首页 > 最新文献

ACS Nanoscience Au最新文献

英文 中文
Quantum Diamonds at the Beach: Chemical Insights into Silica Growth on Nanoscale Diamond using Multimodal Characterization and Simulation 海滩上的量子钻石:利用多模态表征和模拟揭示纳米级金刚石上二氧化硅生长的化学原理
Q3 Materials Science Pub Date : 2023-09-15 DOI: 10.1021/acsnanoscienceau.3c00033
Perla J. Sandoval, Karen Lopez, Andres Arreola, Anida Len, Nedah Basravi, Pomaikaimaikalani Yamaguchi, Rina Kawamura, Camron X. Stokes, Cynthia Melendrez, Davida Simpson, Sang-Jun Lee, Charles James Titus, Virginia Altoe, Sami Sainio, Dennis Nordlund, Kent Irwin and Abraham Wolcott*, 

Surface chemistry of materials that host quantum bits such as diamond is an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general and nanoscale diamond (ND) in particular with silica is a potential route to integrate room temperature quantum bits into photonic devices, fiber optics, cells, or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2–35 nm thick shells of SiO2 onto carboxylic acid-rich ND cores. The diamond morphology, surface, and electronic structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO2 growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions convert the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl–ether (ND–O–Si–(OH)3) bonds due to rehydroxylation by ammonium hydroxide in ethanol. The suppression of the diamond electronic structure as a function of SiO2 thickness was observed for the first time, and a maximum probing depth of ∼14 nm was calculated. XAS spectra based on the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor reinforces the chemical analysis provided by XAS. Researchers using diamond or high-pressure high temperature (HPHT) NDs and other exotic materials (e.g., silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new layered or core–shell quantum sensors by forming covalent bonds via surface alcohol groups.

随着量子计算和量子传感平台的成熟,对承载量子比特(如金刚石)的材料进行表面化学处理是一条重要的探索途径。将一般金刚石,特别是纳米级金刚石(ND)与二氧化硅相接,是将室温量子比特集成到光子设备、光纤、细胞或组织中的一条潜在途径,其功能化化学反应非常灵活。虽然二氧化硅在 ND 内核上的生长已成功用于量子传感和生物标记,但启动生长的表面机制尚不清楚。本报告描述了在金刚石上形成二氧化硅键的表面化学机制,并利用 X 射线吸收光谱 (XAS) 技术探测了随着二氧化硅厚度的增加而产生的金刚石表面化学及其电子结构。采用改良斯托伯(Cigler)法在富含羧酸的玖龙核心上合成了 2-35 纳米厚的二氧化硅外壳。通过电子显微镜等重叠技术对金刚石的形态、表面和电子结构进行了表征。重要的是,我们发现二氧化硅在羧基 ND 上的生长消除了羧酸的存在,碱性乙醇溶液在二氧化硅生长之前将 ND 表面转化为富含醇的表面。这些数据支持一种机制,即 ND 表面的醇在乙醇中通过氢氧化铵的再羟化作用生成硅烷醚(ND-O-Si-(OH)3)键。首次观察到金刚石电子结构的抑制与 SiO2 厚度的函数关系,并计算出最大探测深度为 14 nm。为了支持我们的实验结果,我们利用美国国家标准与技术研究院的表面分析电子能谱模拟(SESSA)数据库建立了基于奥杰电子逸出深度的 XAS 光谱模型。此外,过渡边缘传感器产生的共振非弹性 X 射线散射 (RIXS) 图加强了 XAS 提供的化学分析。将金刚石或高压高温(HPHT)ND 及其他特殊材料(如碳化硅或立方氮化硼)用于量子传感应用的研究人员可以利用这些结果,通过表面醇基形成共价键来设计新的层状或核壳量子传感器。
{"title":"Quantum Diamonds at the Beach: Chemical Insights into Silica Growth on Nanoscale Diamond using Multimodal Characterization and Simulation","authors":"Perla J. Sandoval,&nbsp;Karen Lopez,&nbsp;Andres Arreola,&nbsp;Anida Len,&nbsp;Nedah Basravi,&nbsp;Pomaikaimaikalani Yamaguchi,&nbsp;Rina Kawamura,&nbsp;Camron X. Stokes,&nbsp;Cynthia Melendrez,&nbsp;Davida Simpson,&nbsp;Sang-Jun Lee,&nbsp;Charles James Titus,&nbsp;Virginia Altoe,&nbsp;Sami Sainio,&nbsp;Dennis Nordlund,&nbsp;Kent Irwin and Abraham Wolcott*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00033","DOIUrl":"10.1021/acsnanoscienceau.3c00033","url":null,"abstract":"<p >Surface chemistry of materials that host quantum bits such as diamond is an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general and nanoscale diamond (ND) in particular with silica is a potential route to integrate room temperature quantum bits into photonic devices, fiber optics, cells, or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2–35 nm thick shells of SiO<sub>2</sub> onto carboxylic acid-rich ND cores. The diamond morphology, surface, and electronic structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO<sub>2</sub> growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions convert the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl–ether (ND–O–Si–(OH)<sub>3</sub>) bonds due to rehydroxylation by ammonium hydroxide in ethanol. The suppression of the diamond electronic structure as a function of SiO<sub>2</sub> thickness was observed for the first time, and a maximum probing depth of ∼14 nm was calculated. XAS spectra based on the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor reinforces the chemical analysis provided by XAS. Researchers using diamond or high-pressure high temperature (HPHT) NDs and other exotic materials (e.g., silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new layered or core–shell quantum sensors by forming covalent bonds via surface alcohol groups.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using the Photoluminescence Color Change in Cesium Lead Iodide Nanoparticles to Monitor the Kinetics of an External Organohalide Chemical Reaction by Halide Exchange 利用碘化铯-铅纳米粒子的光致发光颜色变化监测外部有机卤化物化学反应动力学
Q3 Materials Science Pub Date : 2023-09-07 DOI: 10.1021/acsnanoscienceau.3c00026
Tennyson L. Doane, Kevin J. Cruz, Tsung-Hsing Chiang and Mathew M. Maye*, 

In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI3, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBrxI3–x intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, C, relates Δλ to Br concentration as a function of CsPbI3 concentration. The observed kinetics, as well as calculated rate constants, equilibrium, and activation energy of the solvolysis reaction tested correspond closely to synthetic literature values, validating the assay. Factors that influence the sensitivity and performance of the assay, such as CsPbI3 size, morphology, and concentration, are discussed.

在这项工作中,我们展示了一种基于光致发光的方法,通过检测铯卤化铅纳米颗粒释放的溴离子来监测有机卤化反应的动力学。在已知浓度的CsPbI3中加入少量反应,由此产生的br - i卤化物交换(HE)导致快速而敏感的波长蓝移(Δλ),这是由于CsPbBrxI3-x中间浓度,其波长与浓度成正比。测定响应因子C与Br -浓度Δλ有关,是CsPbI3浓度的函数。观察到的动力学以及计算出的速率常数、平衡和活化能与合成文献的值非常接近,验证了该分析。影响灵敏度和性能的因素,如CsPbI3的大小,形态和浓度,进行了讨论。
{"title":"Using the Photoluminescence Color Change in Cesium Lead Iodide Nanoparticles to Monitor the Kinetics of an External Organohalide Chemical Reaction by Halide Exchange","authors":"Tennyson L. Doane,&nbsp;Kevin J. Cruz,&nbsp;Tsung-Hsing Chiang and Mathew M. Maye*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00026","DOIUrl":"10.1021/acsnanoscienceau.3c00026","url":null,"abstract":"<p >In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI<sub>3</sub>, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBr<sub><i>x</i></sub>I<sub>3<i>–x</i></sub> intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, <i>C</i>, relates Δλ to Br<sup>–</sup> concentration as a function of CsPbI<sub>3</sub> concentration. The observed kinetics, as well as calculated rate constants, equilibrium, and activation energy of the solvolysis reaction tested correspond closely to synthetic literature values, validating the assay. Factors that influence the sensitivity and performance of the assay, such as CsPbI<sub>3</sub> size, morphology, and concentration, are discussed.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44027656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Charge Transfer from Coinage Metal Doped InP Quantum Dots 金属掺杂InP量子点增强电荷转移
Q3 Materials Science Pub Date : 2023-09-07 DOI: 10.1021/acsnanoscienceau.3c00029
Forrest W. Eagle, Samantha Harvey, Ryan Beck, Xiaosong Li, Daniel R. Gamelin and Brandi M. Cossairt*, 

This paper describes coinage-metal-doped InP quantum dots (QDs) as a platform for enhanced electron transfer to molecular acceptors relative to undoped QDs. A synthetic strategy is developed to prepare doped InP/ZnSe QDs. First-principles DFT calculations show that Ag+ and Cu+ dopants localize photoexcited holes while leaving electrons delocalized. This charge carrier wave function modulation is leveraged to enhance electron transfer to molecular acceptors by up to an order of magnitude. Examination of photoluminescence quenching data suggests that larger electron acceptors, such as anthraquinone and methyl viologen, bind to the QD surface in two ways: by direct adsorption to the surface and by adsorption following displacement of a weakly bound surface cation-ligand complex. Reactions with larger acceptors show the greatest increases in electron transfer between doped and undoped quantum dots, while smaller acceptors show smaller enhancements. Specifically, benzoquinone shows the smallest, followed by naphthoquinone and then methyl viologen and anthraquinone. These results demonstrate the benefits of dopant-induced excited-state carrier localization on photoinduced charge transfer and highlight design principles for improved implementation of quantum dots in photoredox catalysis.

本文介绍了掺杂共价金属的 InP 量子点(QDs),相对于未掺杂的 QDs,它是一种增强电子传递到分子受体的平台。研究人员开发了一种制备掺杂 InP/ZnSe QDs 的合成策略。第一原理 DFT 计算表明,Ag+ 和 Cu+掺杂剂可将光激发的空穴局部化,而将电子局部化。利用这种电荷载流子波函数调制,可将电子转移到分子受体的能力提高一个数量级。对光致发光淬灭数据的研究表明,较大的电子受体(如蒽醌和甲基紫罗兰烯)通过两种方式与 QD 表面结合:直接吸附到表面,以及在弱结合表面阳离子-配体复合物发生位移后吸附到表面。与较大的受体发生反应时,掺杂和未掺杂量子点之间的电子转移增幅最大,而与较小的受体发生反应时,增幅较小。具体来说,苯醌的增幅最小,其次是萘醌,然后是甲基紫罗兰烯和蒽醌。这些结果证明了掺杂剂诱导的激发态载流子定位对光诱导电荷转移的益处,并强调了改进量子点在光氧化催化中的应用的设计原则。
{"title":"Enhanced Charge Transfer from Coinage Metal Doped InP Quantum Dots","authors":"Forrest W. Eagle,&nbsp;Samantha Harvey,&nbsp;Ryan Beck,&nbsp;Xiaosong Li,&nbsp;Daniel R. Gamelin and Brandi M. Cossairt*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00029","DOIUrl":"10.1021/acsnanoscienceau.3c00029","url":null,"abstract":"<p >This paper describes coinage-metal-doped InP quantum dots (QDs) as a platform for enhanced electron transfer to molecular acceptors relative to undoped QDs. A synthetic strategy is developed to prepare doped InP/ZnSe QDs. First-principles DFT calculations show that Ag<sup>+</sup> and Cu<sup>+</sup> dopants localize photoexcited holes while leaving electrons delocalized. This charge carrier wave function modulation is leveraged to enhance electron transfer to molecular acceptors by up to an order of magnitude. Examination of photoluminescence quenching data suggests that larger electron acceptors, such as anthraquinone and methyl viologen, bind to the QD surface in two ways: by direct adsorption to the surface and by adsorption following displacement of a weakly bound surface cation-ligand complex. Reactions with larger acceptors show the greatest increases in electron transfer between doped and undoped quantum dots, while smaller acceptors show smaller enhancements. Specifically, benzoquinone shows the smallest, followed by naphthoquinone and then methyl viologen and anthraquinone. These results demonstrate the benefits of dopant-induced excited-state carrier localization on photoinduced charge transfer and highlight design principles for improved implementation of quantum dots in photoredox catalysis.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49179002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using 19F NMR to Investigate Cationic Carbon Dot Association with Per- and Polyfluoroalkyl Substances (PFAS) 用19F NMR研究阳离子碳点与全氟烷基和多氟烷基物质(PFAS)的缔合
Q3 Materials Science Pub Date : 2023-08-25 DOI: 10.1021/acsnanoscienceau.3c00022
Riley E. Lewis, Cheng-Hsin Huang, Jason C. White and Christy L. Haynes*, 

There is much concern about per- and polyfluoroalkyl substances (PFAS) based on their environmental persistence and toxicity, resulting in an urgent need for remediation technologies. This study focused on determining if nanoscale polymeric carbon dots are a viable sorbent material for PFAS and developing fluorine nuclear magnetic resonance spectroscopy (19F NMR) methods to probe interactions between carbon dots and PFAS at the molecular scale. Positively charged carbon dots (PEI-CDs) were synthesized using branched polyethyleneimine to target anionic PFAS by promoting electrostatic interactions. PEI-CDs were exposed to perfluorooctanoic acid (PFOA) to assess their potential as a PFAS sorbent material. After exposure to PFOA, the average size of the PEI-CDs increased (1.6 ± 0.5 to 7.8 ± 1.8 nm) and the surface charge decreased (+38.6 ± 1.1 to +26.4 ± 0.8 mV), both of which are consistent with contaminant sorption. 19F NMR methods were developed to gain further insight into PEI-CD affinity toward PFAS without any complex sample preparation. Changes in PFOA peak intensity and chemical shift were monitored at various PEI-CD concentrations to establish binding curves and determine the chemical exchange regime. 19F NMR spectral analysis indicates slow-intermediate chemical exchange between PFOA and CDs, demonstrating a high-affinity interaction. The α-fluorine had the greatest change in chemical shift and highest affinity, suggesting electrostatic interactions are the dominant sorption mechanism. PEI-CDs demonstrated affinity for a wide range of analytes when exposed to a mixture of 24-PFAS, with a slight preference toward perfluoroalkyl sulfonates. Overall, this study shows that PEI-CDs are an effective PFAS sorbent material and establishes 19F NMR as a suitable method to screen for novel sorbent materials and elucidate interaction mechanisms.

基于全氟烷基和多氟烷基物质的环境持久性和毒性,人们对其非常关注,因此迫切需要修复技术。本研究的重点是确定纳米级聚合物碳点是否是一种可行的PFAS吸附材料,并开发氟核磁共振波谱(19F NMR)方法在分子尺度上探测碳点与PFAS之间的相互作用。以支化聚乙烯亚胺为靶材,通过促进静电相互作用合成了带正电荷的碳点(PEI-CDs)。PEI-CDs暴露于全氟辛酸(PFOA)中,以评估其作为全氟辛酸吸附材料的潜力。暴露于PFOA后,PEI-CDs的平均尺寸增大(1.6±0.5 ~ 7.8±1.8 nm),表面电荷减小(+38.6±1.1 ~ +26.4±0.8 mV),与污染物吸附一致。开发了19F NMR方法来进一步了解PEI-CD对PFAS的亲和力,而无需任何复杂的样品制备。在不同的PEI-CD浓度下,监测PFOA峰值强度和化学位移的变化,建立结合曲线,确定化学交换机制。19F核磁共振谱分析表明,PFOA与CDs之间存在缓慢的中间化学交换,表现出高亲和相互作用。α-氟的化学位移变化最大,亲和力最高,表明静电相互作用是主要的吸附机制。当暴露于24-PFAS混合物时,PEI-CDs显示出对多种分析物的亲和力,对全氟烷基磺酸盐有轻微的偏好。总之,本研究表明PEI-CDs是一种有效的PFAS吸附材料,并建立了19F NMR作为筛选新型吸附材料和阐明相互作用机制的合适方法。
{"title":"Using 19F NMR to Investigate Cationic Carbon Dot Association with Per- and Polyfluoroalkyl Substances (PFAS)","authors":"Riley E. Lewis,&nbsp;Cheng-Hsin Huang,&nbsp;Jason C. White and Christy L. Haynes*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00022","DOIUrl":"10.1021/acsnanoscienceau.3c00022","url":null,"abstract":"<p >There is much concern about per- and polyfluoroalkyl substances (PFAS) based on their environmental persistence and toxicity, resulting in an urgent need for remediation technologies. This study focused on determining if nanoscale polymeric carbon dots are a viable sorbent material for PFAS and developing fluorine nuclear magnetic resonance spectroscopy (<sup>19</sup>F NMR) methods to probe interactions between carbon dots and PFAS at the molecular scale. Positively charged carbon dots (PEI-CDs) were synthesized using branched polyethyleneimine to target anionic PFAS by promoting electrostatic interactions. PEI-CDs were exposed to perfluorooctanoic acid (PFOA) to assess their potential as a PFAS sorbent material. After exposure to PFOA, the average size of the PEI-CDs increased (1.6 ± 0.5 to 7.8 ± 1.8 nm) and the surface charge decreased (+38.6 ± 1.1 to +26.4 ± 0.8 mV), both of which are consistent with contaminant sorption. <sup>19</sup>F NMR methods were developed to gain further insight into PEI-CD affinity toward PFAS without any complex sample preparation. Changes in PFOA peak intensity and chemical shift were monitored at various PEI-CD concentrations to establish binding curves and determine the chemical exchange regime. <sup>19</sup>F NMR spectral analysis indicates slow-intermediate chemical exchange between PFOA and CDs, demonstrating a high-affinity interaction. The α-fluorine had the greatest change in chemical shift and highest affinity, suggesting electrostatic interactions are the dominant sorption mechanism. PEI-CDs demonstrated affinity for a wide range of analytes when exposed to a mixture of 24-PFAS, with a slight preference toward perfluoroalkyl sulfonates. Overall, this study shows that PEI-CDs are an effective PFAS sorbent material and establishes <sup>19</sup>F NMR as a suitable method to screen for novel sorbent materials and elucidate interaction mechanisms.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42177832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling Morphology and Excitonic Disorder in Monolayer WSe2 Grown by Salt-Assisted CVD Methods 盐辅助CVD法生长单层WSe2的控制形态和激子紊乱
Q3 Materials Science Pub Date : 2023-08-22 DOI: 10.1021/acsnanoscienceau.3c00028
Reynolds Dziobek-Garrett, Sachi Hilliard, Shreya Sriramineni, Ona Ambrozaite, Yifei Zhu, Bethany M. Hudak, Todd H. Brintlinger, Tomojit Chowdhury and Thomas J. Kempa*, 

Chemical synthesis is a compelling alternative to top-down fabrication for controlling the size, shape, and composition of two-dimensional (2D) crystals. Precision tuning of the 2D crystal structure has broad implications for the discovery of new phenomena and the reliable implementation of these materials in optoelectronic, photovoltaic, and quantum devices. However, precise and predictable manipulation of the edge structure in 2D crystals through gas-phase synthesis is still a formidable challenge. Here, we demonstrate a salt-assisted low-pressure chemical vapor deposition method that enables tuning W metal flux during growth of 2D WSe2 monolayers and, thereby, direct control of their edge structure and optical properties. The degree of structural disorder in 2D WSe2 is a direct function of the W metal flux, which is controlled by adjusting the mass ratio of WO3 to NaCl. This edge disorder then couples to excitonic disorder, which manifests as broadened and spatially varying emission profiles. Our work links synthetic parameters with analyses of material morphology and optical properties to provide a unified understanding of intrinsic limits and opportunities in synthetic 2D materials.

在控制二维(2D)晶体的尺寸、形状和成分方面,化学合成是自上而下制造法的一种令人信服的替代方法。二维晶体结构的精确调整对于发现新现象以及在光电、光伏和量子设备中可靠地使用这些材料具有广泛的意义。然而,通过气相合成对二维晶体的边缘结构进行精确且可预测的操作仍然是一项艰巨的挑战。在这里,我们展示了一种盐辅助低压化学气相沉积方法,它能在二维 WSe2 单层生长过程中调节 W 金属通量,从而直接控制其边缘结构和光学特性。二维 WSe2 的结构紊乱程度是 W 金属通量的直接函数,可通过调整 WO3 与 NaCl 的质量比来控制。这种边缘无序随后会与激子无序发生耦合,表现为拓宽和空间变化的发射曲线。我们的工作将合成参数与材料形貌和光学特性分析联系起来,为合成二维材料的内在限制和机遇提供了统一的认识。
{"title":"Controlling Morphology and Excitonic Disorder in Monolayer WSe2 Grown by Salt-Assisted CVD Methods","authors":"Reynolds Dziobek-Garrett,&nbsp;Sachi Hilliard,&nbsp;Shreya Sriramineni,&nbsp;Ona Ambrozaite,&nbsp;Yifei Zhu,&nbsp;Bethany M. Hudak,&nbsp;Todd H. Brintlinger,&nbsp;Tomojit Chowdhury and Thomas J. Kempa*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00028","DOIUrl":"10.1021/acsnanoscienceau.3c00028","url":null,"abstract":"<p >Chemical synthesis is a compelling alternative to top-down fabrication for controlling the size, shape, and composition of two-dimensional (2D) crystals. Precision tuning of the 2D crystal structure has broad implications for the discovery of new phenomena and the reliable implementation of these materials in optoelectronic, photovoltaic, and quantum devices. However, precise and predictable manipulation of the edge structure in 2D crystals through gas-phase synthesis is still a formidable challenge. Here, we demonstrate a salt-assisted low-pressure chemical vapor deposition method that enables tuning W metal flux during growth of 2D WSe<sub>2</sub> monolayers and, thereby, direct control of their edge structure and optical properties. The degree of structural disorder in 2D WSe<sub>2</sub> is a direct function of the W metal flux, which is controlled by adjusting the mass ratio of WO<sub>3</sub> to NaCl. This edge disorder then couples to excitonic disorder, which manifests as broadened and spatially varying emission profiles. Our work links synthetic parameters with analyses of material morphology and optical properties to provide a unified understanding of intrinsic limits and opportunities in synthetic 2D materials.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45309423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Artistic Side of ACS Nanoscience Au: Our Cover Art Collection and Tips for Authors ACS纳米科学Au的艺术方面:我们的封面艺术收藏和作者提示
Q3 Materials Science Pub Date : 2023-08-16 DOI: 10.1021/acsnanoscienceau.3c00034
Amelia Newman,  and , Raymond E. Schaak*, 
{"title":"The Artistic Side of ACS Nanoscience Au: Our Cover Art Collection and Tips for Authors","authors":"Amelia Newman,&nbsp; and ,&nbsp;Raymond E. Schaak*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00034","DOIUrl":"https://doi.org/10.1021/acsnanoscienceau.3c00034","url":null,"abstract":"","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Electrically Conductive Metal–Organic Frameworks as Chemiresistive Sensors 作为化学电阻传感器的二维导电金属-有机框架
Q3 Materials Science Pub Date : 2023-08-09 DOI: 10.1021/acsnanoscienceau.3c00024
Chungseong Park, Jong Won Baek, Euichul Shin and Il-Doo Kim*, 

Metal–organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.

金属有机骨架(mof)由于其极高的孔隙率和化学多样性而成为一种有吸引力的化学传感材料。然而,由于其固有的导电性限制,mof在化学电阻型传感器中的应用一直受到阻碍。最近出现的二维导电mof (2D c- mof)通过提供增强的导电性来解决这一限制,同时仍然保留了mof的优势特性。特别是,c- mof在制造能够在室温下工作的传感器方面显示出有希望的优势。因此,利用c- mof的气体传感器目前正在进行积极的研究,重点是提高灵敏度和选择性。为了理解mof作为化学电阻传感器在未来应用的潜力,不仅要了解导电mof的基本特性,还要了解有助于提高其性能的最新工作。这篇全面的综述深入研究了2D c- mof作为一类新型化学电阻器的独特特性,深入了解了它们独特的传感特性。此外,我们还讨论了与2D c-MOFs相关的传感机制,并简要总结了用于提高2D c-MOFs传感性能的策略。这些策略包括一系列方法,包括金属节点和连接件的设计、形态控制和复合材料的协同使用。此外,本文还深入探讨了二维c- mof作为化学电阻的前景,并阐明了其进一步发展的巨大潜力。本文提出的见解为化学传感领域的未来研究方向指明了方向,并提供了宝贵的机会。
{"title":"Two-Dimensional Electrically Conductive Metal–Organic Frameworks as Chemiresistive Sensors","authors":"Chungseong Park,&nbsp;Jong Won Baek,&nbsp;Euichul Shin and Il-Doo Kim*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00024","DOIUrl":"10.1021/acsnanoscienceau.3c00024","url":null,"abstract":"<p >Metal–organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45784864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
UTILE-Gen: Automated Image Analysis in Nanoscience Using Synthetic Dataset Generator and Deep Learning UTILE Gen:使用合成数据集生成器和深度学习的纳米科学自动图像分析
Q3 Materials Science Pub Date : 2023-08-02 DOI: 10.1021/acsnanoscienceau.3c00020
André Colliard-Granero*, Jenia Jitsev, Michael H. Eikerling, Kourosh Malek and Mohammad J. Eslamibidgoli*, 

This work presents the development and implementation of a deep learning-based workflow for autonomous image analysis in nanoscience. A versatile, agnostic, and configurable tool was developed to generate instance-segmented imaging datasets of nanoparticles. The synthetic generator tool employs domain randomization to expand the image/mask pairs dataset for training supervised deep learning models. The approach eliminates tedious manual annotation and allows training of high-performance models for microscopy image analysis based on convolutional neural networks. We demonstrate how the expanded training set can significantly improve the performance of the classification and instance segmentation models for a variety of nanoparticle shapes, ranging from spherical-, cubic-, to rod-shaped nanoparticles. Finally, the trained models were deployed in a cloud-based analytics platform for the autonomous particle analysis of microscopy images.

这项工作提出了基于深度学习的工作流程的开发和实现,用于纳米科学中的自主图像分析。开发了一种通用的、不可知的、可配置的工具来生成纳米颗粒的实例分割成像数据集。的
{"title":"UTILE-Gen: Automated Image Analysis in Nanoscience Using Synthetic Dataset Generator and Deep Learning","authors":"André Colliard-Granero*,&nbsp;Jenia Jitsev,&nbsp;Michael H. Eikerling,&nbsp;Kourosh Malek and Mohammad J. Eslamibidgoli*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00020","DOIUrl":"10.1021/acsnanoscienceau.3c00020","url":null,"abstract":"<p >This work presents the development and implementation of a deep learning-based workflow for autonomous image analysis in nanoscience. A versatile, agnostic, and configurable tool was developed to generate instance-segmented imaging datasets of nanoparticles. The synthetic generator tool employs domain randomization to expand the image/mask pairs dataset for training supervised deep learning models. The approach eliminates tedious manual annotation and allows training of high-performance models for microscopy image analysis based on convolutional neural networks. We demonstrate how the expanded training set can significantly improve the performance of the classification and instance segmentation models for a variety of nanoparticle shapes, ranging from spherical-, cubic-, to rod-shaped nanoparticles. Finally, the trained models were deployed in a cloud-based analytics platform for the autonomous particle analysis of microscopy images.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43673018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy 环境扫描透射电子显微镜中电子束对Cu纳米粒子氧化的增强和抑制
Q3 Materials Science Pub Date : 2023-08-01 DOI: 10.1021/acsnanoscienceau.3c00018
Azin Ziashahabi, Anna Elsukova, Sara Nilsson, Marco Beleggia, Peter Stanley Jørgensen, Christoph Langhammer and Shima Kadkhodazadeh*, 

We have investigated the effects of high-energy electron irradiation on the oxidation of copper nanoparticles in environmental scanning transmission electron microscopy (ESTEM). The hemispherically shaped particles were oxidized in 3 mbar of O2 in a temperature range 100–200 °C. The evolution of the particles was recorded with sub-nanometer spatial resolution in situ in ESTEM. The oxidation encompasses the formation of outer and inner oxide shells on the nanoparticles, arising from the concurrent diffusion of copper and oxygen out of and into the nanoparticles, respectively. Our results reveal that the electron beam actively influences the reaction and overall accelerates the oxidation of the nanoparticles when compared to particles oxidized without exposure to the electron beam. However, the extent of this electron beam-assisted acceleration of oxidation diminishes at higher temperatures. Moreover, we observe that while oxidation through the outward diffusion of Cu+ cations is enhanced, the electron beam appears to hinder oxidation through the inward diffusion of O2– anions. Our results suggest that the impact of the high-energy electrons in ESTEM oxidation of Cu nanoparticles is mostly related to kinetic energy transfer, charging, and ionization of the gas environment, and the beam can both enhance and suppress reaction rates.

在环境扫描透射电子显微镜(ESTEM)下研究了高能电子辐照对铜纳米粒子氧化的影响。在100-200℃的温度范围内,将半球形颗粒在3mbar的O2中氧化。系统以亚纳米空间分辨率原位记录了颗粒的演化过程。氧化包括纳米颗粒上的外层和内部氧化壳的形成,分别是由铜和氧同时扩散到纳米颗粒内外引起的。我们的研究结果表明,与没有暴露于电子束的氧化颗粒相比,电子束积极地影响反应,并且总体上加速了纳米颗粒的氧化。然而,这种电子束辅助氧化加速的程度在较高温度下减弱。此外,我们观察到,虽然通过Cu+阳离子向外扩散的氧化增强,但电子束似乎阻碍了通过O2 -阴离子向内扩散的氧化。研究结果表明,高能电子对Cu纳米颗粒的电化学氧化的影响主要与气体环境的动能传递、充电和电离有关,并且电子束可以提高和抑制反应速率。
{"title":"Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy","authors":"Azin Ziashahabi,&nbsp;Anna Elsukova,&nbsp;Sara Nilsson,&nbsp;Marco Beleggia,&nbsp;Peter Stanley Jørgensen,&nbsp;Christoph Langhammer and Shima Kadkhodazadeh*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00018","DOIUrl":"10.1021/acsnanoscienceau.3c00018","url":null,"abstract":"<p >We have investigated the effects of high-energy electron irradiation on the oxidation of copper nanoparticles in environmental scanning transmission electron microscopy (ESTEM). The hemispherically shaped particles were oxidized in 3 mbar of O<sub>2</sub> in a temperature range 100–200 °C. The evolution of the particles was recorded with sub-nanometer spatial resolution in situ in ESTEM. The oxidation encompasses the formation of outer and inner oxide shells on the nanoparticles, arising from the concurrent diffusion of copper and oxygen out of and into the nanoparticles, respectively. Our results reveal that the electron beam actively influences the reaction and overall accelerates the oxidation of the nanoparticles when compared to particles oxidized without exposure to the electron beam. However, the extent of this electron beam-assisted acceleration of oxidation diminishes at higher temperatures. Moreover, we observe that while oxidation through the outward diffusion of Cu<sup>+</sup> cations is enhanced, the electron beam appears to hinder oxidation through the inward diffusion of O<sup>2–</sup> anions. Our results suggest that the impact of the high-energy electrons in ESTEM oxidation of Cu nanoparticles is mostly related to kinetic energy transfer, charging, and ionization of the gas environment, and the beam can both enhance and suppress reaction rates.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47704078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Standardization of In Vitro Studies for Plasmonic Photothermal therapy 等离子体光热治疗体外研究的标准化
Q3 Materials Science Pub Date : 2023-07-17 DOI: 10.1021/acsnanoscienceau.3c00011
Helena Villuendas, Clara Vilches* and Romain Quidant*, 

Lack of standardization is a systematic problem that impacts nanomedicine by challenging data comparison from different studies. Translation from preclinical to clinical stages indeed requires reproducible data that can be easily accessed and compared. In this work, we propose a series of experimental standards for in vitro plasmonic photothermal therapy (PPTT). This best practice guide covers the five main aspects of PPTT studies in vitro: nanomaterials, biological samples, pre-, during, and postirradiation characterization. We are confident that such standardization of experimental protocols and reported data will benefit the development of PPTT as a transversal therapy.

缺乏标准化是一个系统性问题,它通过挑战不同研究的数据比较来影响纳米医学。从临床前阶段到临床阶段的转换确实需要易于访问和比较的可重复数据。在这项工作中,我们提出了一系列的实验标准的体外等离子体光热治疗(PPTT)。本最佳实践指南涵盖了体外PPTT研究的五个主要方面:纳米材料,生物样品,辐射前,辐射期间和辐射后表征。我们相信,这种实验方案和报告数据的标准化将有利于PPTT作为一种横向治疗的发展。
{"title":"Standardization of In Vitro Studies for Plasmonic Photothermal therapy","authors":"Helena Villuendas,&nbsp;Clara Vilches* and Romain Quidant*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00011","DOIUrl":"10.1021/acsnanoscienceau.3c00011","url":null,"abstract":"<p >Lack of standardization is a systematic problem that impacts nanomedicine by challenging data comparison from different studies. Translation from preclinical to clinical stages indeed requires reproducible data that can be easily accessed and compared. In this work, we propose a series of experimental standards for <i>in vitro</i> plasmonic photothermal therapy (PPTT). This best practice guide covers the five main aspects of PPTT studies <i>in vitro:</i> nanomaterials, biological samples, pre-, during, and postirradiation characterization. We are confident that such standardization of experimental protocols and reported data will benefit the development of PPTT as a transversal therapy.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48847719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
ACS Nanoscience Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1