首页 > 最新文献

ACS Nanoscience Au最新文献

英文 中文
Enhancing Electrocatalytic Semihydrogenation of Alkynes via Weakening Alkene Adsorption over Electron-Depleted Cu Nanowires 通过削弱贫电子铜纳米线对烯的吸附来增强炔烃的电催化半加氢反应
IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-08-08 DOI: 10.1021/acsnanoscienceau.4c0003010.1021/acsnanoscienceau.4c00030
Dan Luo, Zhiheng Xie, Shuangqun Chen, Tianyi Yang, Yalin Guo*, Ying Liu, Zhouhao Zhu, Liyong Gan*, Lingmei Liu and Jianfeng Huang*, 

Electrochemical semihydrogenation (ESH) of alkynes to alkenes is an appealing technique for producing pharmaceutical precursors and polymer monomers, while also preventing catalyst poisoning by alkyne impurities. Cu is recognized as a cost-effective and highly selective catalyst for ESH, whereas its activity is somewhat limited. Here, from a mechanistic standpoint, we hypothesize that electron-deficient Cu can enhance ESH activity by promoting the rate-determining step of alkene desorption. We test this hypothesis by utilizing Cu–Ag hybrids as electrocatalysts, developed through a welding process of Ag nanoparticles with Cu nanowires. Our findings reveal that these rationally engineered Cu–Ag hybrids exhibit a notable enhancement (2–4 times greater) in alkyne conversion rates compared to isolated Ag NPs or Cu NWs, while maintaining over 99% selectivity for alkene products. Through a combination of operando and computational studies, we verify that the electron-depleted Cu sites, resulting from electron transfer between Ag nanoparticles and Cu nanowires, effectively weaken the adsorption of alkenes, thereby substantially boosting ESH activity. This work not only provides mechanistic insights into ESH but also stimulates compelling strategies involving hybridizing distinct metals to optimize ESH activity.

将炔烃电化学半氢化(ESH)为烯烃是生产药物前体和聚合物单体的一项极具吸引力的技术,同时还能防止炔烃杂质对催化剂的毒害。铜被认为是一种成本效益高、选择性强的 ESH 催化剂,但其活性受到一定限制。在此,我们从机理的角度出发,假设缺电子的 Cu 可以通过促进烯解吸附的速率决定步骤来提高 ESH 活性。我们利用铜银杂化物作为电催化剂来验证这一假设,铜银杂化物是通过银纳米颗粒与铜纳米线的焊接工艺开发出来的。我们的研究结果表明,与孤立的银纳米颗粒或铜纳米线相比,这些经过合理设计的铜银混合物在炔烃转化率方面有显著提高(2-4 倍),同时对烯产物的选择性保持在 99% 以上。通过结合操作和计算研究,我们验证了银纳米粒子和铜纳米线之间的电子转移所产生的贫电子铜位点有效地削弱了对烯烃的吸附,从而大大提高了 ESH 活性。这项工作不仅从机理上揭示了 ESH 的机理,还激发了人们采取令人信服的策略,通过杂交不同的金属来优化 ESH 的活性。
{"title":"Enhancing Electrocatalytic Semihydrogenation of Alkynes via Weakening Alkene Adsorption over Electron-Depleted Cu Nanowires","authors":"Dan Luo,&nbsp;Zhiheng Xie,&nbsp;Shuangqun Chen,&nbsp;Tianyi Yang,&nbsp;Yalin Guo*,&nbsp;Ying Liu,&nbsp;Zhouhao Zhu,&nbsp;Liyong Gan*,&nbsp;Lingmei Liu and Jianfeng Huang*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0003010.1021/acsnanoscienceau.4c00030","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00030https://doi.org/10.1021/acsnanoscienceau.4c00030","url":null,"abstract":"<p >Electrochemical semihydrogenation (ESH) of alkynes to alkenes is an appealing technique for producing pharmaceutical precursors and polymer monomers, while also preventing catalyst poisoning by alkyne impurities. Cu is recognized as a cost-effective and highly selective catalyst for ESH, whereas its activity is somewhat limited. Here, from a mechanistic standpoint, we hypothesize that electron-deficient Cu can enhance ESH activity by promoting the rate-determining step of alkene desorption. We test this hypothesis by utilizing Cu–Ag hybrids as electrocatalysts, developed through a welding process of Ag nanoparticles with Cu nanowires. Our findings reveal that these rationally engineered Cu–Ag hybrids exhibit a notable enhancement (2–4 times greater) in alkyne conversion rates compared to isolated Ag NPs or Cu NWs, while maintaining over 99% selectivity for alkene products. Through a combination of operando and computational studies, we verify that the electron-depleted Cu sites, resulting from electron transfer between Ag nanoparticles and Cu nanowires, effectively weaken the adsorption of alkenes, thereby substantially boosting ESH activity. This work not only provides mechanistic insights into ESH but also stimulates compelling strategies involving hybridizing distinct metals to optimize ESH activity.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 Hydrogenation to Methanol over Mesoporous SiO2-Coated Cu-Based Catalysts 在介孔二氧化硅包覆铜基催化剂上将二氧化碳加氢转化为甲醇
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-07-18 DOI: 10.1021/acsnanoscienceau.4c00016
Luiz H. Vieira, Marco A. Rossi, Letícia F. Rasteiro, José M. Assaf, Elisabete M. Assaf
Although chemical promotion led to essential improvements in Cu-based catalysts for CO2 hydrogenation to methanol, surpassing structural limitations such as active phase aggregation under reaction conditions remains challenging. In this report, we improved the textural properties of Cu/In2O3/CeO2 and Cu/In2O3/ZrO2 catalysts by coating the nanoparticles with a mesoporous SiO2 shell. This strategy limited particle size up to 3.5 nm, increasing metal dispersion and widening the metal–metal oxide interface region. Chemometric analysis revealed that these structures could maintain high activity and selectivity in a wide range of reaction conditions, with methanol space-time yields up to 4 times higher than those of the uncoated catalysts.
尽管化学促进作用对用于二氧化碳加氢制甲醇的铜基催化剂进行了重大改进,但超越结构限制(如反应条件下的活性相聚集)仍是一项挑战。在本报告中,我们通过在纳米颗粒上包覆介孔二氧化硅外壳,改善了 Cu/In2O3/CeO2 和 Cu/In2O3/ZrO2 催化剂的质构特性。这种策略将颗粒尺寸限制在 3.5 nm 以下,增加了金属的分散性,扩大了金属-金属氧化物界面区域。化学计量分析表明,这些结构可在多种反应条件下保持高活性和选择性,甲醇时空产率比未涂层催化剂高出 4 倍。
{"title":"CO2 Hydrogenation to Methanol over Mesoporous SiO2-Coated Cu-Based Catalysts","authors":"Luiz H. Vieira, Marco A. Rossi, Letícia F. Rasteiro, José M. Assaf, Elisabete M. Assaf","doi":"10.1021/acsnanoscienceau.4c00016","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00016","url":null,"abstract":"Although chemical promotion led to essential improvements in Cu-based catalysts for CO<sub>2</sub> hydrogenation to methanol, surpassing structural limitations such as active phase aggregation under reaction conditions remains challenging. In this report, we improved the textural properties of Cu/In<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> and Cu/In<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub> catalysts by coating the nanoparticles with a mesoporous SiO<sub>2</sub> shell. This strategy limited particle size up to 3.5 nm, increasing metal dispersion and widening the metal–metal oxide interface region. Chemometric analysis revealed that these structures could maintain high activity and selectivity in a wide range of reaction conditions, with methanol space-time yields up to 4 times higher than those of the uncoated catalysts.","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 Hydrogenation to Methanol over Mesoporous SiO2-Coated Cu-Based Catalysts 在介孔二氧化硅包覆铜基催化剂上将二氧化碳加氢转化为甲醇
IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-07-18 DOI: 10.1021/acsnanoscienceau.4c0001610.1021/acsnanoscienceau.4c00016
Luiz H. Vieira*, Marco A. Rossi, Letícia F. Rasteiro, José M. Assaf and Elisabete M. Assaf*, 

Although chemical promotion led to essential improvements in Cu-based catalysts for CO2 hydrogenation to methanol, surpassing structural limitations such as active phase aggregation under reaction conditions remains challenging. In this report, we improved the textural properties of Cu/In2O3/CeO2 and Cu/In2O3/ZrO2 catalysts by coating the nanoparticles with a mesoporous SiO2 shell. This strategy limited particle size up to 3.5 nm, increasing metal dispersion and widening the metal–metal oxide interface region. Chemometric analysis revealed that these structures could maintain high activity and selectivity in a wide range of reaction conditions, with methanol space-time yields up to 4 times higher than those of the uncoated catalysts.

尽管化学促进作用对用于二氧化碳加氢制甲醇的铜基催化剂进行了重大改进,但超越结构限制(如反应条件下的活性相聚集)仍是一项挑战。在本报告中,我们通过在纳米颗粒上包覆介孔二氧化硅外壳,改善了 Cu/In2O3/CeO2 和 Cu/In2O3/ZrO2 催化剂的质构特性。这种策略将颗粒尺寸限制在 3.5 nm 以下,增加了金属的分散性,扩大了金属-金属氧化物界面区域。化学计量分析表明,这些结构可在多种反应条件下保持高活性和选择性,甲醇时空产率比未涂层催化剂高出 4 倍。
{"title":"CO2 Hydrogenation to Methanol over Mesoporous SiO2-Coated Cu-Based Catalysts","authors":"Luiz H. Vieira*,&nbsp;Marco A. Rossi,&nbsp;Letícia F. Rasteiro,&nbsp;José M. Assaf and Elisabete M. Assaf*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0001610.1021/acsnanoscienceau.4c00016","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00016https://doi.org/10.1021/acsnanoscienceau.4c00016","url":null,"abstract":"<p >Although chemical promotion led to essential improvements in Cu-based catalysts for CO<sub>2</sub> hydrogenation to methanol, surpassing structural limitations such as active phase aggregation under reaction conditions remains challenging. In this report, we improved the textural properties of Cu/In<sub>2</sub>O<sub>3</sub>/CeO<sub>2</sub> and Cu/In<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub> catalysts by coating the nanoparticles with a mesoporous SiO<sub>2</sub> shell. This strategy limited particle size up to 3.5 nm, increasing metal dispersion and widening the metal–metal oxide interface region. Chemometric analysis revealed that these structures could maintain high activity and selectivity in a wide range of reaction conditions, with methanol space-time yields up to 4 times higher than those of the uncoated catalysts.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomics Analysis for Unveiling the Toxicological Mechanism of Silver Nanoparticles Using an In Vitro Gastrointestinal Digestion Model 利用体外胃肠道消化模型进行代谢组学分析以揭示银纳米粒子的毒理机制
IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-25 DOI: 10.1021/acsnanoscienceau.4c0001210.1021/acsnanoscienceau.4c00012
Yongjiu Chen, Ruixia Wang* and Ming Xu, 

The increasing use of silver nanoparticles (AgNPs) in consumer products has led to concerns about potential health risks after oral exposure as a result of the transformation and absorption in the gastrointestinal tract (GIT). However, the intricate condition of the GIT poses challenges in understanding the fate and toxicity of AgNPs as they traverse from the mouth to the rectum. For an in-depth understanding of the nanobio interactions, we employed a simulated digestion model to investigate alterations in the physicochemical properties of AgNPs in vitro. Meanwhile, we investigated the underlying toxicological mechanisms of digested AgNPs in enterocytes through metabolomics analysis. In contrast to route means that primarily apply salt solutions to mimic dietary digestion, this in vitro model is a semidynamic sequential digestion system that includes artificial oral, gastric, and intestinal fluids, which are similar to those under physiological conditions including electrolytes, enzymes, bile, pH, and time of digestion. Our results suggest that the formation of Ag–Cl and Ag–S species within the simulated digestion model can lead to an increase in the size of digested AgNPs and that the acidic condition promotes the release of Ag+ from particles. More critically, the presence of digestive enzymes and high concentrations of salt enhances the uptake of Ag by human colon enterocytes, ultimately promoting ROS generation and exacerbating cytotoxicity. Metabolomics analysis further reveals that the sequentially digested AgNPs may disorder lipid metabolism, including the biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, thus increasing the possibility of ferroptosis activation in enterocytes. These findings offer significant insights into the fate and potential adverse effects of AgNPs in the GIT, providing important implications for assessing the health risks of AgNPs via oral exposure.

随着银纳米粒子(AgNPs)在消费品中的使用日益增多,人们开始担心口腔接触银纳米粒子后会因其在胃肠道(GIT)中的转化和吸收而带来潜在的健康风险。然而,胃肠道错综复杂的状况给了解 AgNPs 从口腔到直肠的转归和毒性带来了挑战。为了深入了解纳米生物之间的相互作用,我们采用了模拟消化模型来研究 AgNPs 在体外的理化性质变化。同时,我们还通过代谢组学分析研究了消化后的 AgNPs 在肠细胞中的潜在毒性机制。与主要采用盐溶液模拟膳食消化的途径不同,该体外模型是一个半动态的顺序消化系统,包括人工口腔液、胃液和肠液,与生理条件下的消化系统相似,包括电解质、酶、胆汁、pH 值和消化时间。我们的结果表明,在模拟消化模型中形成的 Ag-Cl 和 Ag-S 物种可导致消化的 AgNPs 尺寸增大,酸性条件可促进 Ag+ 从颗粒中释放出来。更关键的是,消化酶和高浓度盐的存在增强了人类结肠肠细胞对Ag的吸收,最终促进了ROS的生成并加剧了细胞毒性。代谢组学分析进一步揭示,依次被消化的 AgNPs 可能会扰乱脂质代谢,包括不饱和脂肪酸的生物合成和花生四烯酸代谢,从而增加肠细胞铁突变激活的可能性。这些发现为了解 AgNPs 在消化道中的转归和潜在不良影响提供了重要启示,为评估 AgNPs 通过口服暴露对健康造成的风险提供了重要意义。
{"title":"Metabolomics Analysis for Unveiling the Toxicological Mechanism of Silver Nanoparticles Using an In Vitro Gastrointestinal Digestion Model","authors":"Yongjiu Chen,&nbsp;Ruixia Wang* and Ming Xu,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0001210.1021/acsnanoscienceau.4c00012","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00012https://doi.org/10.1021/acsnanoscienceau.4c00012","url":null,"abstract":"<p >The increasing use of silver nanoparticles (AgNPs) in consumer products has led to concerns about potential health risks after oral exposure as a result of the transformation and absorption in the gastrointestinal tract (GIT). However, the intricate condition of the GIT poses challenges in understanding the fate and toxicity of AgNPs as they traverse from the mouth to the rectum. For an in-depth understanding of the nanobio interactions, we employed a simulated digestion model to investigate alterations in the physicochemical properties of AgNPs <i>in vitro</i>. Meanwhile, we investigated the underlying toxicological mechanisms of digested AgNPs in enterocytes through metabolomics analysis. In contrast to route means that primarily apply salt solutions to mimic dietary digestion, this <i>in vitro</i> model is a semidynamic sequential digestion system that includes artificial oral, gastric, and intestinal fluids, which are similar to those under physiological conditions including electrolytes, enzymes, bile, pH, and time of digestion. Our results suggest that the formation of Ag–Cl and Ag–S species within the simulated digestion model can lead to an increase in the size of digested AgNPs and that the acidic condition promotes the release of Ag<sup>+</sup> from particles. More critically, the presence of digestive enzymes and high concentrations of salt enhances the uptake of Ag by human colon enterocytes, ultimately promoting ROS generation and exacerbating cytotoxicity. Metabolomics analysis further reveals that the sequentially digested AgNPs may disorder lipid metabolism, including the biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, thus increasing the possibility of ferroptosis activation in enterocytes. These findings offer significant insights into the fate and potential adverse effects of AgNPs in the GIT, providing important implications for assessing the health risks of AgNPs via oral exposure.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomics Analysis for Unveiling the Toxicological Mechanism of Silver Nanoparticles Using an In Vitro Gastrointestinal Digestion Model 利用体外胃肠道消化模型进行代谢组学分析以揭示银纳米粒子的毒理机制
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-25 DOI: 10.1021/acsnanoscienceau.4c00012
Yongjiu Chen, Ruixia Wang, Ming Xu
The increasing use of silver nanoparticles (AgNPs) in consumer products has led to concerns about potential health risks after oral exposure as a result of the transformation and absorption in the gastrointestinal tract (GIT). However, the intricate condition of the GIT poses challenges in understanding the fate and toxicity of AgNPs as they traverse from the mouth to the rectum. For an in-depth understanding of the nanobio interactions, we employed a simulated digestion model to investigate alterations in the physicochemical properties of AgNPs in vitro. Meanwhile, we investigated the underlying toxicological mechanisms of digested AgNPs in enterocytes through metabolomics analysis. In contrast to route means that primarily apply salt solutions to mimic dietary digestion, this in vitro model is a semidynamic sequential digestion system that includes artificial oral, gastric, and intestinal fluids, which are similar to those under physiological conditions including electrolytes, enzymes, bile, pH, and time of digestion. Our results suggest that the formation of Ag–Cl and Ag–S species within the simulated digestion model can lead to an increase in the size of digested AgNPs and that the acidic condition promotes the release of Ag+ from particles. More critically, the presence of digestive enzymes and high concentrations of salt enhances the uptake of Ag by human colon enterocytes, ultimately promoting ROS generation and exacerbating cytotoxicity. Metabolomics analysis further reveals that the sequentially digested AgNPs may disorder lipid metabolism, including the biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, thus increasing the possibility of ferroptosis activation in enterocytes. These findings offer significant insights into the fate and potential adverse effects of AgNPs in the GIT, providing important implications for assessing the health risks of AgNPs via oral exposure.
随着银纳米粒子(AgNPs)在消费品中的使用日益增多,人们开始担心口腔接触银纳米粒子后会因其在胃肠道(GIT)中的转化和吸收而带来潜在的健康风险。然而,胃肠道错综复杂的状况给了解 AgNPs 从口腔到直肠的转归和毒性带来了挑战。为了深入了解纳米生物之间的相互作用,我们采用了模拟消化模型来研究 AgNPs 在体外的理化性质变化。同时,我们还通过代谢组学分析研究了消化后的 AgNPs 在肠细胞中的潜在毒性机制。与主要采用盐溶液模拟膳食消化的途径不同,该体外模型是一个半动态的顺序消化系统,包括人工口腔液、胃液和肠液,与生理条件下的消化系统相似,包括电解质、酶、胆汁、pH 值和消化时间。我们的结果表明,在模拟消化模型中形成的 Ag-Cl 和 Ag-S 物种可导致消化的 AgNPs 尺寸增大,酸性条件可促进 Ag+ 从颗粒中释放出来。更关键的是,消化酶和高浓度盐的存在增强了人类结肠肠细胞对Ag的吸收,最终促进了ROS的生成并加剧了细胞毒性。代谢组学分析进一步揭示,依次被消化的 AgNPs 可能会扰乱脂质代谢,包括不饱和脂肪酸的生物合成和花生四烯酸代谢,从而增加肠细胞铁突变激活的可能性。这些发现为了解 AgNPs 在消化道中的转归和潜在不良影响提供了重要启示,为评估 AgNPs 通过口服暴露对健康造成的风险提供了重要意义。
{"title":"Metabolomics Analysis for Unveiling the Toxicological Mechanism of Silver Nanoparticles Using an In Vitro Gastrointestinal Digestion Model","authors":"Yongjiu Chen, Ruixia Wang, Ming Xu","doi":"10.1021/acsnanoscienceau.4c00012","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00012","url":null,"abstract":"The increasing use of silver nanoparticles (AgNPs) in consumer products has led to concerns about potential health risks after oral exposure as a result of the transformation and absorption in the gastrointestinal tract (GIT). However, the intricate condition of the GIT poses challenges in understanding the fate and toxicity of AgNPs as they traverse from the mouth to the rectum. For an in-depth understanding of the nanobio interactions, we employed a simulated digestion model to investigate alterations in the physicochemical properties of AgNPs <i>in vitro</i>. Meanwhile, we investigated the underlying toxicological mechanisms of digested AgNPs in enterocytes through metabolomics analysis. In contrast to route means that primarily apply salt solutions to mimic dietary digestion, this <i>in vitro</i> model is a semidynamic sequential digestion system that includes artificial oral, gastric, and intestinal fluids, which are similar to those under physiological conditions including electrolytes, enzymes, bile, pH, and time of digestion. Our results suggest that the formation of Ag–Cl and Ag–S species within the simulated digestion model can lead to an increase in the size of digested AgNPs and that the acidic condition promotes the release of Ag<sup>+</sup> from particles. More critically, the presence of digestive enzymes and high concentrations of salt enhances the uptake of Ag by human colon enterocytes, ultimately promoting ROS generation and exacerbating cytotoxicity. Metabolomics analysis further reveals that the sequentially digested AgNPs may disorder lipid metabolism, including the biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, thus increasing the possibility of ferroptosis activation in enterocytes. These findings offer significant insights into the fate and potential adverse effects of AgNPs in the GIT, providing important implications for assessing the health risks of AgNPs via oral exposure.","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning Chemical DNA Ligation within DNA Crystals and Protein–DNA Cocrystals 调谐 DNA 晶体和蛋白质-DNA 共晶体内的化学 DNA 连接
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-25 DOI: 10.1021/acsnanoscienceau.4c00013
Abigail R. Orun, Caroline K. Slaughter, Ethan T. Shields, Ananya Vajapayajula, Sara Jones, Rojina Shrestha, Christopher D. Snow
Biomolecular crystals can serve as materials for a plethora of applications including precise guest entrapment. However, as grown, biomolecular crystals are fragile in solutions other than their growth conditions. For crystals to achieve their full potential as hosts for other molecules, crystals can be made stronger with bioconjugation. Building on our previous work using carbodiimide 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for chemical ligation, here, we investigate DNA junction architecture through sticky base overhang lengths and the role of scaffold proteins in cross-linking within two classes of biomolecular crystals: cocrystals of DNA-binding proteins and pure DNA crystals. Both crystal classes contain DNA junctions where DNA strands stack up end-to-end. Ligation yields were studied as a function of sticky base overhang length and terminal phosphorylation status. The best ligation performance for both crystal classes was achieved with longer sticky overhangs and terminal 3′phosphates. Notably, EDC chemical ligation was achieved in crystals with pore sizes too small for intracrystal transport of ligase enzyme. Postassembly cross-linking produced dramatic stability improvements for both DNA crystals and cocrystals in water and blood serum. The results presented may help crystals containing DNA achieve broader application utility, including as structural biology scaffolds.
生物分子晶体可作为多种应用的材料,包括精确的客体夹持。然而,生物分子晶体在生长条件之外的溶液中很脆弱。为了充分发挥晶体作为其他分子宿主的潜力,可以通过生物共轭使晶体变得更坚固。在使用碳二亚胺 1-乙基-3-(3-(二甲基氨基)丙基)碳二亚胺(EDC)进行化学连接的前期工作基础上,我们在这里通过粘性碱基悬垂长度和支架蛋白在两类生物分子晶体(DNA 结合蛋白共晶体和纯 DNA 晶体)交联过程中的作用来研究 DNA 连接结构。这两类晶体都含有 DNA 连接点,在这些连接点上,DNA 链端对端地堆叠在一起。研究将连接产量作为粘性碱基悬垂长度和末端磷酸化状态的函数。两类晶体的最佳连接性能取决于较长的粘性悬垂长度和末端 3′磷酸化状态。值得注意的是,EDC 化学连接是在孔径太小、无法在晶体内运输连接酶的晶体中实现的。组装后的交联大大提高了 DNA 晶体和共晶体在水和血清中的稳定性。所展示的结果可能有助于含有 DNA 的晶体获得更广泛的应用,包括作为结构生物学支架。
{"title":"Tuning Chemical DNA Ligation within DNA Crystals and Protein–DNA Cocrystals","authors":"Abigail R. Orun, Caroline K. Slaughter, Ethan T. Shields, Ananya Vajapayajula, Sara Jones, Rojina Shrestha, Christopher D. Snow","doi":"10.1021/acsnanoscienceau.4c00013","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00013","url":null,"abstract":"Biomolecular crystals can serve as materials for a plethora of applications including precise guest entrapment. However, as grown, biomolecular crystals are fragile in solutions other than their growth conditions. For crystals to achieve their full potential as hosts for other molecules, crystals can be made stronger with bioconjugation. Building on our previous work using carbodiimide 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for chemical ligation, here, we investigate DNA junction architecture through sticky base overhang lengths and the role of scaffold proteins in cross-linking within two classes of biomolecular crystals: cocrystals of DNA-binding proteins and pure DNA crystals. Both crystal classes contain DNA junctions where DNA strands stack up end-to-end. Ligation yields were studied as a function of sticky base overhang length and terminal phosphorylation status. The best ligation performance for both crystal classes was achieved with longer sticky overhangs and terminal 3′phosphates. Notably, EDC chemical ligation was achieved in crystals with pore sizes too small for intracrystal transport of ligase enzyme. Postassembly cross-linking produced dramatic stability improvements for both DNA crystals and cocrystals in water and blood serum. The results presented may help crystals containing DNA achieve broader application utility, including as structural biology scaffolds.","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning Chemical DNA Ligation within DNA Crystals and Protein–DNA Cocrystals 调谐 DNA 晶体和蛋白质-DNA 共晶体内的化学 DNA 连接
IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-25 DOI: 10.1021/acsnanoscienceau.4c0001310.1021/acsnanoscienceau.4c00013
Abigail R. Orun, Caroline K. Slaughter, Ethan T. Shields, Ananya Vajapayajula, Sara Jones, Rojina Shrestha and Christopher D. Snow*, 

Biomolecular crystals can serve as materials for a plethora of applications including precise guest entrapment. However, as grown, biomolecular crystals are fragile in solutions other than their growth conditions. For crystals to achieve their full potential as hosts for other molecules, crystals can be made stronger with bioconjugation. Building on our previous work using carbodiimide 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for chemical ligation, here, we investigate DNA junction architecture through sticky base overhang lengths and the role of scaffold proteins in cross-linking within two classes of biomolecular crystals: cocrystals of DNA-binding proteins and pure DNA crystals. Both crystal classes contain DNA junctions where DNA strands stack up end-to-end. Ligation yields were studied as a function of sticky base overhang length and terminal phosphorylation status. The best ligation performance for both crystal classes was achieved with longer sticky overhangs and terminal 3′phosphates. Notably, EDC chemical ligation was achieved in crystals with pore sizes too small for intracrystal transport of ligase enzyme. Postassembly cross-linking produced dramatic stability improvements for both DNA crystals and cocrystals in water and blood serum. The results presented may help crystals containing DNA achieve broader application utility, including as structural biology scaffolds.

生物分子晶体可作为多种应用的材料,包括精确的客体夹持。然而,生物分子晶体在生长条件之外的溶液中很脆弱。为了充分发挥晶体作为其他分子宿主的潜力,可以通过生物共轭使晶体变得更坚固。在使用碳二亚胺 1-乙基-3-(3-(二甲基氨基)丙基)碳二亚胺(EDC)进行化学连接的前期工作基础上,我们在这里通过粘性碱基悬垂长度和支架蛋白在两类生物分子晶体(DNA 结合蛋白共晶体和纯 DNA 晶体)交联过程中的作用来研究 DNA 连接结构。这两类晶体都含有 DNA 连接点,在这些连接点上,DNA 链端对端地堆叠在一起。研究将连接产量作为粘性碱基悬垂长度和末端磷酸化状态的函数。两类晶体的最佳连接性能取决于较长的粘性悬垂长度和末端 3′磷酸化状态。值得注意的是,EDC 化学连接是在孔径太小、无法在晶体内运输连接酶的晶体中实现的。组装后的交联大大提高了 DNA 晶体和共晶体在水和血清中的稳定性。所展示的结果可能有助于含有 DNA 的晶体获得更广泛的应用,包括作为结构生物学支架。
{"title":"Tuning Chemical DNA Ligation within DNA Crystals and Protein–DNA Cocrystals","authors":"Abigail R. Orun,&nbsp;Caroline K. Slaughter,&nbsp;Ethan T. Shields,&nbsp;Ananya Vajapayajula,&nbsp;Sara Jones,&nbsp;Rojina Shrestha and Christopher D. Snow*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0001310.1021/acsnanoscienceau.4c00013","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00013https://doi.org/10.1021/acsnanoscienceau.4c00013","url":null,"abstract":"<p >Biomolecular crystals can serve as materials for a plethora of applications including precise guest entrapment. However, as grown, biomolecular crystals are fragile in solutions other than their growth conditions. For crystals to achieve their full potential as hosts for other molecules, crystals can be made stronger with bioconjugation. Building on our previous work using carbodiimide 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for chemical ligation, here, we investigate DNA junction architecture through sticky base overhang lengths and the role of scaffold proteins in cross-linking within two classes of biomolecular crystals: cocrystals of DNA-binding proteins and pure DNA crystals. Both crystal classes contain DNA junctions where DNA strands stack up end-to-end. Ligation yields were studied as a function of sticky base overhang length and terminal phosphorylation status. The best ligation performance for both crystal classes was achieved with longer sticky overhangs and terminal 3′phosphates. Notably, EDC chemical ligation was achieved in crystals with pore sizes too small for intracrystal transport of ligase enzyme. Postassembly cross-linking produced dramatic stability improvements for both DNA crystals and cocrystals in water and blood serum. The results presented may help crystals containing DNA achieve broader application utility, including as structural biology scaffolds.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noble Metal Plasmon–Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation 用于可再生能源相关小分子活化的贵金属质子-分子催化剂混合体
IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-10 DOI: 10.1021/acsnanoscienceau.4c0000910.1021/acsnanoscienceau.4c00009
Tannu Kaushik, Suchismita Ghosh, Thinles Dolkar, Rathindranath Biswas and Arnab Dutta*, 

Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO2 conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic–molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic–molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.

人们一直致力于人工光合作用材料的研究,目的是有效地收集光并催化制氢和二氧化碳转化等反应。质子纳米材料具有出色的光吸收特性,并能将太阳能限制在纳米尺度,因此在这方面的应用前景广阔。在这方面,将等离子体颗粒与分子催化剂耦合为制造高性能混合催化剂提供了一条途径。在本综述中,我们将讨论等离子体-分子复合物混合催化剂,其中等离子体纳米粒子作为光收集单元,与分子催化剂一起促进界面电荷转移,从而推动化学转化。在首节中,我们将简要概述等离子纳米材料及其光物理特性。然后,我们探讨了最近的突破,重点介绍了文献报道中涉及各种催化过程中的等离子体-分子复合物混合物的实例。将等离子材料与分子催化剂结合使用是一个相对尚未开发的领域,其巨大潜力尚待实现。本综述为探索等离子体诱导的热电子介导的相电化学小分子活化反应奠定了坚实的基础和动力。它利用原位光谱研究和超快瞬态吸收光谱,为可扩展和可持续的天线反应器系统提供了一个全面的模板。
{"title":"Noble Metal Plasmon–Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation","authors":"Tannu Kaushik,&nbsp;Suchismita Ghosh,&nbsp;Thinles Dolkar,&nbsp;Rathindranath Biswas and Arnab Dutta*,&nbsp;","doi":"10.1021/acsnanoscienceau.4c0000910.1021/acsnanoscienceau.4c00009","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00009https://doi.org/10.1021/acsnanoscienceau.4c00009","url":null,"abstract":"<p >Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO<sub>2</sub> conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic–molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic–molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.4c00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noble Metal Plasmon–Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation 用于可再生能源相关小分子活化的贵金属质子-分子催化剂混合体
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-10 DOI: 10.1021/acsnanoscienceau.4c00009
Tannu Kaushik, Suchismita Ghosh, Thinles Dolkar, Rathindranath Biswas, Arnab Dutta
{"title":"Noble Metal Plasmon–Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation","authors":"Tannu Kaushik, Suchismita Ghosh, Thinles Dolkar, Rathindranath Biswas, Arnab Dutta","doi":"10.1021/acsnanoscienceau.4c00009","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00009","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering 光响应和抗菌石墨烯材料是组织工程的一种综合方法
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-06-07 DOI: 10.1021/acsnanoscienceau.4c00006
Andrea Ferreras, Ana Matesanz, Jabier Mendizabal, Koldo Artola, Y. Nishina, Pablo Acedo, José L. Jorcano, Amalia Ruiz, Giacomo Reina, Cristina Martín
{"title":"Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering","authors":"Andrea Ferreras, Ana Matesanz, Jabier Mendizabal, Koldo Artola, Y. Nishina, Pablo Acedo, José L. Jorcano, Amalia Ruiz, Giacomo Reina, Cristina Martín","doi":"10.1021/acsnanoscienceau.4c00006","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.4c00006","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141374848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Nanoscience Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1