首页 > 最新文献

ACS Nanoscience Au最新文献

英文 中文
Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry 坚固的纳米颗粒衍生的有色抗生素膜涂层,用于难以涂覆复杂几何形状的医疗设备
Q3 Materials Science Pub Date : 2022-10-28 DOI: 10.1021/acsnanoscienceau.2c00040
Hossein Yazdani-Ahmadabadi, Kai Yu, Sara Khoddami, Demian F. Felix, Han H. Yeh, Haiming D. Luo, Igor Moskalev, Qiong Wang, Rizhi Wang, Dana Grecov, Ladan Fazli, Dirk Lange* and Jayachandran N. Kizhakkedathu*, 

A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (>3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (>99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.

一个主要的医疗器械相关并发症是植入后与生物膜相关的感染。防止这种情况的一个有希望的方法是用有效的抗菌膜材料覆盖已经商业化的医疗设备。然而,在非平面几何形状的设备上开发一种坚固的高性能抗生物膜涂层仍然没有得到满足。在这里,我们报道了一种易于扩展的基于纳米颗粒的抗生物膜-银复合涂层的开发,该涂层具有长期活性,几乎适用于任何物体,包括使用邻苯二酚有机-水混合物难以涂覆的商业医疗设备。使用筛选方法,我们已经确定了一种有机-水缓冲混合物的组合,它改变了聚乙醇胺的合成、纳米颗粒的形成和稳定性,导致在超高分子量亲水性聚合物存在下原位形成的复合银纳米颗粒在不同物体上的受控沉积,而不管其几何形状和化学性质如何。甲醇介导的聚合物-银复合纳米颗粒的合成产生了一种生物相容的润滑涂层,具有高机械耐久性、长期银释放(~90天)、完全抑制细菌粘附以及长期对各种细菌的优异杀灭活性。涂层导管即使在暴露于苛刻的机械挑战(摩擦、扭曲和拉伸)和储存条件(在水中搅拌>;3个月)后仍保持其优异的活性。我们在体内分别使用经皮导管感染小鼠和皮下植入大鼠模型证实了其对难杀细菌(奇异变形杆菌)的优异杀菌效果(>;99.999%)和高生物相容性。所开发的涂层方法开辟了一条新的途径,将临床使用的医疗设备(如导尿管)转变为高度抗感染的设备,以预防和治疗植入物/设备相关感染。
{"title":"Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry","authors":"Hossein Yazdani-Ahmadabadi,&nbsp;Kai Yu,&nbsp;Sara Khoddami,&nbsp;Demian F. Felix,&nbsp;Han H. Yeh,&nbsp;Haiming D. Luo,&nbsp;Igor Moskalev,&nbsp;Qiong Wang,&nbsp;Rizhi Wang,&nbsp;Dana Grecov,&nbsp;Ladan Fazli,&nbsp;Dirk Lange* and Jayachandran N. Kizhakkedathu*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00040","DOIUrl":"10.1021/acsnanoscienceau.2c00040","url":null,"abstract":"<p >A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (&gt;3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (&gt;99.999%) against difficult-to-kill bacteria (<i>Proteus mirabilis</i>) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, <i>in vivo</i>. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/5c/ng2c00040.PMC9936578.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10774192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds 金黄色葡萄球菌表面蛋白FnBPB与角膜粘连蛋白的相互作用涉及两个不同的,极强的键
Q3 Materials Science Pub Date : 2022-10-18 DOI: 10.1021/acsnanoscienceau.2c00036
Telmo O. Paiva, Albertus Viljoen, Thaina M. da Costa, Joan A. Geoghegan* and Yves F. Dufrêne*, 

Attachment of Staphylococcus aureus to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.

金黄色葡萄球菌与人类皮肤角质细胞的粘附在加剧特应性皮炎(AD)的严重程度中起着关键作用。病原体皮肤粘附是由称为粘附素的细菌细胞表面蛋白介导的,包括纤连蛋白结合蛋白B(FnBPB)。FnBPB与角膜内皮素(CDSN)结合,CDSN是一种暴露在AD患者角膜细胞上的糖蛋白。通过单分子实验,我们证明FnBPB与CDSN的结合依赖于复杂的双位点机制。这两个位点都形成了极强的结合,结合力分别为~1和~2.5nN,尽管解离速率比粘附素同源物的解离速率更快。FnBPB中这种先前未确定的两个结合位点的相互作用说明了其显著的多种粘附功能,并且具有生物学意义,因为高强度和短的结合寿命将有利于病原体有效的皮肤定植。
{"title":"Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds","authors":"Telmo O. Paiva,&nbsp;Albertus Viljoen,&nbsp;Thaina M. da Costa,&nbsp;Joan A. Geoghegan* and Yves F. Dufrêne*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00036","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.2c00036","url":null,"abstract":"<p >Attachment of <i>Staphylococcus aureus</i> to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-analysis Study 金属生物转化在细胞对金属纳米颗粒反应中的重要性:一项转录组meta分析研究
Q3 Materials Science Pub Date : 2022-09-30 DOI: 10.1021/acsnanoscienceau.2c00035
Alice Balfourier, Anne-Pia Marty and Florence Gazeau*, 

Metallic nanoparticles are increasingly present in our environment, raising concerns on their interactions with living organisms and potential toxicity. Indeed, metallic nanoparticles release metal ions that can be toxic, bioessential, therapeutically active, or combine several of these features. However, human cell responses to different metallic nanoparticles and ions have rarely been compared so far. We propose here a meta-analysis of the transcriptomic responses of human cells to nanoparticles and ions of various metals (titanium, iron, copper, zinc, silver, cadmium, platinum, gold), in order to identify the commonalities and differences between cell responses to these compounds. This analysis revealed that the chemical properties of metals are more important than their known biological functions (i.e., essential metals, toxicity) in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the ions they contain, and depend on the nanoparticles’ solubility. The formulation as nanoparticles impacts the cell response at lower intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by metallothioneins, which coexist with singular signatures that are specific to a given element.

金属纳米颗粒越来越多地存在于我们的环境中,这引发了人们对其与生物体相互作用和潜在毒性的担忧。事实上,金属纳米颗粒释放的金属离子可以是有毒的、生物本质的、治疗活性的,或者结合了其中的几个特征。然而,到目前为止,人类细胞对不同金属纳米颗粒和离子的反应很少进行比较。我们在此提出了一项关于人类细胞对各种金属(钛、铁、铜、锌、银、镉、铂、金)的纳米颗粒和离子的转录组反应的荟萃分析,以确定细胞对这些化合物的反应之间的共性和差异。该分析表明,在控制细胞转录组方面,金属的化学性质比其已知的生物功能(即必需金属、毒性)更重要。特别是,我们证明,对纳米颗粒的反应主要由对其所含离子的反应决定,并取决于纳米颗粒的溶解度。作为纳米颗粒的制剂通过改变与囊泡细胞内运输和细胞骨架相关的基因,以比释放的离子更低的强度影响细胞反应。此外,我们发现几种金属(即铜、锌、银、镉和金)会触发由金属硫蛋白控制的常见细胞反应,金属硫蛋白与特定元素特有的奇异特征共存。
{"title":"Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-analysis Study","authors":"Alice Balfourier,&nbsp;Anne-Pia Marty and Florence Gazeau*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00035","DOIUrl":"10.1021/acsnanoscienceau.2c00035","url":null,"abstract":"<p >Metallic nanoparticles are increasingly present in our environment, raising concerns on their interactions with living organisms and potential toxicity. Indeed, metallic nanoparticles release metal ions that can be toxic, bioessential, therapeutically active, or combine several of these features. However, human cell responses to different metallic nanoparticles and ions have rarely been compared so far. We propose here a meta-analysis of the transcriptomic responses of human cells to nanoparticles and ions of various metals (titanium, iron, copper, zinc, silver, cadmium, platinum, gold), in order to identify the commonalities and differences between cell responses to these compounds. This analysis revealed that the chemical properties of metals are more important than their known biological functions (i.e., essential metals, toxicity) in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the ions they contain, and depend on the nanoparticles’ solubility. The formulation as nanoparticles impacts the cell response at lower intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by metallothioneins, which coexist with singular signatures that are specific to a given element.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/ce/ng2c00035.PMC9936776.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10765032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices 石墨烯及其以外:二维材料合成、性质和器件的最新进展
Q3 Materials Science Pub Date : 2022-09-16 DOI: 10.1021/acsnanoscienceau.2c00017
Yu Lei, Tianyi Zhang, Yu-Chuan Lin, Tomotaroh Granzier-Nakajima, George Bepete, Dorota A. Kowalczyk, Zhong Lin, Da Zhou, Thomas F. Schranghamer, Akhil Dodda, Amritanand Sebastian, Yifeng Chen, Yuanyue Liu, Geoffrey Pourtois, Thomas J. Kempa, Bruno Schuler, Mark T. Edmonds, Su Ying Quek, Ursula Wurstbauer, Stephen M. Wu, Nicholas R. Glavin, Saptarshi Das, Saroj Prasad Dash, Joan M. Redwing, Joshua A. Robinson* and Mauricio Terrones*, 

Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.

自2004年石墨烯分离以来,二维(2D)材料研究已迅速发展成为物理科学中的一个完整的分支学科,具有广泛的新兴应用。独特的2D结构提供了一个开放的画布,通过层数,缺陷,形态,波纹图案,应变和其他控制旋钮来定制和功能化2D材料。通过这篇综述,我们的目标是强调以下主题的最新发现:理论指导合成以增强对二维形态,质量,产量的控制,以及对新型二维材料的见解;缺陷工程控制和理解各种缺陷的作用,包括原位和非原位方法;以及与土木工程、应变工程和人工智能相关的特性和应用。最后,我们还提供了我们对这个迷人领域的挑战和机遇的看法。
{"title":"Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices","authors":"Yu Lei,&nbsp;Tianyi Zhang,&nbsp;Yu-Chuan Lin,&nbsp;Tomotaroh Granzier-Nakajima,&nbsp;George Bepete,&nbsp;Dorota A. Kowalczyk,&nbsp;Zhong Lin,&nbsp;Da Zhou,&nbsp;Thomas F. Schranghamer,&nbsp;Akhil Dodda,&nbsp;Amritanand Sebastian,&nbsp;Yifeng Chen,&nbsp;Yuanyue Liu,&nbsp;Geoffrey Pourtois,&nbsp;Thomas J. Kempa,&nbsp;Bruno Schuler,&nbsp;Mark T. Edmonds,&nbsp;Su Ying Quek,&nbsp;Ursula Wurstbauer,&nbsp;Stephen M. Wu,&nbsp;Nicholas R. Glavin,&nbsp;Saptarshi Das,&nbsp;Saroj Prasad Dash,&nbsp;Joan M. Redwing,&nbsp;Joshua A. Robinson* and Mauricio Terrones*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00017","DOIUrl":"10.1021/acsnanoscienceau.2c00017","url":null,"abstract":"<p >Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including <i>in situ</i> and <i>ex situ</i> methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/7e/ng2c00017.PMC9782807.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9339529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
High-Performance Indium–Tin Oxide (ITO) Electrode Enabled by a Counteranion-Free Metal–Polymer Complex 由无反阴离子金属-聚合物络合物实现的高性能氧化铟锡(ITO)电极
Q3 Materials Science Pub Date : 2022-08-31 DOI: 10.1021/acsnanoscienceau.2c00027
Gyeongbae Park, Dongbeom Kim, Geonwoo Kim and Unyong Jeong*, 

Although multicomponent inorganic thin films (metal-oxides, -carbides, -nitrides, and -chalcogenides) have been synthesized by polymer-assisted deposition (PAD), synthesis of high-performance transparent conducting oxides (TCOs) has been rarely reported. TCO requires (i) removal of impurities, (ii) high-density oxide film, (iii) homogeneity in crystal structures and film morphology, and (iv) controllable elemental doping. This study performs a systematic investigation on preparation of stable multicomponent metal–polymer complex solutions by removing the counteranions in the solution. This study also proposes accurate acid–base titration for each metal species in order to minimize the amount of PEI, thus maximizing the density of the film. As a representative TCO, Sn-doped In2O3 (ITO) films have been achieved. The ITO film has an excellent sheet resistance (24.5 Ω/sq) at 93% optical transparency, with a figure of merit of 2.1 × 10–2 Ω–1, which is comparable to the best.

虽然多组分无机薄膜(金属氧化物、-碳化物、-氮化物和-硫族化物)已经通过聚合物辅助沉积(PAD)合成,但合成高性能透明导电氧化物(TCOs)的报道很少。TCO要求(i)去除杂质,(ii)高密度氧化膜,(iii)晶体结构和膜形态的均匀性,以及(iv)可控的元素掺杂。本研究对通过去除溶液中的反阴离子制备稳定的多组分金属-聚合物配合物溶液进行了系统的研究。本研究还建议对每种金属进行精确的酸碱滴定,以尽量减少PEI的量,从而最大限度地提高膜的密度。作为TCO的代表,已经实现了掺杂sn的In2O3 (ITO)薄膜。在93%的光学透明度下,ITO薄膜具有优异的片电阻(24.5 Ω/sq),其优点系数为2.1 × 10-2 Ω-1,与最佳相媲美。
{"title":"High-Performance Indium–Tin Oxide (ITO) Electrode Enabled by a Counteranion-Free Metal–Polymer Complex","authors":"Gyeongbae Park,&nbsp;Dongbeom Kim,&nbsp;Geonwoo Kim and Unyong Jeong*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00027","DOIUrl":"10.1021/acsnanoscienceau.2c00027","url":null,"abstract":"<p >Although multicomponent inorganic thin films (metal-oxides, -carbides, -nitrides, and -chalcogenides) have been synthesized by polymer-assisted deposition (PAD), synthesis of high-performance transparent conducting oxides (TCOs) has been rarely reported. TCO requires (i) removal of impurities, (ii) high-density oxide film, (iii) homogeneity in crystal structures and film morphology, and (iv) controllable elemental doping. This study performs a systematic investigation on preparation of stable multicomponent metal–polymer complex solutions by removing the counteranions in the solution. This study also proposes accurate acid–base titration for each metal species in order to minimize the amount of PEI, thus maximizing the density of the film. As a representative TCO, Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) films have been achieved. The ITO film has an excellent sheet resistance (24.5 Ω/sq) at 93% optical transparency, with a figure of merit of 2.1 × 10<sup>–2</sup> Ω<sup>–1</sup>, which is comparable to the best.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/c4/ng2c00027.PMC10125366.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9349331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Observation of the Multilayer Growth Mode in Ternary InGaAs Nanowires 三元InGaAs纳米线多层生长模式的观察
Q3 Materials Science Pub Date : 2022-08-30 DOI: 10.1021/acsnanoscienceau.2c00028
Robin Sjökvist*, Marcus Tornberg, Mikelis Marnauza, Daniel Jacobsson and Kimberly A. Dick, 

Au-seeded semiconductor nanowires have classically been considered to only grow in a layer-by-layer growth mode, where individual layers nucleate and grow one at a time with an incubation step in between. Recent in situ investigations have shown that there are circumstances where binary semiconductor nanowires grow in a multilayer fashion, creating a stack of incomplete layers at the interface between a nanoparticle and a nanowire. In the current investigation, the growth behavior in ternary InGaAs nanowires has been analyzed in situ, using environmental transmission electron microscopy. The investigation has revealed that multilayer growth also occurs for ternary nanowires and appears to be more common than in the binary case. In addition, the size of the multilayer stacks observed is much larger than what has been reported previously. The investigation details the implications of multilayers for the overall growth of the nanowires, as well as the surrounding conditions under which it has manifested. We show that multilayer growth is highly dynamic, where the stack of layers regularly changes size by transporting material between the growing layers. Another observation is that multilayer growth can be initiated in conjunction with the formation of crystallographic defects and compositional changes. In addition, the role that multilayers can have in behaviors such as growth failure and kinking, sometimes observed when creating heterostructures between GaAs and InAs ex situ, is discussed. The prevalence of multilayer growth in this ternary material system implies that, in order to fully understand and accurately predict the growth of nanowires of complex composition and structure, multilayer growth has to be considered.

金种子半导体纳米线通常被认为只能以一层接一层的生长模式生长,其中单个层一次成核并生长,中间有孵育步骤。最近的原位研究表明,在某些情况下,二进制半导体纳米线会以多层方式生长,在纳米颗粒和纳米线之间的界面上形成一堆不完整的层。在本研究中,利用环境透射电镜原位分析了三元InGaAs纳米线的生长行为。研究表明,多层生长也发生在三元纳米线中,并且似乎比二元纳米线更常见。此外,观察到的多层堆叠的大小比以前报道的要大得多。这项研究详细说明了多层结构对纳米线整体生长的影响,以及它所表现出来的周围条件。我们表明多层生长是高度动态的,其中层的堆叠通过在生长层之间传输材料而有规律地改变尺寸。另一个观察结果是,多层生长可以与晶体缺陷的形成和成分的变化一起开始。此外,本文还讨论了在GaAs和InAs之间形成异质结构时,多层材料在生长失败和扭结等行为中的作用。多层生长在这种三元材料体系中的普遍存在意味着,为了充分了解和准确预测复杂成分和结构的纳米线的生长,必须考虑多层生长。
{"title":"Observation of the Multilayer Growth Mode in Ternary InGaAs Nanowires","authors":"Robin Sjökvist*,&nbsp;Marcus Tornberg,&nbsp;Mikelis Marnauza,&nbsp;Daniel Jacobsson and Kimberly A. Dick,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00028","DOIUrl":"10.1021/acsnanoscienceau.2c00028","url":null,"abstract":"<p >Au-seeded semiconductor nanowires have classically been considered to only grow in a layer-by-layer growth mode, where individual layers nucleate and grow one at a time with an incubation step in between. Recent <i>in situ</i> investigations have shown that there are circumstances where binary semiconductor nanowires grow in a multilayer fashion, creating a stack of incomplete layers at the interface between a nanoparticle and a nanowire. In the current investigation, the growth behavior in ternary InGaAs nanowires has been analyzed <i>in situ</i>, using environmental transmission electron microscopy. The investigation has revealed that multilayer growth also occurs for ternary nanowires and appears to be more common than in the binary case. In addition, the size of the multilayer stacks observed is much larger than what has been reported previously. The investigation details the implications of multilayers for the overall growth of the nanowires, as well as the surrounding conditions under which it has manifested. We show that multilayer growth is highly dynamic, where the stack of layers regularly changes size by transporting material between the growing layers. Another observation is that multilayer growth can be initiated in conjunction with the formation of crystallographic defects and compositional changes. In addition, the role that multilayers can have in behaviors such as growth failure and kinking, sometimes observed when creating heterostructures between GaAs and InAs <i>ex situ</i>, is discussed. The prevalence of multilayer growth in this ternary material system implies that, in order to fully understand and accurately predict the growth of nanowires of complex composition and structure, multilayer growth has to be considered.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9711182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Homogeneous Nanoparticles of Multimetallic Phosphides via Precursor Tuning: Ternary and Quaternary M2P Phases (M = Fe, Co, Ni) 通过前体调节的多金属磷酸盐的均匀纳米颗粒:三元和四元M2P相(M=Fe,Co,Ni)
Q3 Materials Science Pub Date : 2022-08-09 DOI: 10.1021/acsnanoscienceau.2c00025
Tepora Su’a, Mikaylah N. Poli and Stephanie L. Brock*, 

Transition metal phosphides (TMPs) are a highly investigated class of nanomaterials due to their unique magnetic and catalytic properties. Although robust and reproducible synthetic routes to narrow polydispersity monometallic phosphide nanoparticles (M2P; M = Fe, Co, Ni) have been established, the preparation of multimetallic nanoparticle phases (M2–xM′xP; M, M′ = Fe, Co, Ni) remains a significant challenge. Colloidal syntheses employ zero-valent metal carbonyl or multivalent acetylacetonate salt precursors in combination with trioctylphosphine as the source of phosphorus, oleylamine as the reducing agent, and additional solvents such as octadecene or octyl ether as “noncoordinating” cosolvents. Understanding how these different metal precursors behave in identical reaction environments is critical to assessing the role the relative reactivity of the metal precursor plays in synthesizing complex, homogeneous multimetallic TMP phases. In this study, phosphorus incorporation as a function of temperature and time was evaluated to probe how the relative rate of phosphidation of organometallic carbonyl and acetylacetonate salt precursors influences the homogeneous formation of bimetallic phosphide phases (M2–xM′xP; M, M′ = Fe, Co, Ni). From the relative rate of phosphidation studies, we found that where reactivity with TOP for the various metal precursors differs significantly, prealloying steps are necessary to isolate the desired bimetallic phosphide phase. These insights were then translated to establish streamlined synthetic protocols for the formation of new trimetallic Fe2–xyNixCoyP phases.

过渡金属磷化物(TMPs)由于其独特的磁性和催化性能,是一类备受研究的纳米材料。尽管已经建立了用于窄多分散性单金属磷化物纳米颗粒(M2P;M=Fe,Co,Ni)的稳健且可重复的合成路线,但制备多金属纳米颗粒相(M2–xM′xP;M,M′=Fe,Co,Ni)仍然是一个重大挑战。胶体合成使用零价金属羰基或多价乙酰丙酮盐前体,与三辛基膦作为磷源,油胺作为还原剂,以及其他溶剂如十八碳烯或辛基醚作为“非配位”共溶剂相结合。了解这些不同的金属前体在相同的反应环境中的行为对于评估金属前体的相对反应性在合成复杂、均匀的多金属TMP相中所起的作用至关重要。在本研究中,评估了作为温度和时间函数的磷掺入,以探讨有机金属羰基和乙酰丙酮盐前体的相对磷化速率如何影响双金属磷化物相(M2–xM′xP;M,M′=Fe,Co,Ni)的均匀形成。根据磷化研究的相对速率,我们发现,在各种金属前体与TOP的反应性显著不同的情况下,预合金化步骤对于分离所需的双金属磷化物相是必要的。然后,这些见解被转化为建立新的三金属Fe2–x–yNixCoyP相形成的简化合成方案。
{"title":"Homogeneous Nanoparticles of Multimetallic Phosphides via Precursor Tuning: Ternary and Quaternary M2P Phases (M = Fe, Co, Ni)","authors":"Tepora Su’a,&nbsp;Mikaylah N. Poli and Stephanie L. Brock*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00025","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.2c00025","url":null,"abstract":"<p >Transition metal phosphides (TMPs) are a highly investigated class of nanomaterials due to their unique magnetic and catalytic properties. Although robust and reproducible synthetic routes to narrow polydispersity monometallic phosphide nanoparticles (M<sub>2</sub>P; M = Fe, Co, Ni) have been established, the preparation of multimetallic nanoparticle phases (M<sub>2–<i>x</i></sub>M′<sub><i>x</i></sub>P; M, M′ = Fe, Co, Ni) remains a significant challenge. Colloidal syntheses employ zero-valent metal carbonyl or multivalent acetylacetonate salt precursors in combination with trioctylphosphine as the source of phosphorus, oleylamine as the reducing agent, and additional solvents such as octadecene or octyl ether as “noncoordinating” cosolvents. Understanding how these different metal precursors behave in identical reaction environments is critical to assessing the role the relative reactivity of the metal precursor plays in synthesizing complex, homogeneous multimetallic TMP phases. In this study, phosphorus incorporation as a function of temperature and time was evaluated to probe how the relative rate of phosphidation of organometallic carbonyl and acetylacetonate salt precursors influences the homogeneous formation of bimetallic phosphide phases (M<sub>2–<i>x</i></sub>M′<sub><i>x</i></sub>P; M, M′ = Fe, Co, Ni). From the relative rate of phosphidation studies, we found that where reactivity with TOP for the various metal precursors differs significantly, prealloying steps are necessary to isolate the desired bimetallic phosphide phase. These insights were then translated to establish streamlined synthetic protocols for the formation of new trimetallic Fe<sub>2–<i>x</i>–<i>y</i></sub>Ni<sub><i>x</i></sub>Co<sub><i>y</i></sub>P phases.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71557350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Guiding the High-Yield Synthesis of NHC-Ligated Gold Nanoclusters by 19F NMR Spectroscopy 用19F NMR光谱指导高产率合成NHC连接的金纳米团簇
Q3 Materials Science Pub Date : 2022-08-09 DOI: 10.1021/acsnanoscienceau.2c00026
Hui Shen, Xiongkai Tang, Qingyuan Wu, Yuhao Zhang, Chuxin Ma, Zhen Xu, Boon K. Teo and Nanfeng Zheng*, 

Optimizing the synthesis of atomically precise metal nanoclusters by virtue of molecular tools is highly desirable but quite challenging. Herein we report how 19F NMR spectroscopy can be used to guide the high-yield synthesis of N-heterocyclic carbene (NHC)-stabilized gold nanoclusters. In spite of little difference, 19F NMR signals of fluoro-incorporated NHCs (FNHC) are highly sensitive to the tiny change in their surrounding chemical environments with different N-substituents, metals, or anions, thus providing a convenient strategy to discriminate species in reaction mixtures. By using 19F NMR, we first disclosed that the one-pot reduction of FNHC-Au-X (X is halide) yields multiple compounds, including cluster compounds and also a large amount of highly stable [Au(FNHC)2]+ byproduct. The detailed quantitative 19F NMR analyses over the reductive synthesis of NHC-stabilized Au nanoclusters reveal that the formation of the di-NHC complex is deleterious to the high-yield synthesis of NHC-stabilized Au nanoclusters. With the understanding, the reaction kinetic was then slowed by controlling the reduction rate to achieve the high yield of a [Au24(FNHC)14X2H3]3+ nanocluster with a unique structure. The strategy demonstrated in this work is expected to provide an effective tool to guide the high-yield synthesis of organic ligand-stabilized metal nanoclusters.

借助分子工具优化原子级精确金属纳米团簇的合成是非常理想的,但相当具有挑战性。在此,我们报道了如何使用19F NMR光谱来指导N-杂环卡宾(NHC)稳定的金纳米团簇的高产率合成。尽管差异很小,但掺氟NHCs(FNHC)的19F NMR信号对其周围具有不同N-取代基、金属或阴离子的化学环境的微小变化高度敏感,从而提供了区分反应混合物中物种的方便策略。通过使用19F NMR,我们首先公开了FNHC-Au-X(X是卤化物)的一锅还原产生多种化合物,包括簇合物和大量高度稳定的[Au(FNHC)2]+副产物。对NHC稳定的Au纳米团簇的还原合成进行的详细的定量19F NMR分析表明,二-NHC络合物的形成对NHC稳定性Au纳米簇的高产率合成是有害的。有了理解,然后通过控制还原速率来减缓反应动力学,以实现具有独特结构的[Au24(FNHC)14X2H3]3+纳米团簇的高产率。这项工作中展示的策略有望为指导有机配体稳定的金属纳米团簇的高产率合成提供一个有效的工具。
{"title":"Guiding the High-Yield Synthesis of NHC-Ligated Gold Nanoclusters by 19F NMR Spectroscopy","authors":"Hui Shen,&nbsp;Xiongkai Tang,&nbsp;Qingyuan Wu,&nbsp;Yuhao Zhang,&nbsp;Chuxin Ma,&nbsp;Zhen Xu,&nbsp;Boon K. Teo and Nanfeng Zheng*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00026","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.2c00026","url":null,"abstract":"<p >Optimizing the synthesis of atomically precise metal nanoclusters by virtue of molecular tools is highly desirable but quite challenging. Herein we report how <sup>19</sup>F NMR spectroscopy can be used to guide the high-yield synthesis of N-heterocyclic carbene (NHC)-stabilized gold nanoclusters. In spite of little difference, <sup>19</sup>F NMR signals of fluoro-incorporated NHCs (<sup>F</sup>NHC) are highly sensitive to the tiny change in their surrounding chemical environments with different N-substituents, metals, or anions, thus providing a convenient strategy to discriminate species in reaction mixtures. By using <sup>19</sup>F NMR, we first disclosed that the one-pot reduction of <sup>F</sup>NHC-Au-X (X is halide) yields multiple compounds, including cluster compounds and also a large amount of highly stable [Au(<sup>F</sup>NHC)<sub>2</sub>]<sup>+</sup> byproduct. The detailed quantitative <sup>19</sup>F NMR analyses over the reductive synthesis of NHC-stabilized Au nanoclusters reveal that the formation of the di-NHC complex is deleterious to the high-yield synthesis of NHC-stabilized Au nanoclusters. With the understanding, the reaction kinetic was then slowed by controlling the reduction rate to achieve the high yield of a [Au<sub>24</sub>(<sup>F</sup>NHC)<sub>14</sub>X<sub>2</sub>H<sub>3</sub>]<sup>3+</sup> nanocluster with a unique structure. The strategy demonstrated in this work is expected to provide an effective tool to guide the high-yield synthesis of organic ligand-stabilized metal nanoclusters.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71557351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Influence of Cell Type on the Efficacy of Plasmonic Photothermal Therapy 细胞类型对等离子体光热治疗效果的影响
Q3 Materials Science Pub Date : 2022-07-27 DOI: 10.1021/acsnanoscienceau.2c00023
Helena Villuendas, Clara Vilches* and Romain Quidant*, 

In plasmonic photothermal therapy (PPTT), illuminated gold nanoparticles are locally heated to produce selective damage in cells. While PPTT is expected to strongly depend on the cell line, available data are sparse and critical parameters remain unclear. To elucidate this pivotal aspect, we present a systematic study of diseased and nondiseased cells from different tissues to evaluate cytotoxicity, uptake of gold nanorods (AuNRs), and viability after PPTT. We identified differences in uptake and toxicity between cell types, linking AuNR concentrations to toxicity. Furthermore, the cell death mechanism is shown to depend on the intensity of the irradiated light and hence the temperature increase. Importantly, the data also underline the need to monitor cell death at different time points. Our work contributes to the definition of systematic protocols with appropriate controls to fully comprehend the effects of PPTT and build meaningful and reproducible data sets, key to translate PPTT to clinical settings.

在等离子体光热疗法(PPTT)中,被照亮的金纳米粒子被局部加热以在细胞中产生选择性损伤。虽然预计PPTT在很大程度上依赖于细胞系,但可用的数据很少,关键参数仍不清楚。为了阐明这一关键方面,我们对来自不同组织的患病和非患病细胞进行了系统研究,以评估PPTT后的细胞毒性、金纳米棒(aunr)的摄取和活力。我们确定了细胞类型之间摄取和毒性的差异,将AuNR浓度与毒性联系起来。此外,细胞死亡机制显示取决于辐照光的强度,因此温度升高。重要的是,这些数据还强调了在不同时间点监测细胞死亡的必要性。我们的工作有助于定义具有适当控制的系统方案,以充分理解PPTT的影响,并建立有意义和可重复的数据集,这是将PPTT转化为临床设置的关键。
{"title":"Influence of Cell Type on the Efficacy of Plasmonic Photothermal Therapy","authors":"Helena Villuendas,&nbsp;Clara Vilches* and Romain Quidant*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00023","DOIUrl":"10.1021/acsnanoscienceau.2c00023","url":null,"abstract":"<p >In plasmonic photothermal therapy (PPTT), illuminated gold nanoparticles are locally heated to produce selective damage in cells. While PPTT is expected to strongly depend on the cell line, available data are sparse and critical parameters remain unclear. To elucidate this pivotal aspect, we present a systematic study of diseased and nondiseased cells from different tissues to evaluate cytotoxicity, uptake of gold nanorods (AuNRs), and viability after PPTT. We identified differences in uptake and toxicity between cell types, linking AuNR concentrations to toxicity. Furthermore, the cell death mechanism is shown to depend on the intensity of the irradiated light and hence the temperature increase. Importantly, the data also underline the need to monitor cell death at different time points. Our work contributes to the definition of systematic protocols with appropriate controls to fully comprehend the effects of PPTT and build meaningful and reproducible data sets, key to translate PPTT to clinical settings.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/15/24/ng2c00023.PMC10125312.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9726273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Increase Your Impact: Writing Tips to Reach a Broader Audience 增加你的影响力:写作技巧,以达到更广泛的受众
Q3 Materials Science Pub Date : 2022-07-26 DOI: 10.1021/acsnanoscienceau.2c00030
Raymond E. Schaak*, 
better, as it mentions that the properties are optical and that different particle sizes are included. The third Title, however, incorporates all of these descriptors (with even greater specificity) while also being more intriguing. The third Title is most likely to appeal to a larger number of readers. Abstract. The Abstract provides a summary of the article and is often limited to 150 − 250 words. While this may seem like a lot of text, it is actually quite short when considering all aspects of an article that could be summarized! Authors sometimes focus almost exclusively on the technical content so that all of the results are adequately described. It is always important to include the key results in the Abstract, of course, but if one of the goals of a paper is also to appeal to a broader audience, it is important to draw in additional readers by providing context that specialists in the field may not need. Including a one-line
{"title":"Increase Your Impact: Writing Tips to Reach a Broader Audience","authors":"Raymond E. Schaak*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00030","DOIUrl":"10.1021/acsnanoscienceau.2c00030","url":null,"abstract":"better, as it mentions that the properties are optical and that different particle sizes are included. The third Title, however, incorporates all of these descriptors (with even greater specificity) while also being more intriguing. The third Title is most likely to appeal to a larger number of readers. Abstract. The Abstract provides a summary of the article and is often limited to 150 − 250 words. While this may seem like a lot of text, it is actually quite short when considering all aspects of an article that could be summarized! Authors sometimes focus almost exclusively on the technical content so that all of the results are adequately described. It is always important to include the key results in the Abstract, of course, but if one of the goals of a paper is also to appeal to a broader audience, it is important to draw in additional readers by providing context that specialists in the field may not need. Including a one-line","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/bc/ng2c00030.PMC10114862.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
ACS Nanoscience Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1