Pub Date : 2023-03-28DOI: 10.1021/acsnanoscienceau.2c00065
Romika Sharma*, Qiannan Zhang*, Linh Lan Nguyen, Teddy Salim, Yeng Ming Lam, Tze Chien Sum and Martial Duchamp*,
Organic–inorganic halide perovskites are interesting candidates for solar cell and optoelectronic applications owing to their advantageous properties such as a tunable band gap, low material cost, and high charge carrier mobilities. Despite making significant progress, concerns about material stability continue to impede the commercialization of perovskite-based technology. In this article, we investigate the impact of environmental parameters on the alteration of structural properties of MAPbI3 (CH3NH3PbI3) thin films using microscopy techniques. These characterizations are performed on MAPbI3 thin films exposed to air, nitrogen, and vacuum environments, the latter being possible by using dedicated air-free transfer setups, after their fabrication into a nitrogen-filled glovebox. We observed that even less than 3 min of air exposure increases the sensitivity to electron beam deterioration and modifies the structural transformation pathway as compared to MAPbI3 thin films which are not exposed to air. Similarly, the time evolution of the optical responses and the defect formation of both air-exposed and non-air-exposed MAPbI3 thin films are measured by time-resolved photoluminescence. The formation of defects in the air-exposed MAPbI3 thin films is first observed by optical techniques at longer timescales, while structural modifications are observed by transmission electron microscopy (TEM) measurements and supported by X-ray photoelectron spectroscopy (XPS) measurements. Based on the complementarity of TEM, XPS, and time-resolved optical measurements, we propose two different degradation mechanism pathways for air-exposed and non-air-exposed MAPbI3 thin films. We find that when exposed to air, the crystalline structure of MAPbI3 shows gradual evolution from its initial tetragonal MAPbI3 structure to PbI2 through three different stages. No significant structural changes over time from the initial structure are observed for the MAPbI3 thin films which are not exposed to air.
{"title":"Effect of Air Exposure on Electron-Beam-Induced Degradation of Perovskite Films","authors":"Romika Sharma*, Qiannan Zhang*, Linh Lan Nguyen, Teddy Salim, Yeng Ming Lam, Tze Chien Sum and Martial Duchamp*, ","doi":"10.1021/acsnanoscienceau.2c00065","DOIUrl":"10.1021/acsnanoscienceau.2c00065","url":null,"abstract":"<p >Organic–inorganic halide perovskites are interesting candidates for solar cell and optoelectronic applications owing to their advantageous properties such as a tunable band gap, low material cost, and high charge carrier mobilities. Despite making significant progress, concerns about material stability continue to impede the commercialization of perovskite-based technology. In this article, we investigate the impact of environmental parameters on the alteration of structural properties of MAPbI<sub>3</sub> (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>) thin films using microscopy techniques. These characterizations are performed on MAPbI<sub>3</sub> thin films exposed to air, nitrogen, and vacuum environments, the latter being possible by using dedicated air-free transfer setups, after their fabrication into a nitrogen-filled glovebox. We observed that even less than 3 min of air exposure increases the sensitivity to electron beam deterioration and modifies the structural transformation pathway as compared to MAPbI<sub>3</sub> thin films which are not exposed to air. Similarly, the time evolution of the optical responses and the defect formation of both air-exposed and non-air-exposed MAPbI<sub>3</sub> thin films are measured by time-resolved photoluminescence. The formation of defects in the air-exposed MAPbI<sub>3</sub> thin films is first observed by optical techniques at longer timescales, while structural modifications are observed by transmission electron microscopy (TEM) measurements and supported by X-ray photoelectron spectroscopy (XPS) measurements. Based on the complementarity of TEM, XPS, and time-resolved optical measurements, we propose two different degradation mechanism pathways for air-exposed and non-air-exposed MAPbI<sub>3</sub> thin films. We find that when exposed to air, the crystalline structure of MAPbI<sub>3</sub> shows gradual evolution from its initial tetragonal MAPbI<sub>3</sub> structure to PbI<sub>2</sub> through three different stages. No significant structural changes over time from the initial structure are observed for the MAPbI<sub>3</sub> thin films which are not exposed to air.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"230–240"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/19/ng2c00065.PMC10288607.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.1021/acsnanoscienceau.2c00063
Tolga Zorlu, Begoña Puértolas, I. Brian Becerril-Castro, Luca Guerrini, Vincenzo Giannini, Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*,
Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.
{"title":"Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes","authors":"Tolga Zorlu, Begoña Puértolas, I. Brian Becerril-Castro, Luca Guerrini, Vincenzo Giannini, Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*, ","doi":"10.1021/acsnanoscienceau.2c00063","DOIUrl":"10.1021/acsnanoscienceau.2c00063","url":null,"abstract":"<p >Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"222–229"},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10073751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.1021/acsnanoscienceau.2c00064
Sonal Maroo, Yun Yu, Takashi Taniguchi, Kenji Watanabe and D. Kwabena Bediako*,
The electronic properties of electrode materials play a crucial role in defining their electrochemical behavior in energy conversion and storage devices. The assembly of van der Waals heterostructures and fabrication into mesoscopic devices enable the dependence of an electrochemical response on electronic properties to be systematically interrogated. Here, we evaluate the effect of charge carrier concentration on heterogeneous electron transfer at few-layer MoS2 electrodes by combining spatially resolved electrochemical measurements with field-effect electrostatic manipulation of band alignment. Steady-state cyclic voltammograms and finite-element simulations reveal a strong modulation of the measured electrochemical response for outer-sphere charge transfer at the electrostatic gate voltage. In addition, spatially resolved voltammetric responses, obtained at a series of locations at the surface of few-layer MoS2, reveal the governing role of in-plane charge transport on the electrochemical behavior of 2D electrodes, especially under conditions of low carrier densities.
{"title":"Decoupling Effects of Electrostatic Gating on Electronic Transport and Interfacial Charge-Transfer Kinetics at Few-Layer Molybdenum Disulfide","authors":"Sonal Maroo, Yun Yu, Takashi Taniguchi, Kenji Watanabe and D. Kwabena Bediako*, ","doi":"10.1021/acsnanoscienceau.2c00064","DOIUrl":"10.1021/acsnanoscienceau.2c00064","url":null,"abstract":"<p >The electronic properties of electrode materials play a crucial role in defining their electrochemical behavior in energy conversion and storage devices. The assembly of van der Waals heterostructures and fabrication into mesoscopic devices enable the dependence of an electrochemical response on electronic properties to be systematically interrogated. Here, we evaluate the effect of charge carrier concentration on heterogeneous electron transfer at few-layer MoS<sub>2</sub> electrodes by combining spatially resolved electrochemical measurements with field-effect electrostatic manipulation of band alignment. Steady-state cyclic voltammograms and finite-element simulations reveal a strong modulation of the measured electrochemical response for outer-sphere charge transfer at the electrostatic gate voltage. In addition, spatially resolved voltammetric responses, obtained at a series of locations at the surface of few-layer MoS<sub>2</sub>, reveal the governing role of in-plane charge transport on the electrochemical behavior of 2D electrodes, especially under conditions of low carrier densities.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"204–210"},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9715746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-17DOI: 10.1021/acsnanoscienceau.2c00049
Katharina Muggli, Laura Spies, Derya Bessinger, Florian Auras and Thomas Bein*,
Thienothiophene thienoisoindigo (ttTII)-based covalent organic frameworks (COFs) have been shown to offer low band gaps and intriguing optical and electrochromic properties. So far, only one tetragonal thienothiophene thienoisoindigo-based COF has been reported showing stable and fast electrochromism and good coloration efficiencies. We have developed two novel COFs using this versatile and nearly linear ttTII building block in a tetragonal and a hexagonal framework geometry to demonstrate their attractive features for optoelectronic applications of thienoisoindigo-based COFs. Both COFs exhibit good electrical conductivities, show promising optical absorption features, are redox-active, and exhibit a strong electrochromic behavior when applying an external electrical stimulus, shifting the optical absorption even farther into the NIR region of the electromagnetic spectrum and achieving absorbance changes of up to 2.5 OD. Cycle-stable cyclic voltammograms with distinct oxidation and reduction waves reveal excellent reversibility and electrochromic switching over 200 cycles and confirm the high stability of the frameworks. Furthermore, high coloration efficiencies in the NIR region and fast switching speeds for coloration/decoloration as fast as 0.75 s/0.37 s for the Cz-ttTII COF and 0.61 s/0.29 s for the TAPB-ttTII COF at 550 nm excitation were observed, outperforming many known electrochromic materials, and offering options for a great variety of applications, such as stimuli-responsive coatings, optical information processing, or thermal control.
{"title":"Electrically Conductive Carbazole and Thienoisoindigo-Based COFs Showing Fast and Stable Electrochromism","authors":"Katharina Muggli, Laura Spies, Derya Bessinger, Florian Auras and Thomas Bein*, ","doi":"10.1021/acsnanoscienceau.2c00049","DOIUrl":"10.1021/acsnanoscienceau.2c00049","url":null,"abstract":"<p >Thienothiophene thienoisoindigo (ttTII)-based covalent organic frameworks (COFs) have been shown to offer low band gaps and intriguing optical and electrochromic properties. So far, only one tetragonal thienothiophene thienoisoindigo-based COF has been reported showing stable and fast electrochromism and good coloration efficiencies. We have developed two novel COFs using this versatile and nearly linear ttTII building block in a tetragonal and a hexagonal framework geometry to demonstrate their attractive features for optoelectronic applications of thienoisoindigo-based COFs. Both COFs exhibit good electrical conductivities, show promising optical absorption features, are redox-active, and exhibit a strong electrochromic behavior when applying an external electrical stimulus, shifting the optical absorption even farther into the NIR region of the electromagnetic spectrum and achieving absorbance changes of up to 2.5 OD. Cycle-stable cyclic voltammograms with distinct oxidation and reduction waves reveal excellent reversibility and electrochromic switching over 200 cycles and confirm the high stability of the frameworks. Furthermore, high coloration efficiencies in the NIR region and fast switching speeds for coloration/decoloration as fast as 0.75 s/0.37 s for the Cz-ttTII COF and 0.61 s/0.29 s for the TAPB-ttTII COF at 550 nm excitation were observed, outperforming many known electrochromic materials, and offering options for a great variety of applications, such as stimuli-responsive coatings, optical information processing, or thermal control.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"153–160"},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/83/ng2c00049.PMC10119976.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.1021/acsnanoscienceau.2c00052
Michael J. Giannetto, Eric P. Johnson, Adam Watson, Edgar Dimitrov, Andrew Kurth, Wenbo Shi, Francesco Fornasiero, Eric R. Meshot and Desiree L. Plata*,
Current approaches to carbon nanotube (CNT) synthesis are limited in their ability to control the placement of atoms on the surface of nanotubes. Some of this limitation stems from a lack of understanding of the chemical bond-building mechanisms at play in CNT growth. Here, we provide experimental evidence that supports an alkyne polymerization pathway in which short-chained alkynes directly incorporate into the CNT lattice during growth, partially retaining their side groups and influencing CNT morphology. Using acetylene, methyl acetylene, and vinyl acetylene as feedstock gases, unique morphological differences were observed. Interwall spacing, a highly conserved value in natural graphitic materials, varied to accommodate side groups, increasing systematically from acetylene to methyl acetylene to vinyl acetylene. Furthermore, attenuated total reflectance Fourier-transfer infrared spectroscopy (ATR-FTIR) illustrated the existence of intact methyl groups in the multiwalled CNTs derived from methyl acetylene. Finally, the nanoscale alignment of the CNTs grown in vertically aligned forests differed systematically. Methyl acetylene induced the most tortuous growth while CNTs from acetylene and vinyl-acetylene were more aligned, presumably due to the presence of polymerizable unsaturated bonds in the structure. These results demonstrate that feedstock hydrocarbons can alter the atomic-scale structure of CNTs, which in turn can affect properties on larger scales. This information could be leveraged to create more chemically and structurally complex CNT structures, enable more sustainable chemical pathways by avoiding the need for solvents and postreaction modifications, and potentially unlock experimental routes to a host of higher-order carbonaceous nanomaterials.
{"title":"Modifying the Molecular Structure of Carbon Nanotubes through Gas-Phase Reactants","authors":"Michael J. Giannetto, Eric P. Johnson, Adam Watson, Edgar Dimitrov, Andrew Kurth, Wenbo Shi, Francesco Fornasiero, Eric R. Meshot and Desiree L. Plata*, ","doi":"10.1021/acsnanoscienceau.2c00052","DOIUrl":"10.1021/acsnanoscienceau.2c00052","url":null,"abstract":"<p >Current approaches to carbon nanotube (CNT) synthesis are limited in their ability to control the placement of atoms on the surface of nanotubes. Some of this limitation stems from a lack of understanding of the chemical bond-building mechanisms at play in CNT growth. Here, we provide experimental evidence that supports an alkyne polymerization pathway in which short-chained alkynes directly incorporate into the CNT lattice during growth, partially retaining their side groups and influencing CNT morphology. Using acetylene, methyl acetylene, and vinyl acetylene as feedstock gases, unique morphological differences were observed. Interwall spacing, a highly conserved value in natural graphitic materials, varied to accommodate side groups, increasing systematically from acetylene to methyl acetylene to vinyl acetylene. Furthermore, attenuated total reflectance Fourier-transfer infrared spectroscopy (ATR-FTIR) illustrated the existence of intact methyl groups in the multiwalled CNTs derived from methyl acetylene. Finally, the nanoscale alignment of the CNTs grown in vertically aligned forests differed systematically. Methyl acetylene induced the most tortuous growth while CNTs from acetylene and vinyl-acetylene were more aligned, presumably due to the presence of polymerizable unsaturated bonds in the structure. These results demonstrate that feedstock hydrocarbons can alter the atomic-scale structure of CNTs, which in turn can affect properties on larger scales. This information could be leveraged to create more chemically and structurally complex CNT structures, enable more sustainable chemical pathways by avoiding the need for solvents and postreaction modifications, and potentially unlock experimental routes to a host of higher-order carbonaceous nanomaterials.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"182–191"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/d9/ng2c00052.PMC10119988.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9389925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-27DOI: 10.1021/acsnanoscienceau.2c00058
Sina Moradi, Cristina Rodriguez-Seco*, Farzan Hayati and Dongling Ma*,
Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.
{"title":"Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection","authors":"Sina Moradi, Cristina Rodriguez-Seco*, Farzan Hayati and Dongling Ma*, ","doi":"10.1021/acsnanoscienceau.2c00058","DOIUrl":"10.1021/acsnanoscienceau.2c00058","url":null,"abstract":"<p >Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"103–129"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/1c/ng2c00058.PMC10119989.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-27DOI: 10.1021/acsnanoscienceau.2c00057
Rui Yang, Zhenghong Bao and Yifan Sun*,
The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.
{"title":"Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis","authors":"Rui Yang, Zhenghong Bao and Yifan Sun*, ","doi":"10.1021/acsnanoscienceau.2c00057","DOIUrl":"10.1021/acsnanoscienceau.2c00057","url":null,"abstract":"<p >The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"140–152"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9355988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-25DOI: 10.1021/acsnanoscienceau.2c00059
Yucai Chen, Yue Wu, Yu Qi* and Sijin Liu,
Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.
{"title":"Cell Death Pathways: The Variable Mechanisms Underlying Fine Particulate Matter-Induced Cytotoxicity","authors":"Yucai Chen, Yue Wu, Yu Qi* and Sijin Liu, ","doi":"10.1021/acsnanoscienceau.2c00059","DOIUrl":"10.1021/acsnanoscienceau.2c00059","url":null,"abstract":"<p >Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"130–139"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/8f/ng2c00059.PMC10125306.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9355986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.1021/acsnanoscienceau.2c00050
Fabio Marcuccio, Dimitrios Soulias, Chalmers C. C. Chau, Sheena E. Radford, Eric Hewitt, Paolo Actis* and Martin Andrew Edwards*,
Solid-state nanopores have been widely employed in the detection of biomolecules, but low signal-to-noise ratios still represent a major obstacle in the discrimination of nucleic acid and protein sequences substantially smaller than the nanopore diameter. The addition of 50% poly(ethylene) glycol (PEG) to the external solution is a simple way to enhance the detection of such biomolecules. Here, we demonstrate with finite-element modeling and experiments that the addition of PEG to the external solution introduces a strong imbalance in the transport properties of cations and anions, drastically affecting the current response of the nanopore. We further show that the strong asymmetric current response is due to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to either ion depletion or enrichment for few tens of nanometers across its aperture. We provide evidence that a combination of the decreased/increased diffusion coefficients of cations/anions in the bath outside the nanopore and the interaction between a translocating molecule and the nanopore–bath interface is responsible for the increase in the translocation signals. We expect this new mechanism to contribute to further developments in nanopore sensing by suggesting that tuning the diffusion coefficients of ions could enhance the sensitivity of the system.
{"title":"Mechanistic Study of the Conductance and Enhanced Single-Molecule Detection in a Polymer–Electrolyte Nanopore","authors":"Fabio Marcuccio, Dimitrios Soulias, Chalmers C. C. Chau, Sheena E. Radford, Eric Hewitt, Paolo Actis* and Martin Andrew Edwards*, ","doi":"10.1021/acsnanoscienceau.2c00050","DOIUrl":"10.1021/acsnanoscienceau.2c00050","url":null,"abstract":"<p >Solid-state nanopores have been widely employed in the detection of biomolecules, but low signal-to-noise ratios still represent a major obstacle in the discrimination of nucleic acid and protein sequences substantially smaller than the nanopore diameter. The addition of 50% poly(ethylene) glycol (PEG) to the external solution is a simple way to enhance the detection of such biomolecules. Here, we demonstrate with finite-element modeling and experiments that the addition of PEG to the external solution introduces a strong imbalance in the transport properties of cations and anions, drastically affecting the current response of the nanopore. We further show that the strong asymmetric current response is due to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to either ion depletion or enrichment for few tens of nanometers across its aperture. We provide evidence that a combination of the decreased/increased diffusion coefficients of cations/anions in the bath outside the nanopore and the interaction between a translocating molecule and the nanopore–bath interface is responsible for the increase in the translocation signals. We expect this new mechanism to contribute to further developments in nanopore sensing by suggesting that tuning the diffusion coefficients of ions could enhance the sensitivity of the system.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"172–181"},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-27DOI: 10.1021/acsnanoscienceau.2c00046
Kent O. Kirlikovali, Sylvia L. Hanna, Florencia A. Son and Omar K. Farha*,
Over the past 25 years, metal–organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.
{"title":"Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts","authors":"Kent O. Kirlikovali, Sylvia L. Hanna, Florencia A. Son and Omar K. Farha*, ","doi":"10.1021/acsnanoscienceau.2c00046","DOIUrl":"10.1021/acsnanoscienceau.2c00046","url":null,"abstract":"<p >Over the past 25 years, metal–organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"37–45"},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}