatile Synthetic Building Block","authors":"Yohei Ogiwara*, and , Kotohiro Nomura, ","doi":"10.1021/acsorginorgau.3c00037","DOIUrl":"10.1021/acsorginorgau.3c00037","url":null,"abstract":"<p >A catalytic chemical upcycling methodology for polyesters has been developed. Commodity polyesters, such as polyethylene terephthalate (PET), are depolymerized with morpholine by using a Cp*TiCl<sub>3</sub> catalyst under ambient pressure without any additives, which provides morpholine amides exclusively. The method can also apply to other polyesters, polybutylene terephthalate (PBT), polyethylene adipate (PEA), polybutylene adipate (PBA), and polybutylene succinate (PBS), as well as an actual PET waste of a 50 g postconsumer beverage bottle. The product, morpholine amide, is a versatile building block in organic chemistry, and the synthetic utility has thus been demonstrated by further transformations, such as hydrolysis, selective reductive conversions, and Grignard reaction.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 6","pages":"377–383"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115659222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The selective reduction of carbon dioxide remains a significant challenge due to the complex multielectron/proton transfer process, which results in a high kinetic barrier and the production of diverse products. Inspired by the electrostatic and H-bonding interactions observed in the second sphere of the [NiFe]-CODH enzyme, researchers have extensively explored these interactions to regulate proton transfer, stabilize intermediates, and ultimately improve the performance of catalytic CO2 reduction. In this work, a series of cobalt(II) tetraphenylporphyrins with varying numbers of redox-active nitro groups were synthesized and evaluated as CO2 reduction electrocatalysts. Analyses of the redox properties of these complexes revealed a consistent relationship between the number of nitro groups and the corresponding accepted electron number of the ligand at −1.59 V vs. Fc+/0. Among the catalysts tested, TNPPCo with four nitro groups exhibited the most efficient catalytic activity with a turnover frequency of 4.9 × 104 s–1 and a catalytic onset potential 820 mV more positive than that of the parent TPPCo. Furthermore, the turnover frequencies of the catalysts increased with a higher number of nitro groups. These results demonstrate the promising design strategy of incorporating multielectron redox-active ligands into CO2 reduction catalysts to enhance catalytic performance.
由于复杂的多电子/质子转移过程会导致较高的动力学障碍并产生多种产物,因此选择性还原二氧化碳仍然是一项重大挑战。受[NiFe]-CODH 酶第二球中观察到的静电和氢键相互作用的启发,研究人员对这些相互作用进行了广泛的探索,以调节质子转移、稳定中间产物,并最终改善催化二氧化碳还原的性能。在这项工作中,合成了一系列具有不同数量氧化还原活性硝基的四苯基卟啉钴,并将其作为二氧化碳还原电催化剂进行了评估。对这些复合物氧化还原性质的分析表明,硝基数目与配体相应的接受电子数之间存在一致的关系,即-1.59 V vs. Fc+/0。在测试的催化剂中,具有四个硝基的 TNPPCo 表现出最高效的催化活性,其翻转频率为 4.9 × 104 s-1,催化起始电位比母体 TPPCo 正 820 mV。此外,催化剂的翻转频率随着硝基数量的增加而提高。这些结果表明,在二氧化碳还原催化剂中加入多电子氧化还原活性配体以提高催化性能是一种很有前景的设计策略。
{"title":"Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Electrocatalyzed CO2-to-CO Conversion","authors":"Wen-Wen Yong, Hong-Tao Zhang*, Yu-Hua Guo, Fei Xie and Ming-Tian Zhang*, ","doi":"10.1021/acsorginorgau.3c00027","DOIUrl":"10.1021/acsorginorgau.3c00027","url":null,"abstract":"<p >The selective reduction of carbon dioxide remains a significant challenge due to the complex multielectron/proton transfer process, which results in a high kinetic barrier and the production of diverse products. Inspired by the electrostatic and H-bonding interactions observed in the second sphere of the [NiFe]-CODH enzyme, researchers have extensively explored these interactions to regulate proton transfer, stabilize intermediates, and ultimately improve the performance of catalytic CO<sub>2</sub> reduction. In this work, a series of cobalt(II) tetraphenylporphyrins with varying numbers of redox-active nitro groups were synthesized and evaluated as CO<sub>2</sub> reduction electrocatalysts. Analyses of the redox properties of these complexes revealed a consistent relationship between the number of nitro groups and the corresponding accepted electron number of the ligand at −1.59 V vs. Fc<sup>+/0</sup>. Among the catalysts tested, TNPPCo with four nitro groups exhibited the most efficient catalytic activity with a turnover frequency of 4.9 × 10<sup>4</sup> s<sup>–1</sup> and a catalytic onset potential 820 mV more positive than that of the parent TPPCo. Furthermore, the turnover frequencies of the catalysts increased with a higher number of nitro groups. These results demonstrate the promising design strategy of incorporating multielectron redox-active ligands into CO<sub>2</sub> reduction catalysts to enhance catalytic performance.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 6","pages":"384–392"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132622957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-20DOI: 10.1021/acsorginorgau.3c00028
Eduardo García-Padilla, Feliu Maseras* and Antonio M. Echavarren*,
We identify the factors that rule the selectivity in single-cleavage skeletal rearrangements promoted by gold(I) catalysts. We find that stereoconvergence is enabled by a rotational equilibrium when electron-rich substituents are used. The anomalous Z-selective skeletal rearrangement is found to be due to electronic factors, whereas endo-selectivity depends on both steric and electronic factors.
{"title":"Gold(I)-Catalyzed 1,6-Enyne Single-Cleavage Rearrangements: The Complete Picture","authors":"Eduardo García-Padilla, Feliu Maseras* and Antonio M. Echavarren*, ","doi":"10.1021/acsorginorgau.3c00028","DOIUrl":"10.1021/acsorginorgau.3c00028","url":null,"abstract":"<p >We identify the factors that rule the selectivity in single-cleavage skeletal rearrangements promoted by gold(I) catalysts. We find that stereoconvergence is enabled by a rotational equilibrium when electron-rich substituents are used. The anomalous <i>Z-</i>selective skeletal rearrangement is found to be due to electronic factors, whereas <i>endo</i>-selectivity depends on both steric and electronic factors.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 5","pages":"312–320"},"PeriodicalIF":0.0,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/12/gg3c00028.PMC10557124.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1021/acsorginorgau.3c00021
Takahiro Iwamoto*, Yuta Sotome and Youichi Ishii*,
A tetrapyridyl ligand with a bending anthraquinodimethane linker has been synthesized, and its complexation with coinage metals has been examined. The treatment of the ligand with Ag(I) and Au(I) cations afforded binuclear complexes, wherein the two metal centers were in close proximity to the inside space of the ligand. X-ray analyses corroborated with theoretical calculations indicated that the ligand has reasonable flexibility toward a bending deformation of the linker moiety to provide a ligand pocket suitable for the proximal binuclear complexes, even though such deformations accompany a non-negligible amount of energetic cost. On the other hand, treatment with 2 equiv of Cu(I) salt afforded a binuclear complex, in which both copper atoms were coordinated at the periphery of the ligand.
{"title":"Binuclear Complexes Supported by a Tetrapyridyl Ligand with a Bending Anthraquinodimethane Linker","authors":"Takahiro Iwamoto*, Yuta Sotome and Youichi Ishii*, ","doi":"10.1021/acsorginorgau.3c00021","DOIUrl":"10.1021/acsorginorgau.3c00021","url":null,"abstract":"<p >A tetrapyridyl ligand with a bending anthraquinodimethane linker has been synthesized, and its complexation with coinage metals has been examined. The treatment of the ligand with Ag(I) and Au(I) cations afforded binuclear complexes, wherein the two metal centers were in close proximity to the inside space of the ligand. X-ray analyses corroborated with theoretical calculations indicated that the ligand has reasonable flexibility toward a bending deformation of the linker moiety to provide a ligand pocket suitable for the proximal binuclear complexes, even though such deformations accompany a non-negligible amount of energetic cost. On the other hand, treatment with 2 equiv of Cu(I) salt afforded a binuclear complex, in which both copper atoms were coordinated at the periphery of the ligand.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 5","pages":"305–311"},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/e5/gg3c00021.PMC10557120.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-25DOI: 10.1021/acsorginorgau.3c00024
Agonist Kastrati, Vincent Jaquier, Michele Garbo, Céline Besnard and Clément Mazet*,
A Pd-catalyzed 3,4-regioselective cyclopropanation of 2-substituted 1,3-dienes by decomposition of diazo esters is reported. The vinylcyclopropanes generated are isolated in practical chemical yields with high levels of regioselectivity but low diastereoselectivity. The system operates under mild reaction conditions, is scalable, and tolerates various sensitive functional groups. A series of original postcatalytic derivatizations is presented to highlight the synthetic potential of the catalytic method.
{"title":"Pd-Catalyzed Regioselective Cyclopropanation of 2-Substituted 1,3-Dienes","authors":"Agonist Kastrati, Vincent Jaquier, Michele Garbo, Céline Besnard and Clément Mazet*, ","doi":"10.1021/acsorginorgau.3c00024","DOIUrl":"10.1021/acsorginorgau.3c00024","url":null,"abstract":"<p >A Pd-catalyzed 3,4-regioselective cyclopropanation of 2-substituted 1,3-dienes by decomposition of diazo esters is reported. The vinylcyclopropanes generated are isolated in practical chemical yields with high levels of regioselectivity but low diastereoselectivity. The system operates under mild reaction conditions, is scalable, and tolerates various sensitive functional groups. A series of original postcatalytic derivatizations is presented to highlight the synthetic potential of the catalytic method.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 5","pages":"291–298"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-24DOI: 10.1021/acsorginorgau.3c00023
Jagrit Grover, Suman Maji, Chitrala Teja, Shaeel A. Al Thabaiti*, Mohamed Mokhtar M. Mostafa, Goutam K. Lahiri* and Debabrata Maiti*,
We herein report a novel Mn-SNS-based catalyst, which is capable of performing indirect hydrogenation of CO2 to methanol via formylation. In this domain of CO2 hydrogenation, pincer ligands have shown a clear predominance. Our catalyst is based on the SNS-type tridentate ligand, which is quite stable and cheap as compared to the pincer type ligands. The catalyst can also be recycled effectively after the formylation reaction without any significant change in efficiency. Various amines including both primary and secondary amines worked well under the protocol to provide the desired formylated product in good yields. The formed formylated amines can also be reduced further at higher pressures of hydrogen. As a whole, we have developed a protocol that involves indirect CO2 hydrogenation to methanol that proceeds via formylation of amines.
{"title":"Base Metal Catalyst for Indirect Hydrogenation of CO2","authors":"Jagrit Grover, Suman Maji, Chitrala Teja, Shaeel A. Al Thabaiti*, Mohamed Mokhtar M. Mostafa, Goutam K. Lahiri* and Debabrata Maiti*, ","doi":"10.1021/acsorginorgau.3c00023","DOIUrl":"https://doi.org/10.1021/acsorginorgau.3c00023","url":null,"abstract":"<p >We herein report a novel Mn-SNS-based catalyst, which is capable of performing indirect hydrogenation of CO<sub>2</sub> to methanol <i>via</i> formylation. In this domain of CO<sub>2</sub> hydrogenation, pincer ligands have shown a clear predominance. Our catalyst is based on the SNS-type tridentate ligand, which is quite stable and cheap as compared to the pincer type ligands. The catalyst can also be recycled effectively after the formylation reaction without any significant change in efficiency. Various amines including both primary and secondary amines worked well under the protocol to provide the desired formylated product in good yields. The formed formylated amines can also be reduced further at higher pressures of hydrogen. As a whole, we have developed a protocol that involves indirect CO<sub>2</sub> hydrogenation to methanol that proceeds <i>via</i> formylation of amines.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 5","pages":"299–304"},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22DOI: 10.1021/acsorginorgau.3c00014
Daniel Malcolm, and , Laia Vilà-Nadal*,
Porous metal oxide materials have been obtained from a ring-shaped macrocyclic polyoxometalate (POM) structural building unit, [P8W48O184]40–. This is a tungsten oxide building block with an integrated “pore” of 1 nm in diameter, which, when connected with transition metal linkers, can assemble frameworks across a range of dimensions and which are generally referred to as POMzites. Our investigation proposes to gain a better understanding into the basic chemistry of this POM, specifically local electron densities and locations of countercations within and without the aforementioned pore. Through a rigorous benchmarking process, we discovered that 8 potassium cations, located within the pore, provided us with the most accurate model in terms of mimicking empirical properties to a sufficient degree of accuracy while also requiring a relatively small number of computer cores and hours to successfully complete a calculation. Additionally, we analyzed two other similar POMs from the literature, [As8W48O184]40– and [Se8W48O176]32–, in the hopes of determining whether they could be similarly incorporated into a POMzite network; given their close semblance in terms of local electron densities and interaction with potassium cations, we judge these POMs to be theoretically suitable as POMzite building blocks. Finally, we experimented with substituting different cations into the [P8W48O184]40– pore to observe the effect on pore dimensions and overall reactivity; we observed that the monocationic structures, particularly the Li8[P8W48O184]32– framework, yielded the least polarized structures. This correlates with the literature, validating our methodology for determining general POM characteristics and properties moving forward.
{"title":"Computational Study into the Effects of Countercations on the [P8W48O184]40– Polyoxometalate Wheel","authors":"Daniel Malcolm, and , Laia Vilà-Nadal*, ","doi":"10.1021/acsorginorgau.3c00014","DOIUrl":"https://doi.org/10.1021/acsorginorgau.3c00014","url":null,"abstract":"<p >Porous metal oxide materials have been obtained from a ring-shaped macrocyclic polyoxometalate (POM) structural building unit, [P<sub>8</sub>W<sub>48</sub>O<sub>184</sub>]<sup>40–</sup>. This is a tungsten oxide building block with an integrated “pore” of 1 nm in diameter, which, when connected with transition metal linkers, can assemble frameworks across a range of dimensions and which are generally referred to as POMzites. Our investigation proposes to gain a better understanding into the basic chemistry of this POM, specifically local electron densities and locations of countercations within and without the aforementioned pore. Through a rigorous benchmarking process, we discovered that 8 potassium cations, located within the pore, provided us with the most accurate model in terms of mimicking empirical properties to a sufficient degree of accuracy while also requiring a relatively small number of computer cores and hours to successfully complete a calculation. Additionally, we analyzed two other similar POMs from the literature, [As<sub>8</sub>W<sub>48</sub>O<sub>184</sub>]<sup>40–</sup> and [Se<sub>8</sub>W<sub>48</sub>O<sub>176</sub>]<sup>32–</sup>, in the hopes of determining whether they could be similarly incorporated into a POMzite network; given their close semblance in terms of local electron densities and interaction with potassium cations, we judge these POMs to be theoretically suitable as POMzite building blocks. Finally, we experimented with substituting different cations into the [P<sub>8</sub>W<sub>48</sub>O<sub>184</sub>]<sup>40–</sup> pore to observe the effect on pore dimensions and overall reactivity; we observed that the monocationic structures, particularly the Li<sub>8</sub>[P<sub>8</sub>W<sub>48</sub>O<sub>184</sub>]<sup>32–</sup> framework, yielded the least polarized structures. This correlates with the literature, validating our methodology for determining general POM characteristics and properties moving forward.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 5","pages":"274–282"},"PeriodicalIF":0.0,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13DOI: 10.1021/acsorginorgau.3c00017
Shun Hayashi*, and , Tetsuya Shishido,
To form high-density metal/oxide interfacial active sites, we developed a catalyst preparation method based on hybrid clustering. An iridium–molybdenum (Ir–Mo) hybrid clustering catalyst was prepared by using the hybrid cluster [(IrCp*)4Mo4O16] (Cp* = η5-C5Me5) as the precursor. The Ir–Mo hybrid clustering catalyst selectively reduced the nitro group in the hydrogenation of 4-nitrostyrene, whereas the coimpregnated Ir–Mo catalyst reduced both the nitro and vinyl groups nonselectively. The hybrid clustering catalyst also exhibited high selectivity, even at a high Ir loading (5 wt %), in contrast to Ir/MoO3, which exhibited high selectivity only at low Ir loadings (<0.3 wt %). In situ X-ray absorption spectroscopy analysis revealed that oxygen vacancies were formed at the Ir/MoOx interface in the presence of H2. We concluded that a high-density Ir/MoOx interface contributes to the preferential adsorption of nitro groups on vacant sites, promoting the selective hydrogenation of nitro groups.
{"title":"High-Density Formation of Ir/MoOx Interface through Hybrid Clustering for Chemoselective Nitrostyrene Hydrogenation","authors":"Shun Hayashi*, and , Tetsuya Shishido, ","doi":"10.1021/acsorginorgau.3c00017","DOIUrl":"https://doi.org/10.1021/acsorginorgau.3c00017","url":null,"abstract":"<p >To form high-density metal/oxide interfacial active sites, we developed a catalyst preparation method based on hybrid clustering. An iridium–molybdenum (Ir–Mo) hybrid clustering catalyst was prepared by using the hybrid cluster [(IrCp*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp* = η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) as the precursor. The Ir–Mo hybrid clustering catalyst selectively reduced the nitro group in the hydrogenation of 4-nitrostyrene, whereas the coimpregnated Ir–Mo catalyst reduced both the nitro and vinyl groups nonselectively. The hybrid clustering catalyst also exhibited high selectivity, even at a high Ir loading (5 wt %), in contrast to Ir/MoO<sub>3</sub>, which exhibited high selectivity only at low Ir loadings (<0.3 wt %). In situ X-ray absorption spectroscopy analysis revealed that oxygen vacancies were formed at the Ir/MoO<sub><i>x</i></sub> interface in the presence of H<sub>2</sub>. We concluded that a high-density Ir/MoO<sub><i>x</i></sub> interface contributes to the preferential adsorption of nitro groups on vacant sites, promoting the selective hydrogenation of nitro groups.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"3 5","pages":"283–290"},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}