Pub Date : 2023-02-14DOI: 10.3390/materproc2023013018
V. Arslan, Z. Doğan
: Three-dimensional (3D) printing applications have emerged as a new production method in the construction industry. The materials that are to be used in 3D production process play an important role for a sustainable built environment. The main objective of this study is to design a suitable mixture to produce 3D printed concrete paving stones. In this respect, a unique 3D printer was also developed. The results show that the setting time of cement-based mortars was shortened by increasing the ratio of the added accelerator admixture. However, the optimum mixture proportions for 3D printed concrete paving stones were not reached. The results of the study are expected to develop a sustainable method of paving stone production.
{"title":"Three-Dimensional, Printable Paving Stone: A Preliminary Study","authors":"V. Arslan, Z. Doğan","doi":"10.3390/materproc2023013018","DOIUrl":"https://doi.org/10.3390/materproc2023013018","url":null,"abstract":": Three-dimensional (3D) printing applications have emerged as a new production method in the construction industry. The materials that are to be used in 3D production process play an important role for a sustainable built environment. The main objective of this study is to design a suitable mixture to produce 3D printed concrete paving stones. In this respect, a unique 3D printer was also developed. The results show that the setting time of cement-based mortars was shortened by increasing the ratio of the added accelerator admixture. However, the optimum mixture proportions for 3D printed concrete paving stones were not reached. The results of the study are expected to develop a sustainable method of paving stone production.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126198251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013016
L. Dvorkin, V. Zhitkovsky, V. Marchuk, Ruslan Makarenko
{"title":"High-Strength Concrete Using Ash and Slag Cements","authors":"L. Dvorkin, V. Zhitkovsky, V. Marchuk, Ruslan Makarenko","doi":"10.3390/materproc2023013016","DOIUrl":"https://doi.org/10.3390/materproc2023013016","url":null,"abstract":"","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123003567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013015
D. Jóźwiak-Niedźwiedzka, R. Jaskulski, K. Dziedzic, A. Antolik
: This article presents the results of an experimental investigation into the mitigation of the alkali–silica reaction (ASR) resulting from using low-grade clay calcined at 850 ◦ C. The clay used in the experiment was domestic clay with an Al 2 O 3 content equal to 26% and a SiO 2 content of 58%. The performance of calcined clay in ASR mitigation was evaluated according to ASTM C1567 using reactive aggregates. The control mortar mixture consisted of 100% Portland cement (Na 2 O eq = 1.12%) binder and reactive aggregate. The test mixtures used the same reactive aggregate and binders, in which part of the cement was replaced with either 10%, 20% or 30% calcined clay. The microstructure of specimens was examined on the polished sections using a scanning electron microscope (SEM) operated in the backscattered mode (BSE). The results of expansion obtained from the mortar bars made with the reactive aggregate showed that replacing cement by calcined clay reduced their expansion, with the level of expansion decreasing with the increase in the level of cement replacement.
{"title":"Effect of Low-Quality Calcined Clay on the Suppression of the Alkali–Silica Reaction","authors":"D. Jóźwiak-Niedźwiedzka, R. Jaskulski, K. Dziedzic, A. Antolik","doi":"10.3390/materproc2023013015","DOIUrl":"https://doi.org/10.3390/materproc2023013015","url":null,"abstract":": This article presents the results of an experimental investigation into the mitigation of the alkali–silica reaction (ASR) resulting from using low-grade clay calcined at 850 ◦ C. The clay used in the experiment was domestic clay with an Al 2 O 3 content equal to 26% and a SiO 2 content of 58%. The performance of calcined clay in ASR mitigation was evaluated according to ASTM C1567 using reactive aggregates. The control mortar mixture consisted of 100% Portland cement (Na 2 O eq = 1.12%) binder and reactive aggregate. The test mixtures used the same reactive aggregate and binders, in which part of the cement was replaced with either 10%, 20% or 30% calcined clay. The microstructure of specimens was examined on the polished sections using a scanning electron microscope (SEM) operated in the backscattered mode (BSE). The results of expansion obtained from the mortar bars made with the reactive aggregate showed that replacing cement by calcined clay reduced their expansion, with the level of expansion decreasing with the increase in the level of cement replacement.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128163421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013007
Tarreck Mahaman Manssour Issa, K. Mróz, M. Sitarz, I. Hager, Ewa Słupska
: Geopolymers are new environmentally friendly cementitious materials that may offer an alternative to Ordinary Portland Cement. Not only do they have excellent mechanical properties, but they also have high temperature resistance. This research focuses on the high temperature exposure effect on geopolymer mortars. Two types of geopolymer mortars were prepared and exposed to different temperatures (20, 200, 400, 800 ◦ C). The main goal of this work is to assess the changes in the mechanical and physical properties of geopolymer mortars after being exposed to a high temperature. Two types of mixtures were tested: one containing 100% fly ash (M0-K) and the other one containing 50% fly ash and ground Granulated blast furnace slag (M50-K). The paper presents an evaluation of compressive and tensile strength, density, porosity, and ultrasonic pulse velocity for both M50-K and M0-K after exposure to high temperatures.
{"title":"Fire Resistance of Geopolymer Materials—A Change in Physical and Mechanical Properties","authors":"Tarreck Mahaman Manssour Issa, K. Mróz, M. Sitarz, I. Hager, Ewa Słupska","doi":"10.3390/materproc2023013007","DOIUrl":"https://doi.org/10.3390/materproc2023013007","url":null,"abstract":": Geopolymers are new environmentally friendly cementitious materials that may offer an alternative to Ordinary Portland Cement. Not only do they have excellent mechanical properties, but they also have high temperature resistance. This research focuses on the high temperature exposure effect on geopolymer mortars. Two types of geopolymer mortars were prepared and exposed to different temperatures (20, 200, 400, 800 ◦ C). The main goal of this work is to assess the changes in the mechanical and physical properties of geopolymer mortars after being exposed to a high temperature. Two types of mixtures were tested: one containing 100% fly ash (M0-K) and the other one containing 50% fly ash and ground Granulated blast furnace slag (M50-K). The paper presents an evaluation of compressive and tensile strength, density, porosity, and ultrasonic pulse velocity for both M50-K and M0-K after exposure to high temperatures.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123678362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013014
I. Nováková, P. Perumal, A. Ćwirzeń, O. Wallevik
: Concrete is one of the most common building materials in the Northern Periphery and Arctic, and therefore we should pay attention to its quality while reducing its carbon footprint. The concrete industry has established many measures to limit greenhouse gas emissions from concrete, as stated in the environmental product declaration (EPD). The most significant contributor is cement (common dose between 250 and 600 kg per 1 m 3 of concrete) in a concrete binder. Aside from the use of alternative fuels for cement production, new alternative materials for cement replacement are being sought. Those materials are called supplementary cementitious materials and mainly originate from industrial waste streams. Some of the materials are already standard and limited by the maximum allowed replacement, and some are new and still under investigation. The benefits and limitations of low-carbon concrete regulations in Norway, Sweden, Iceland, and Finland are demonstrated on three different concrete mixes in this article. The sorting of a reference mix and two low-carbon concrete mixes according to 4 different systems showed the informative character of the Icelandic system and the underestimation of possibilities for the carbon footprint of concrete in the Swedish classification system.
{"title":"Low Carbon Concrete Possibilities: EPD and Regulations in Northern Periphery and Arctic","authors":"I. Nováková, P. Perumal, A. Ćwirzeń, O. Wallevik","doi":"10.3390/materproc2023013014","DOIUrl":"https://doi.org/10.3390/materproc2023013014","url":null,"abstract":": Concrete is one of the most common building materials in the Northern Periphery and Arctic, and therefore we should pay attention to its quality while reducing its carbon footprint. The concrete industry has established many measures to limit greenhouse gas emissions from concrete, as stated in the environmental product declaration (EPD). The most significant contributor is cement (common dose between 250 and 600 kg per 1 m 3 of concrete) in a concrete binder. Aside from the use of alternative fuels for cement production, new alternative materials for cement replacement are being sought. Those materials are called supplementary cementitious materials and mainly originate from industrial waste streams. Some of the materials are already standard and limited by the maximum allowed replacement, and some are new and still under investigation. The benefits and limitations of low-carbon concrete regulations in Norway, Sweden, Iceland, and Finland are demonstrated on three different concrete mixes in this article. The sorting of a reference mix and two low-carbon concrete mixes according to 4 different systems showed the informative character of the Icelandic system and the underestimation of possibilities for the carbon footprint of concrete in the Swedish classification system.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126995420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013010
Paweł Niewiadomski, Michał Cisiński
: The significant reduction in CO 2 emissions arising from the cementitious composites industry is one of the highest priorities for the construction sector’s movement towards climate neutrality and sustainable development. One of the approaches to cope with this issue is to partially substitute cement with supplementary cementitious materials. Recently, various oil refinery wastes (ORW) have attracted researchers’ attention in terms of being investigated for such an application. As such, the present paper shows the preliminary results of investigations conducted on cement pastes with the addition of a spent fluid catalytic cracking catalyst derived from a Polish oil refinery company. It is worth mentioning that the incorporation of ORW in cementitious composites might enable the production of more environmentally friendly construction materials without sacrificing quality, whilst, simultaneously providing an opportunity for recycling petrochemical wastes.
{"title":"The Impact of Waste Fluid Catalytic Cracking Catalyst Addition on the Selected Properties of Cement Pastes","authors":"Paweł Niewiadomski, Michał Cisiński","doi":"10.3390/materproc2023013010","DOIUrl":"https://doi.org/10.3390/materproc2023013010","url":null,"abstract":": The significant reduction in CO 2 emissions arising from the cementitious composites industry is one of the highest priorities for the construction sector’s movement towards climate neutrality and sustainable development. One of the approaches to cope with this issue is to partially substitute cement with supplementary cementitious materials. Recently, various oil refinery wastes (ORW) have attracted researchers’ attention in terms of being investigated for such an application. As such, the present paper shows the preliminary results of investigations conducted on cement pastes with the addition of a spent fluid catalytic cracking catalyst derived from a Polish oil refinery company. It is worth mentioning that the incorporation of ORW in cementitious composites might enable the production of more environmentally friendly construction materials without sacrificing quality, whilst, simultaneously providing an opportunity for recycling petrochemical wastes.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123027977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013017
Agnieszka Bąk, Patrycja Bazan, K. Pławecka, M. Łach
: Geopolymer materials are attracting increasing interest from scientists due to their specific properties and the possibility of using waste materials from the power industry for their production. The most common raw material for their production is fly ash from the combustion of hard coal in pulverized coal boilers, but it is also possible to use ash from the combustion of lignite for this purpose. This article presents the results of a study of geopolymers produced with the use of ashes from lignite combustion at the Bełchat ó w Power Plant. It includes characterization of the ashes (laser particle size analysis, SEM/EDS morphology, XRD phase composition) and the strength properties of geopolymers made from these ashes and activated with 10 M and 14 M aqueous sodium hydroxide solution with water glass. As a result of this study, it was found that it is possible to obtain geopolymers characterized by flexural strength of almost 3 MPa and compressive strength of 30 MPa. A comparison of activators with concentrations of 10 M and 14 M made it possible to conclude that, due to the lack of significant differences in the properties of the obtained geopolymers, from an economic point of view, it is more advantageous in this case to use activators with a lower concentration.
地聚合物材料由于其特殊的性能和利用电力工业废料生产的可能性,正吸引着科学家们越来越多的兴趣。生产它们最常见的原料是煤粉锅炉中燃烧硬煤产生的飞灰,但也可以使用褐煤燃烧产生的灰来实现这一目的。本文介绍了利用Bełchat ó w电厂褐煤燃烧灰烬生产地聚合物的研究结果。它包括灰分的表征(激光粒度分析,SEM/EDS形貌,XRD相组成)和由这些灰分制成的地聚合物的强度性能,用10 M和14 M的氢氧化钠水溶液与水玻璃活化。研究结果表明,获得抗折强度接近3 MPa、抗压强度为30 MPa的地聚合物是可能的。通过对浓度为10 M和14 M的活化剂的比较,我们可以得出这样的结论:由于所获得的地聚合物的性质没有明显的差异,从经济的角度来看,在这种情况下使用浓度较低的活化剂更有利。
{"title":"Geopolymers Based on Fly Ash from the Bełchatów Power Plant","authors":"Agnieszka Bąk, Patrycja Bazan, K. Pławecka, M. Łach","doi":"10.3390/materproc2023013017","DOIUrl":"https://doi.org/10.3390/materproc2023013017","url":null,"abstract":": Geopolymer materials are attracting increasing interest from scientists due to their specific properties and the possibility of using waste materials from the power industry for their production. The most common raw material for their production is fly ash from the combustion of hard coal in pulverized coal boilers, but it is also possible to use ash from the combustion of lignite for this purpose. This article presents the results of a study of geopolymers produced with the use of ashes from lignite combustion at the Bełchat ó w Power Plant. It includes characterization of the ashes (laser particle size analysis, SEM/EDS morphology, XRD phase composition) and the strength properties of geopolymers made from these ashes and activated with 10 M and 14 M aqueous sodium hydroxide solution with water glass. As a result of this study, it was found that it is possible to obtain geopolymers characterized by flexural strength of almost 3 MPa and compressive strength of 30 MPa. A comparison of activators with concentrations of 10 M and 14 M made it possible to conclude that, due to the lack of significant differences in the properties of the obtained geopolymers, from an economic point of view, it is more advantageous in this case to use activators with a lower concentration.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131159197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013008
J. Rakić, Z. Baščarević
: One of the measures to reduce the carbon footprint of the Portland cement (PC) manufacturing process is through a wider use of supplementary cementitious and waste materials. The main objective of this work was to produce a new binder using two different waste materials: fly ash (FA) from thermal power plants and spent fluid catalytic cracking catalyst (sFCCC) from petrol refineries. In order to improve their reactivity, both FA and sFCCC were mechanically activated prior to the preparation of the binder. The new binder consisted mostly of the waste materials (70 mass %), with PC as a minor component (30 mass %). It was found that using sFCCC as the binder component accelerated cement hydration and the pozzolanic reaction. The new binder had a shorter setting time and a higher early strength than the binder prepared without sFCCC
{"title":"Influence of Spent Fluid Catalytic Cracking Catalyst on the Properties of the New Binder Based on Fly Ash and Portland Cement","authors":"J. Rakić, Z. Baščarević","doi":"10.3390/materproc2023013008","DOIUrl":"https://doi.org/10.3390/materproc2023013008","url":null,"abstract":": One of the measures to reduce the carbon footprint of the Portland cement (PC) manufacturing process is through a wider use of supplementary cementitious and waste materials. The main objective of this work was to produce a new binder using two different waste materials: fly ash (FA) from thermal power plants and spent fluid catalytic cracking catalyst (sFCCC) from petrol refineries. In order to improve their reactivity, both FA and sFCCC were mechanically activated prior to the preparation of the binder. The new binder consisted mostly of the waste materials (70 mass %), with PC as a minor component (30 mass %). It was found that using sFCCC as the binder component accelerated cement hydration and the pozzolanic reaction. The new binder had a shorter setting time and a higher early strength than the binder prepared without sFCCC","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134222908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.3390/materproc2023013013
A. Antolik, D. Jóźwiak-Niedźwiedzka, K. Dziedzic, P. Lisowski
: During the wintertime, concrete pavements experience harsh exposure conditions due to the presence of both the freezing–thawing and wetting–drying cycles. Airport concrete pavements are commonly de-iced using chloride-free organic salts such as potassium formate or potassium acetate. However, these materials contain alkali ions which can have harmful effects on both the cement matrix and the aggregate. Specifically, there is an increased risk of occurrence of the alkali–silica reaction (ASR). The goal of this research was to estimate the influence of potassium formate on the potential of causing alkali–silica reaction in aggregates with different categories of reactivity (R0, R1, R2). The accelerated mortar bar test and its modification (which involves replacing sodium hydroxide solution with a potassium formate solution) were used. Detailed SEM-EDS examinations were performed to confirm the presence of alkali–silica reaction and to analyze the influence of potassium formate on the microstructure of mortar.
{"title":"Effect of Potassium Formate on Alkali–Silica Reaction in Aggregates with Different Categories of Reactivity","authors":"A. Antolik, D. Jóźwiak-Niedźwiedzka, K. Dziedzic, P. Lisowski","doi":"10.3390/materproc2023013013","DOIUrl":"https://doi.org/10.3390/materproc2023013013","url":null,"abstract":": During the wintertime, concrete pavements experience harsh exposure conditions due to the presence of both the freezing–thawing and wetting–drying cycles. Airport concrete pavements are commonly de-iced using chloride-free organic salts such as potassium formate or potassium acetate. However, these materials contain alkali ions which can have harmful effects on both the cement matrix and the aggregate. Specifically, there is an increased risk of occurrence of the alkali–silica reaction (ASR). The goal of this research was to estimate the influence of potassium formate on the potential of causing alkali–silica reaction in aggregates with different categories of reactivity (R0, R1, R2). The accelerated mortar bar test and its modification (which involves replacing sodium hydroxide solution with a potassium formate solution) were used. Detailed SEM-EDS examinations were performed to confirm the presence of alkali–silica reaction and to analyze the influence of potassium formate on the microstructure of mortar.","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133821172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.3390/materproc2023013003
B. Kozub, Krzysztof Miernik, S. Gądek
: The purpose of this study is to evaluate the effect of basalt flour addition, replacing quartz sand, and its proportion on fly ash-based geopolymers’ properties. As a base material, F-grade fly ash was used. The activation process was carried out using a 10 mol solution of sodium hydroxide and an aqueous solution of sodium silicate. The tests included measurements of density, compressive and flexural strength, abrasion resistance
{"title":"A Study of Fly Ash-Based Geopolymers with Basalt Flour Addition","authors":"B. Kozub, Krzysztof Miernik, S. Gądek","doi":"10.3390/materproc2023013003","DOIUrl":"https://doi.org/10.3390/materproc2023013003","url":null,"abstract":": The purpose of this study is to evaluate the effect of basalt flour addition, replacing quartz sand, and its proportion on fly ash-based geopolymers’ properties. As a base material, F-grade fly ash was used. The activation process was carried out using a 10 mol solution of sodium hydroxide and an aqueous solution of sodium silicate. The tests included measurements of density, compressive and flexural strength, abrasion resistance","PeriodicalId":298795,"journal":{"name":"10th MATBUD’2023 Scientific-Technical Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127466192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}