首页 > 最新文献

ACS Nanoscience Au最新文献

英文 中文
Effect of Air Exposure on Electron-Beam-Induced Degradation of Perovskite Films 空气暴露对电子束诱导钙钛矿薄膜降解的影响
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-03-28 DOI: 10.1021/acsnanoscienceau.2c00065
Romika Sharma*, Qiannan Zhang*, Linh Lan Nguyen, Teddy Salim, Yeng Ming Lam, Tze Chien Sum and Martial Duchamp*, 

Organic–inorganic halide perovskites are interesting candidates for solar cell and optoelectronic applications owing to their advantageous properties such as a tunable band gap, low material cost, and high charge carrier mobilities. Despite making significant progress, concerns about material stability continue to impede the commercialization of perovskite-based technology. In this article, we investigate the impact of environmental parameters on the alteration of structural properties of MAPbI3 (CH3NH3PbI3) thin films using microscopy techniques. These characterizations are performed on MAPbI3 thin films exposed to air, nitrogen, and vacuum environments, the latter being possible by using dedicated air-free transfer setups, after their fabrication into a nitrogen-filled glovebox. We observed that even less than 3 min of air exposure increases the sensitivity to electron beam deterioration and modifies the structural transformation pathway as compared to MAPbI3 thin films which are not exposed to air. Similarly, the time evolution of the optical responses and the defect formation of both air-exposed and non-air-exposed MAPbI3 thin films are measured by time-resolved photoluminescence. The formation of defects in the air-exposed MAPbI3 thin films is first observed by optical techniques at longer timescales, while structural modifications are observed by transmission electron microscopy (TEM) measurements and supported by X-ray photoelectron spectroscopy (XPS) measurements. Based on the complementarity of TEM, XPS, and time-resolved optical measurements, we propose two different degradation mechanism pathways for air-exposed and non-air-exposed MAPbI3 thin films. We find that when exposed to air, the crystalline structure of MAPbI3 shows gradual evolution from its initial tetragonal MAPbI3 structure to PbI2 through three different stages. No significant structural changes over time from the initial structure are observed for the MAPbI3 thin films which are not exposed to air.

有机-无机卤化物钙钛矿是太阳能电池和光电应用的有趣候选者,因为它们具有可调带隙、低材料成本和高电荷载流子迁移率等优势。尽管取得了重大进展,但对材料稳定性的担忧继续阻碍钙钛矿技术的商业化。在本文中,我们使用显微镜技术研究了环境参数对MAPbI3(CH3NH3PbI3)薄膜结构性能变化的影响。这些表征是在暴露于空气、氮气和真空环境的MAPbI3薄膜上进行的,后者可以在将其制造到充氮手套箱中后,通过使用专用的无空气转移装置进行。我们观察到,与不暴露于空气的MAPbI3薄膜相比,即使不到3分钟的空气暴露也会增加对电子束劣化的敏感性,并改变结构转变途径。类似地,通过时间分辨光致发光测量暴露于空气和未暴露于空气的MAPbI3薄膜的光学响应的时间演变和缺陷形成。首先通过光学技术在较长的时间尺度上观察到暴露在空气中的MAPbI3薄膜中缺陷的形成,而通过透射电子显微镜(TEM)测量和X射线光电子能谱(XPS)测量观察到结构修饰。基于TEM、XPS和时间分辨光学测量的互补性,我们提出了空气暴露和非空气暴露的MAPbI3薄膜的两种不同降解机制。我们发现,当暴露在空气中时,MAPbI3的晶体结构显示出从最初的四方MAPbI3结构经过三个不同阶段逐渐演变为PbI2。对于未暴露于空气的MAPbI3薄膜,没有观察到从初始结构随时间的显著结构变化。
{"title":"Effect of Air Exposure on Electron-Beam-Induced Degradation of Perovskite Films","authors":"Romika Sharma*,&nbsp;Qiannan Zhang*,&nbsp;Linh Lan Nguyen,&nbsp;Teddy Salim,&nbsp;Yeng Ming Lam,&nbsp;Tze Chien Sum and Martial Duchamp*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00065","DOIUrl":"10.1021/acsnanoscienceau.2c00065","url":null,"abstract":"<p >Organic–inorganic halide perovskites are interesting candidates for solar cell and optoelectronic applications owing to their advantageous properties such as a tunable band gap, low material cost, and high charge carrier mobilities. Despite making significant progress, concerns about material stability continue to impede the commercialization of perovskite-based technology. In this article, we investigate the impact of environmental parameters on the alteration of structural properties of MAPbI<sub>3</sub> (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>) thin films using microscopy techniques. These characterizations are performed on MAPbI<sub>3</sub> thin films exposed to air, nitrogen, and vacuum environments, the latter being possible by using dedicated air-free transfer setups, after their fabrication into a nitrogen-filled glovebox. We observed that even less than 3 min of air exposure increases the sensitivity to electron beam deterioration and modifies the structural transformation pathway as compared to MAPbI<sub>3</sub> thin films which are not exposed to air. Similarly, the time evolution of the optical responses and the defect formation of both air-exposed and non-air-exposed MAPbI<sub>3</sub> thin films are measured by time-resolved photoluminescence. The formation of defects in the air-exposed MAPbI<sub>3</sub> thin films is first observed by optical techniques at longer timescales, while structural modifications are observed by transmission electron microscopy (TEM) measurements and supported by X-ray photoelectron spectroscopy (XPS) measurements. Based on the complementarity of TEM, XPS, and time-resolved optical measurements, we propose two different degradation mechanism pathways for air-exposed and non-air-exposed MAPbI<sub>3</sub> thin films. We find that when exposed to air, the crystalline structure of MAPbI<sub>3</sub> shows gradual evolution from its initial tetragonal MAPbI<sub>3</sub> structure to PbI<sub>2</sub> through three different stages. No significant structural changes over time from the initial structure are observed for the MAPbI<sub>3</sub> thin films which are not exposed to air.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"230–240"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/19/ng2c00065.PMC10288607.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes 用金属有机框架和离子选择性染料包覆的等离子体纳米微珠光学定量分析金属离子
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-03-06 DOI: 10.1021/acsnanoscienceau.2c00063
Tolga Zorlu, Begoña Puértolas, I. Brian Becerril-Castro, Luca Guerrini, Vincenzo Giannini, Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*, 

Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.

在此,我们设计并合成了一种包含涂有银纳米球的聚苯乙烯亚微珠的杂化材料。这种材料在用可见光照射时提供密集的电磁热点集合。随后用金属框架涂覆并在其上吸附巴库丙碱,产生了一种用于SERS的光学传感器,该传感器可以在超痕量水平上特异性地检测各种水样品中的Cu(II)。该方法的检测极限优于诱导耦合等离子体或原子吸收的检测极限,并且与诱导耦合等离子体与质量检测器耦合所获得的检测极限相当。
{"title":"Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes","authors":"Tolga Zorlu,&nbsp;Begoña Puértolas,&nbsp;I. Brian Becerril-Castro,&nbsp;Luca Guerrini,&nbsp;Vincenzo Giannini,&nbsp;Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00063","DOIUrl":"10.1021/acsnanoscienceau.2c00063","url":null,"abstract":"<p >Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"222–229"},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10073751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Decoupling Effects of Electrostatic Gating on Electronic Transport and Interfacial Charge-Transfer Kinetics at Few-Layer Molybdenum Disulfide 静电门控对少层二硫化钼电子输运和界面电荷转移动力学的去耦效应
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-02-20 DOI: 10.1021/acsnanoscienceau.2c00064
Sonal Maroo, Yun Yu, Takashi Taniguchi, Kenji Watanabe and D. Kwabena Bediako*, 

The electronic properties of electrode materials play a crucial role in defining their electrochemical behavior in energy conversion and storage devices. The assembly of van der Waals heterostructures and fabrication into mesoscopic devices enable the dependence of an electrochemical response on electronic properties to be systematically interrogated. Here, we evaluate the effect of charge carrier concentration on heterogeneous electron transfer at few-layer MoS2 electrodes by combining spatially resolved electrochemical measurements with field-effect electrostatic manipulation of band alignment. Steady-state cyclic voltammograms and finite-element simulations reveal a strong modulation of the measured electrochemical response for outer-sphere charge transfer at the electrostatic gate voltage. In addition, spatially resolved voltammetric responses, obtained at a series of locations at the surface of few-layer MoS2, reveal the governing role of in-plane charge transport on the electrochemical behavior of 2D electrodes, especially under conditions of low carrier densities.

电极材料的电子性质在确定其在能量转换和存储设备中的电化学行为方面起着至关重要的作用。范德华异质结构的组装和介观器件的制造使得电化学响应对电子性质的依赖性能够被系统地询问。在这里,我们通过将空间分辨电化学测量与能带排列的场效应静电操作相结合,评估了电荷载流子浓度对少层MoS2电极上非均匀电子转移的影响。稳态循环伏安图和有限元模拟揭示了在静电栅极电压下测量的外层电荷转移的电化学响应的强烈调制。此外,在少层MoS2表面的一系列位置获得的空间分辨伏安响应揭示了平面内电荷传输对2D电极电化学行为的控制作用,特别是在低载流子密度的条件下。
{"title":"Decoupling Effects of Electrostatic Gating on Electronic Transport and Interfacial Charge-Transfer Kinetics at Few-Layer Molybdenum Disulfide","authors":"Sonal Maroo,&nbsp;Yun Yu,&nbsp;Takashi Taniguchi,&nbsp;Kenji Watanabe and D. Kwabena Bediako*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00064","DOIUrl":"10.1021/acsnanoscienceau.2c00064","url":null,"abstract":"<p >The electronic properties of electrode materials play a crucial role in defining their electrochemical behavior in energy conversion and storage devices. The assembly of van der Waals heterostructures and fabrication into mesoscopic devices enable the dependence of an electrochemical response on electronic properties to be systematically interrogated. Here, we evaluate the effect of charge carrier concentration on heterogeneous electron transfer at few-layer MoS<sub>2</sub> electrodes by combining spatially resolved electrochemical measurements with field-effect electrostatic manipulation of band alignment. Steady-state cyclic voltammograms and finite-element simulations reveal a strong modulation of the measured electrochemical response for outer-sphere charge transfer at the electrostatic gate voltage. In addition, spatially resolved voltammetric responses, obtained at a series of locations at the surface of few-layer MoS<sub>2</sub>, reveal the governing role of in-plane charge transport on the electrochemical behavior of 2D electrodes, especially under conditions of low carrier densities.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"204–210"},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9715746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrically Conductive Carbazole and Thienoisoindigo-Based COFs Showing Fast and Stable Electrochromism 导电咔唑基和硫异靛蓝基COFs具有快速稳定的电致变色性能
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-02-17 DOI: 10.1021/acsnanoscienceau.2c00049
Katharina Muggli, Laura Spies, Derya Bessinger, Florian Auras and Thomas Bein*, 

Thienothiophene thienoisoindigo (ttTII)-based covalent organic frameworks (COFs) have been shown to offer low band gaps and intriguing optical and electrochromic properties. So far, only one tetragonal thienothiophene thienoisoindigo-based COF has been reported showing stable and fast electrochromism and good coloration efficiencies. We have developed two novel COFs using this versatile and nearly linear ttTII building block in a tetragonal and a hexagonal framework geometry to demonstrate their attractive features for optoelectronic applications of thienoisoindigo-based COFs. Both COFs exhibit good electrical conductivities, show promising optical absorption features, are redox-active, and exhibit a strong electrochromic behavior when applying an external electrical stimulus, shifting the optical absorption even farther into the NIR region of the electromagnetic spectrum and achieving absorbance changes of up to 2.5 OD. Cycle-stable cyclic voltammograms with distinct oxidation and reduction waves reveal excellent reversibility and electrochromic switching over 200 cycles and confirm the high stability of the frameworks. Furthermore, high coloration efficiencies in the NIR region and fast switching speeds for coloration/decoloration as fast as 0.75 s/0.37 s for the Cz-ttTII COF and 0.61 s/0.29 s for the TAPB-ttTII COF at 550 nm excitation were observed, outperforming many known electrochromic materials, and offering options for a great variety of applications, such as stimuli-responsive coatings, optical information processing, or thermal control.

基于噻吩并噻吩并噻吩(ttTII)的共价有机框架(COFs)已被证明具有低带隙和有趣的光学和电致变色特性。到目前为止,只有一种基于噻吩并噻吩并噻吩的四方COF显示出稳定快速的电致变色和良好的显色效率。我们已经开发了两种新型的COF,使用这种具有四方和六边形框架几何形状的通用且几乎线性的ttTII构建块,以展示其在基于噻吩并异吲哚的COF的光电应用中的吸引力。两种COF都表现出良好的导电性,表现出有希望的光学吸收特征,具有氧化还原活性,并且在施加外部电刺激时表现出强烈的电致变色行为,将光学吸收进一步转移到电磁光谱的NIR区域,并实现高达2.5OD的吸收变化。具有不同氧化和还原波的循环稳定循环伏安图在200次循环中显示出优异的可逆性和电致变色切换,并证实了框架的高稳定性。此外,在550nm激发下,观察到NIR区域的高着色效率和Cz-ttTII COF的着色/脱色的快速切换速度快至0.75s/0.37s和TAPB-ttTII COF的0.61s/0.29s,优于许多已知的电致变色材料,并为各种应用提供了选择,如刺激响应性涂层,光学信息处理或热控制。
{"title":"Electrically Conductive Carbazole and Thienoisoindigo-Based COFs Showing Fast and Stable Electrochromism","authors":"Katharina Muggli,&nbsp;Laura Spies,&nbsp;Derya Bessinger,&nbsp;Florian Auras and Thomas Bein*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00049","DOIUrl":"10.1021/acsnanoscienceau.2c00049","url":null,"abstract":"<p >Thienothiophene thienoisoindigo (ttTII)-based covalent organic frameworks (COFs) have been shown to offer low band gaps and intriguing optical and electrochromic properties. So far, only one tetragonal thienothiophene thienoisoindigo-based COF has been reported showing stable and fast electrochromism and good coloration efficiencies. We have developed two novel COFs using this versatile and nearly linear ttTII building block in a tetragonal and a hexagonal framework geometry to demonstrate their attractive features for optoelectronic applications of thienoisoindigo-based COFs. Both COFs exhibit good electrical conductivities, show promising optical absorption features, are redox-active, and exhibit a strong electrochromic behavior when applying an external electrical stimulus, shifting the optical absorption even farther into the NIR region of the electromagnetic spectrum and achieving absorbance changes of up to 2.5 OD. Cycle-stable cyclic voltammograms with distinct oxidation and reduction waves reveal excellent reversibility and electrochromic switching over 200 cycles and confirm the high stability of the frameworks. Furthermore, high coloration efficiencies in the NIR region and fast switching speeds for coloration/decoloration as fast as 0.75 s/0.37 s for the Cz-ttTII COF and 0.61 s/0.29 s for the TAPB-ttTII COF at 550 nm excitation were observed, outperforming many known electrochromic materials, and offering options for a great variety of applications, such as stimuli-responsive coatings, optical information processing, or thermal control.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"153–160"},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/83/ng2c00049.PMC10119976.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modifying the Molecular Structure of Carbon Nanotubes through Gas-Phase Reactants 用气相反应物修饰碳纳米管的分子结构
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-02-06 DOI: 10.1021/acsnanoscienceau.2c00052
Michael J. Giannetto, Eric P. Johnson, Adam Watson, Edgar Dimitrov, Andrew Kurth, Wenbo Shi, Francesco Fornasiero, Eric R. Meshot and Desiree L. Plata*, 

Current approaches to carbon nanotube (CNT) synthesis are limited in their ability to control the placement of atoms on the surface of nanotubes. Some of this limitation stems from a lack of understanding of the chemical bond-building mechanisms at play in CNT growth. Here, we provide experimental evidence that supports an alkyne polymerization pathway in which short-chained alkynes directly incorporate into the CNT lattice during growth, partially retaining their side groups and influencing CNT morphology. Using acetylene, methyl acetylene, and vinyl acetylene as feedstock gases, unique morphological differences were observed. Interwall spacing, a highly conserved value in natural graphitic materials, varied to accommodate side groups, increasing systematically from acetylene to methyl acetylene to vinyl acetylene. Furthermore, attenuated total reflectance Fourier-transfer infrared spectroscopy (ATR-FTIR) illustrated the existence of intact methyl groups in the multiwalled CNTs derived from methyl acetylene. Finally, the nanoscale alignment of the CNTs grown in vertically aligned forests differed systematically. Methyl acetylene induced the most tortuous growth while CNTs from acetylene and vinyl-acetylene were more aligned, presumably due to the presence of polymerizable unsaturated bonds in the structure. These results demonstrate that feedstock hydrocarbons can alter the atomic-scale structure of CNTs, which in turn can affect properties on larger scales. This information could be leveraged to create more chemically and structurally complex CNT structures, enable more sustainable chemical pathways by avoiding the need for solvents and postreaction modifications, and potentially unlock experimental routes to a host of higher-order carbonaceous nanomaterials.

目前的碳纳米管(CNT)合成方法在控制原子在纳米管表面的放置的能力方面受到限制。其中一些限制源于对CNT生长中的化学键构建机制缺乏了解。在这里,我们提供了支持炔烃聚合途径的实验证据,在该途径中,短链炔烃在生长过程中直接结合到CNT晶格中,部分保留其侧基并影响CNT形态。使用乙炔、甲基乙炔和乙烯基乙炔作为原料气体,观察到独特的形态差异。壁间距是天然石墨材料中的一个高度保守值,它随着侧基的变化而变化,从乙炔到甲基乙炔再到乙烯基乙炔都在系统地增加。此外,衰减全反射傅立叶转移红外光谱(ATR-FTIR)表明,在源自甲基乙炔的多壁CNT中存在完整的甲基。最后,生长在垂直排列的森林中的CNT的纳米级排列存在系统性差异。甲基乙炔诱导了最曲折的生长,而乙炔和乙烯基乙炔的CNT排列更整齐,这可能是由于结构中存在可聚合的不饱和键。这些结果表明,原料碳氢化合物可以改变碳纳米管的原子级结构,进而影响更大规模的性能。这些信息可以用来创造更复杂的化学和结构CNT结构,通过避免溶剂和反应后修饰的需要,实现更可持续的化学途径,并有可能开启通往大量高阶碳质纳米材料的实验路线。
{"title":"Modifying the Molecular Structure of Carbon Nanotubes through Gas-Phase Reactants","authors":"Michael J. Giannetto,&nbsp;Eric P. Johnson,&nbsp;Adam Watson,&nbsp;Edgar Dimitrov,&nbsp;Andrew Kurth,&nbsp;Wenbo Shi,&nbsp;Francesco Fornasiero,&nbsp;Eric R. Meshot and Desiree L. Plata*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00052","DOIUrl":"10.1021/acsnanoscienceau.2c00052","url":null,"abstract":"<p >Current approaches to carbon nanotube (CNT) synthesis are limited in their ability to control the placement of atoms on the surface of nanotubes. Some of this limitation stems from a lack of understanding of the chemical bond-building mechanisms at play in CNT growth. Here, we provide experimental evidence that supports an alkyne polymerization pathway in which short-chained alkynes directly incorporate into the CNT lattice during growth, partially retaining their side groups and influencing CNT morphology. Using acetylene, methyl acetylene, and vinyl acetylene as feedstock gases, unique morphological differences were observed. Interwall spacing, a highly conserved value in natural graphitic materials, varied to accommodate side groups, increasing systematically from acetylene to methyl acetylene to vinyl acetylene. Furthermore, attenuated total reflectance Fourier-transfer infrared spectroscopy (ATR-FTIR) illustrated the existence of intact methyl groups in the multiwalled CNTs derived from methyl acetylene. Finally, the nanoscale alignment of the CNTs grown in vertically aligned forests differed systematically. Methyl acetylene induced the most tortuous growth while CNTs from acetylene and vinyl-acetylene were more aligned, presumably due to the presence of polymerizable unsaturated bonds in the structure. These results demonstrate that feedstock hydrocarbons can alter the atomic-scale structure of CNTs, which in turn can affect properties on larger scales. This information could be leveraged to create more chemically and structurally complex CNT structures, enable more sustainable chemical pathways by avoiding the need for solvents and postreaction modifications, and potentially unlock experimental routes to a host of higher-order carbonaceous nanomaterials.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"182–191"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/d9/ng2c00052.PMC10119988.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9389925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection 光活性纳米材料声光催化在废水处理和细菌消毒中的应用
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-01-27 DOI: 10.1021/acsnanoscienceau.2c00058
Sina Moradi, Cristina Rodriguez-Seco*, Farzan Hayati and Dongling Ma*, 

Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.

声光催化被描述为光催化和声催化两个单独过程的结合。事实证明,它在降解废水中的溶解污染物以及细菌消毒应用方面非常有前景。它消除了在每种单独技术中观察到的一些主要缺点,如高成本、缓慢的活性和延长的反应时间。该综述对声光催化反应机理以及纳米结构催化剂和工艺改性技术对声光催化剂性能的影响进行了关键分析。已经讨论了上述工艺、反应器设计和电能消耗之间的协同效应,因为它们在实际应用中(如实际的工业或城市污水处理厂)实施这一新技术时具有重要意义。综述了声光催化在细菌消毒灭活中的应用。此外,我们进一步建议改进,将这项技术从实验室规模推广到大规模应用。我们希望这篇最新的综述将推动该领域未来的研究,并推动该技术的广泛采用和商业化。
{"title":"Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection","authors":"Sina Moradi,&nbsp;Cristina Rodriguez-Seco*,&nbsp;Farzan Hayati and Dongling Ma*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00058","DOIUrl":"10.1021/acsnanoscienceau.2c00058","url":null,"abstract":"<p >Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"103–129"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/1c/ng2c00058.PMC10119989.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis 探索和利用纳米材料的结构非均质性增强催化
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-01-27 DOI: 10.1021/acsnanoscienceau.2c00057
Rui Yang, Zhenghong Bao and Yifan Sun*, 

The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.

纳米科学和多相催化之间的结合为获得更好的纳米催化剂带来了变革性的机会。然而,源于不同原子构型的纳米级固体的结构异质性使得以均相催化的方式实现纳米催化剂的原子级工程具有挑战性。在这里,我们讨论了最近在揭示和利用纳米材料的结构异质性以增强催化方面所做的努力。纳米尺度域的尺寸和面控制产生了明确的纳米结构,有助于机理研究。二氧化铈基纳米催化剂表面和本体特性的差异引导了晶格氧活化的新思路。操纵局部结构和平均结构之间的组成和物种异质性允许通过系综效应调节催化活性位点。对催化剂结构的研究进一步强调了评估纳米催化剂在反应条件下的反应性和稳定性的必要性。这些进展促进了具有扩展功能的新型纳米催化剂的开发,并为多相催化带来了原子论的见解。
{"title":"Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis","authors":"Rui Yang,&nbsp;Zhenghong Bao and Yifan Sun*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00057","DOIUrl":"10.1021/acsnanoscienceau.2c00057","url":null,"abstract":"<p >The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"140–152"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9355988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cell Death Pathways: The Variable Mechanisms Underlying Fine Particulate Matter-Induced Cytotoxicity 细胞死亡途径:细颗粒物诱导的细胞毒性的可变机制
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-01-25 DOI: 10.1021/acsnanoscienceau.2c00059
Yucai Chen, Yue Wu, Yu Qi* and Sijin Liu, 

Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.

最近,细颗粒物(FPM)的细胞毒性导致的健康风险的出现令人担忧。大量研究报道了大量阐明FPM诱导的细胞死亡途径的数据。然而,今天仍然面临着一些挑战和知识差距。一方面,FPM的未定义成分(如重金属、多环芳烃和病原体)都是造成有害影响的原因,因此很难确定这些污染物的具体作用。另一方面,由于不同细胞死亡信号通路之间的串扰和相互作用,很难准确确定FPM带来的威胁和风险。在此,我们总结了最近关于FPM诱导的细胞死亡的研究中存在的知识空白,并提出了未来的研究方向,以预防FPM诱导疾病,提高对FPM不良后果途径和公共健康风险的认识。
{"title":"Cell Death Pathways: The Variable Mechanisms Underlying Fine Particulate Matter-Induced Cytotoxicity","authors":"Yucai Chen,&nbsp;Yue Wu,&nbsp;Yu Qi* and Sijin Liu,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00059","DOIUrl":"10.1021/acsnanoscienceau.2c00059","url":null,"abstract":"<p >Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"130–139"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/8f/ng2c00059.PMC10125306.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9355986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mechanistic Study of the Conductance and Enhanced Single-Molecule Detection in a Polymer–Electrolyte Nanopore 聚合物-电解质纳米孔中电导及增强单分子检测的机理研究
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2023-01-10 DOI: 10.1021/acsnanoscienceau.2c00050
Fabio Marcuccio, Dimitrios Soulias, Chalmers C. C. Chau, Sheena E. Radford, Eric Hewitt, Paolo Actis* and Martin Andrew Edwards*, 

Solid-state nanopores have been widely employed in the detection of biomolecules, but low signal-to-noise ratios still represent a major obstacle in the discrimination of nucleic acid and protein sequences substantially smaller than the nanopore diameter. The addition of 50% poly(ethylene) glycol (PEG) to the external solution is a simple way to enhance the detection of such biomolecules. Here, we demonstrate with finite-element modeling and experiments that the addition of PEG to the external solution introduces a strong imbalance in the transport properties of cations and anions, drastically affecting the current response of the nanopore. We further show that the strong asymmetric current response is due to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to either ion depletion or enrichment for few tens of nanometers across its aperture. We provide evidence that a combination of the decreased/increased diffusion coefficients of cations/anions in the bath outside the nanopore and the interaction between a translocating molecule and the nanopore–bath interface is responsible for the increase in the translocation signals. We expect this new mechanism to contribute to further developments in nanopore sensing by suggesting that tuning the diffusion coefficients of ions could enhance the sensitivity of the system.

固态纳米孔已被广泛用于生物分子的检测,但低信噪比仍然是区分明显小于纳米孔径的核酸和蛋白质序列的主要障碍。向外部溶液中添加50%的聚乙二醇(PEG)是增强对此类生物分子检测的简单方法。在这里,我们通过有限元建模和实验证明,在外部溶液中添加PEG会导致阳离子和阴离子的传输特性严重失衡,从而极大地影响纳米孔的电流响应。我们进一步表明,强烈的不对称电流响应是由于纳米移液管尖端区域的极性依赖性离子分布和传输,导致离子耗尽或富集几十纳米。我们提供的证据表明,阳离子/阴离子在纳米孔外的浴中的扩散系数降低/增加,以及易位分子和纳米孔-浴界面之间的相互作用,是易位信号增加的原因。我们预计,这一新机制将有助于纳米孔传感的进一步发展,因为它表明调整离子的扩散系数可以提高系统的灵敏度。
{"title":"Mechanistic Study of the Conductance and Enhanced Single-Molecule Detection in a Polymer–Electrolyte Nanopore","authors":"Fabio Marcuccio,&nbsp;Dimitrios Soulias,&nbsp;Chalmers C. C. Chau,&nbsp;Sheena E. Radford,&nbsp;Eric Hewitt,&nbsp;Paolo Actis* and Martin Andrew Edwards*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00050","DOIUrl":"10.1021/acsnanoscienceau.2c00050","url":null,"abstract":"<p >Solid-state nanopores have been widely employed in the detection of biomolecules, but low signal-to-noise ratios still represent a major obstacle in the discrimination of nucleic acid and protein sequences substantially smaller than the nanopore diameter. The addition of 50% poly(ethylene) glycol (PEG) to the external solution is a simple way to enhance the detection of such biomolecules. Here, we demonstrate with finite-element modeling and experiments that the addition of PEG to the external solution introduces a strong imbalance in the transport properties of cations and anions, drastically affecting the current response of the nanopore. We further show that the strong asymmetric current response is due to a polarity-dependent ion distribution and transport at the nanopipette tip region, leading to either ion depletion or enrichment for few tens of nanometers across its aperture. We provide evidence that a combination of the decreased/increased diffusion coefficients of cations/anions in the bath outside the nanopore and the interaction between a translocating molecule and the nanopore–bath interface is responsible for the increase in the translocation signals. We expect this new mechanism to contribute to further developments in nanopore sensing by suggesting that tuning the diffusion coefficients of ions could enhance the sensitivity of the system.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 2","pages":"172–181"},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9390306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts 回到基础:开发先进的金属有机框架使用基本化学概念
Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-12-27 DOI: 10.1021/acsnanoscienceau.2c00046
Kent O. Kirlikovali, Sylvia L. Hanna, Florencia A. Son and Omar K. Farha*, 

Over the past 25 years, metal–organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.

在过去的25年里,金属-有机框架(MOFs)已经发展成为一类越来越复杂的结晶多孔材料,其中构建块的选择对所得材料的物理性能提供了重要的控制。尽管存在这种复杂性,但基本的配位化学设计原则为设计高度稳定的MOF结构提供了战略基础。从这个角度来看,我们概述了这些设计策略,并讨论了研究人员如何利用基本化学概念来调整反应参数和合成高度结晶的MOFs。然后,我们在几个文献例子的背景下讨论了这些设计原则,强调了相关的基本化学原则和获得稳定MOF结构所需的额外设计原则。最后,我们设想,随着MOF领域展望未来,这些基本概念将如何提供具有定制性能的更先进结构。
{"title":"Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts","authors":"Kent O. Kirlikovali,&nbsp;Sylvia L. Hanna,&nbsp;Florencia A. Son and Omar K. Farha*,&nbsp;","doi":"10.1021/acsnanoscienceau.2c00046","DOIUrl":"10.1021/acsnanoscienceau.2c00046","url":null,"abstract":"<p >Over the past 25 years, metal–organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 1","pages":"37–45"},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
ACS Nanoscience Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1