Pub Date : 2024-10-30DOI: 10.1021/acs.bioconjchem.4c0038310.1021/acs.bioconjchem.4c00383
Shuzhang Liu, and , Peng Zou*,
Fluorescent voltage indicators enable the optical recording of electrophysiology across large cell populations with subcellular resolution; however, their application is often constrained by a limited photon budget. To address this limitation, advanced bioconjugation methods have been employed to site-specifically attach bright and photostable organic dyes to cell-specific protein scaffolds in live cells. The resulting chemigenetic hybrid voltage indicators enable sustained monitoring of voltage fluctuations with an exceptional signal-to-noise ratio, both in vitro and in vivo. This Viewpoint discusses recent advancements in the development of these indicators through bioconjugation chemistry.
{"title":"Recent Development of Chemigenetic Hybrid Voltage Indicators Enabled by Bioconjugation Chemistry","authors":"Shuzhang Liu, and , Peng Zou*, ","doi":"10.1021/acs.bioconjchem.4c0038310.1021/acs.bioconjchem.4c00383","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00383https://doi.org/10.1021/acs.bioconjchem.4c00383","url":null,"abstract":"<p >Fluorescent voltage indicators enable the optical recording of electrophysiology across large cell populations with subcellular resolution; however, their application is often constrained by a limited photon budget. To address this limitation, advanced bioconjugation methods have been employed to site-specifically attach bright and photostable organic dyes to cell-specific protein scaffolds in live cells. The resulting chemigenetic hybrid voltage indicators enable sustained monitoring of voltage fluctuations with an exceptional signal-to-noise ratio, both <i>in vitro</i> and <i>in vivo</i>. This Viewpoint discusses recent advancements in the development of these indicators through bioconjugation chemistry.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1711–1715 1711–1715"},"PeriodicalIF":4.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1021/acs.bioconjchem.4c0042310.1021/acs.bioconjchem.4c00423
Xiaotong Wang, Duanmin Hu, Perry G. Wang* and Shuang Yang*,
Immunocapture liquid chromatography–mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
{"title":"Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis","authors":"Xiaotong Wang, Duanmin Hu, Perry G. Wang* and Shuang Yang*, ","doi":"10.1021/acs.bioconjchem.4c0042310.1021/acs.bioconjchem.4c00423","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00423https://doi.org/10.1021/acs.bioconjchem.4c00423","url":null,"abstract":"<p >Immunocapture liquid chromatography–mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1699–1710 1699–1710"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Because of the insidious nature of lymphatic metastatic cancer, accurate imaging tracing is very difficult to achieve in the clinic. Previous studies have developed the LARGR peptide (named TMVP1) as a radiotracer for vascular endothelial growth factor receptor-3 (VEGFR-3) imaging in cancer. However, its affinity for the target remains insufficient, resulting in low imaging sensitivity. In this study, we identified a high-affinity VEGFR-3 targeting peptide, named TMVP1446, using a multiplex screening platform. TMVP1446 demonstrated a dissociation constant of 8.97 × 10–8 M. Both in vitro and in vivo assays confirmed that fluorescently labeled TMVP1446 specifically bound to VEGFR-3. In a 4T1-luciferase tumor mouse model, cyanine 7-labeled TMVP1446 effectively discriminated between contralateral normal lymph nodes (c-LN) and cancer-metastatic sentinel lymph nodes (m-SLN). To evaluate the potential of TMVP1446, we developed a novel VEGFR-3 positron emission tomography radiotracer ([68Ga]Ga-DOTA-TMVP1446) for cancer-m-SLN imaging. [68Ga]Ga-DOTA-TMVP1446 accurately detected and assessed the status of lymph node metastasis, even in micrometastatic tumors, in the B16–F10 mouse tumor model. These findings suggest that TMVP1446 has great potential for advancing VEGFR-3 molecular imaging and metastatic sentinel lymph node imaging.
{"title":"Identification of a Novel Vascular Endothelial Growth Factor Receptor-3-Targeting Peptide for Molecular Imaging of Metastatic Lymph Nodes","authors":"Yuan Yuan, Yilin Dai, Jing Wang, Guangyang Shen, Yongkang Gai, Qingjian Dong, Luoxia Liu, Xiaohua Zhu, Dawei Jiang, Ling Xi, Jun Dai* and Fei Li*, ","doi":"10.1021/acs.bioconjchem.4c0046410.1021/acs.bioconjchem.4c00464","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00464https://doi.org/10.1021/acs.bioconjchem.4c00464","url":null,"abstract":"<p >Because of the insidious nature of lymphatic metastatic cancer, accurate imaging tracing is very difficult to achieve in the clinic. Previous studies have developed the LARGR peptide (named TMVP1) as a radiotracer for vascular endothelial growth factor receptor-3 (VEGFR-3) imaging in cancer. However, its affinity for the target remains insufficient, resulting in low imaging sensitivity. In this study, we identified a high-affinity VEGFR-3 targeting peptide, named TMVP1446, using a multiplex screening platform. TMVP1446 demonstrated a dissociation constant of 8.97 × 10<sup>–8</sup> M. Both in vitro and in vivo assays confirmed that fluorescently labeled TMVP1446 specifically bound to VEGFR-3. In a 4T1-luciferase tumor mouse model, cyanine 7-labeled TMVP1446 effectively discriminated between contralateral normal lymph nodes (c-LN) and cancer-metastatic sentinel lymph nodes (<i>m</i>-SLN). To evaluate the potential of TMVP1446, we developed a novel VEGFR-3 positron emission tomography radiotracer ([<sup>68</sup>Ga]Ga-DOTA-TMVP1446) for cancer-<i>m</i>-SLN imaging. [<sup>68</sup>Ga]Ga-DOTA-TMVP1446 accurately detected and assessed the status of lymph node metastasis, even in micrometastatic tumors, in the B16–F10 mouse tumor model. These findings suggest that TMVP1446 has great potential for advancing VEGFR-3 molecular imaging and metastatic sentinel lymph node imaging.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1843–1858 1843–1858"},"PeriodicalIF":4.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1021/acs.bioconjchem.4c0032610.1021/acs.bioconjchem.4c00326
Nicholas W. Kreofsky, Punarbasu Roy and Theresa M. Reineke*,
Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.
{"title":"pH-Responsive Micelles Containing Quinine Functionalities Enhance Intracellular Gene Delivery and Expression","authors":"Nicholas W. Kreofsky, Punarbasu Roy and Theresa M. Reineke*, ","doi":"10.1021/acs.bioconjchem.4c0032610.1021/acs.bioconjchem.4c00326","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00326https://doi.org/10.1021/acs.bioconjchem.4c00326","url":null,"abstract":"<p >Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1762–1778 1762–1778"},"PeriodicalIF":4.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1021/acs.bioconjchem.4c0046910.1021/acs.bioconjchem.4c00469
Maud D. M. E. Linssen, Yu-Ting Lin, Sebastian A. H. van den Wildenberg, Marrit M. E. Tholen, Arthur M. de Jong and Menno W. J. Prins*,
{"title":"Correction to “Oriented Antibody Coupling to an Antifouling Polymer Using Glycan Remodeling for Biosensing by Particle Motion”","authors":"Maud D. M. E. Linssen, Yu-Ting Lin, Sebastian A. H. van den Wildenberg, Marrit M. E. Tholen, Arthur M. de Jong and Menno W. J. Prins*, ","doi":"10.1021/acs.bioconjchem.4c0046910.1021/acs.bioconjchem.4c00469","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00469https://doi.org/10.1021/acs.bioconjchem.4c00469","url":null,"abstract":"","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1871 1871"},"PeriodicalIF":4.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.bioconjchem.4c00469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acs.bioconjchem.4c0046210.1021/acs.bioconjchem.4c00462
Shoujun Wang, Xinwei Bai, Xiaoya Wang, Jinmiao Wang, Weijie Tao, Ying Gao, Junya Ning, Jie Hao* and Ming Gao*,
Despite the use of surgical resection and chemotherapy in the clinical treatment of oral squamous cell carcinoma (OSCC), the 5-year survival rates of advanced patients are low. Therefore, more efficient strategies are urgently needed. Herein, a chemo/ferroptosis synergistic therapeutic system-DMEFe nanoparticles (NPs) is established for the treatment of OSCC. To create this system, the chemotherapeutic agent doxorubicin (DOX) was loaded into mesoporous silica nanoparticles and further coated with a pH-sensitive metal polyphenol (iron ion and epigallocatechin gallate). These nanoparticles displayed excellent pH-sensitive drug-control release properties, and the release ratio of DOX at pH 5.5 was twice as high than that at pH 7.4. Additionally, DMEF NPs were effectively taken up by the OSCC cell line SSC-25, which greatly impeded the proliferation of these cells. Notably, these nanoparticles increased the intracellular level of reactive oxygen species and effectively exhibited cytotoxity effects. The mechanistic results proved that DMEFe NPs regulated the expression of ferroptosis-related genes to induce ferroptosis of SSC-25 cells. Eventually, this chemo/ferroptosis therapeutic system exhibited remarkable antitumor effects and provided a novel strategy for the treatment of OSCC.
{"title":"Metal Polyphenol Nanoparticle-Based Chemo/Ferroptosis Synergistic Therapy for the Treatment of Oral Squamous Cell Carcinoma","authors":"Shoujun Wang, Xinwei Bai, Xiaoya Wang, Jinmiao Wang, Weijie Tao, Ying Gao, Junya Ning, Jie Hao* and Ming Gao*, ","doi":"10.1021/acs.bioconjchem.4c0046210.1021/acs.bioconjchem.4c00462","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00462https://doi.org/10.1021/acs.bioconjchem.4c00462","url":null,"abstract":"<p >Despite the use of surgical resection and chemotherapy in the clinical treatment of oral squamous cell carcinoma (OSCC), the 5-year survival rates of advanced patients are low. Therefore, more efficient strategies are urgently needed. Herein, a chemo/ferroptosis synergistic therapeutic system-DMEFe nanoparticles (NPs) is established for the treatment of OSCC. To create this system, the chemotherapeutic agent doxorubicin (DOX) was loaded into mesoporous silica nanoparticles and further coated with a pH-sensitive metal polyphenol (iron ion and epigallocatechin gallate). These nanoparticles displayed excellent pH-sensitive drug-control release properties, and the release ratio of DOX at pH 5.5 was twice as high than that at pH 7.4. Additionally, DMEF NPs were effectively taken up by the OSCC cell line SSC-25, which greatly impeded the proliferation of these cells. Notably, these nanoparticles increased the intracellular level of reactive oxygen species and effectively exhibited cytotoxity effects. The mechanistic results proved that DMEFe NPs regulated the expression of ferroptosis-related genes to induce ferroptosis of SSC-25 cells. Eventually, this chemo/ferroptosis therapeutic system exhibited remarkable antitumor effects and provided a novel strategy for the treatment of OSCC.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1835–1842 1835–1842"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1021/acs.bioconjchem.4c0045510.1021/acs.bioconjchem.4c00455
Youyou Li, Wenbo Han, Chunbai He, Xiaomin Jiang, Yingjie Fan and Wenbin Lin*,
{"title":"Correction to “Nanoscale Coordination Polymers for Combined Chemotherapy and Photodynamic Therapy of Metastatic Cancer”","authors":"Youyou Li, Wenbo Han, Chunbai He, Xiaomin Jiang, Yingjie Fan and Wenbin Lin*, ","doi":"10.1021/acs.bioconjchem.4c0045510.1021/acs.bioconjchem.4c00455","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00455https://doi.org/10.1021/acs.bioconjchem.4c00455","url":null,"abstract":"","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1870 1870"},"PeriodicalIF":4.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1021/acs.bioconjchem.4c0033110.1021/acs.bioconjchem.4c00331
Lucille Weiss, Antoine Mirloup, Léa Blondé, Hanna Manko, Jean Peluso, Dominique Bonnet, Dmytro Dziuba* and Julie Karpenko*,
Fluorescent probes for bacterial detection can be obtained by conjugating antimicrobial peptides with fluorescent dyes. However, little is known about the effect of the conjugation site and linker chemistry on staining efficiency. We synthesized three conjugates of the antimicrobial peptide ubiquicidin with the environmentally sensitive fluorophore Nile Red that differed by the attachment site and the chemical composition of the linker. We showed that incorporating fluorophore as a minimalistic non-natural amino acid resulted in a superior probe compared with the typically used bioconjugation approaches. The new peptide-based probe named UNR-1 displayed red fluorescence and enabled robust wash-free staining of Gram-positive and Gram-negative bacteria. The probe exhibited selectivity over mammalian cells and enabled rapid fluorescence detection of bacteria by fluorescence microscopy and flow cytometry in an add-and-read format. Our results may foster the development of next-generation fluorescent AMPs for clinical laboratory diagnostics and medical imaging.
{"title":"Fluorescent Antimicrobial Peptides Based on Nile Red: Effect of Conjugation Site and Chemistry on Wash-Free Staining of Bacteria","authors":"Lucille Weiss, Antoine Mirloup, Léa Blondé, Hanna Manko, Jean Peluso, Dominique Bonnet, Dmytro Dziuba* and Julie Karpenko*, ","doi":"10.1021/acs.bioconjchem.4c0033110.1021/acs.bioconjchem.4c00331","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00331https://doi.org/10.1021/acs.bioconjchem.4c00331","url":null,"abstract":"<p >Fluorescent probes for bacterial detection can be obtained by conjugating antimicrobial peptides with fluorescent dyes. However, little is known about the effect of the conjugation site and linker chemistry on staining efficiency. We synthesized three conjugates of the antimicrobial peptide ubiquicidin with the environmentally sensitive fluorophore Nile Red that differed by the attachment site and the chemical composition of the linker. We showed that incorporating fluorophore as a minimalistic non-natural amino acid resulted in a superior probe compared with the typically used bioconjugation approaches. The new peptide-based probe named <b>UNR-1</b> displayed red fluorescence and enabled robust wash-free staining of Gram-positive and Gram-negative bacteria. The probe exhibited selectivity over mammalian cells and enabled rapid fluorescence detection of bacteria by fluorescence microscopy and flow cytometry in an add-and-read format. Our results may foster the development of next-generation fluorescent AMPs for clinical laboratory diagnostics and medical imaging.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1779–1787 1779–1787"},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1021/acs.bioconjchem.4c0031710.1021/acs.bioconjchem.4c00317
Mathias B. Bertelsen, Emily Tsang, Johan Palmfeldt, Celine H. Kristoffersen, Marija Nisavic and Kurt V. Gothelf*,
Arginine is one of the less commonly targeted amino acids in protein bioconjugation, despite its unique reactivity and abundance on the surface of proteins. In this work, a molecule containing diketopinic acid and an azide handle was developed for the chemo-selective bioconjugation to arginine. This compound proved to be efficient for bioconjugation to IgG1 and IgG4 antibodies, achieving mono- and double-label conversion rates of 37–44 and 12–30%, respectively. Mass spectrometry analysis confirmed the antibody modification at two conserved regions. The compound was also applied for the labeling of other proteins such as transferrin, BSA, and an EgA1 nanobody. The conjugation was shown to be reversible using an o-phenylenediamine-based alkaline solution. This novel conjugation method offers precise and stable bioconjugation to proteins, enhancing the potential for various biomedical applications.
{"title":"A Diketopinic Reagent for the Reversible Bioconjugation to Arginine Residues on Native Antibodies","authors":"Mathias B. Bertelsen, Emily Tsang, Johan Palmfeldt, Celine H. Kristoffersen, Marija Nisavic and Kurt V. Gothelf*, ","doi":"10.1021/acs.bioconjchem.4c0031710.1021/acs.bioconjchem.4c00317","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00317https://doi.org/10.1021/acs.bioconjchem.4c00317","url":null,"abstract":"<p >Arginine is one of the less commonly targeted amino acids in protein bioconjugation, despite its unique reactivity and abundance on the surface of proteins. In this work, a molecule containing diketopinic acid and an azide handle was developed for the chemo-selective bioconjugation to arginine. This compound proved to be efficient for bioconjugation to IgG1 and IgG4 antibodies, achieving mono- and double-label conversion rates of 37–44 and 12–30%, respectively. Mass spectrometry analysis confirmed the antibody modification at two conserved regions. The compound was also applied for the labeling of other proteins such as transferrin, BSA, and an EgA1 nanobody. The conjugation was shown to be reversible using an <i>o</i>-phenylenediamine-based alkaline solution. This novel conjugation method offers precise and stable bioconjugation to proteins, enhancing the potential for various biomedical applications.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1755–1761 1755–1761"},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1021/acs.bioconjchem.4c0025510.1021/acs.bioconjchem.4c00255
Qing Su, Junxiao Chen, Ziyuan Liu, Yiqi Fan and Shuai He*,
Glioblastoma ranks among the most prevalent primary intracranial tumors, characterized by high mortality and poor prognosis. Chemotherapy remains a key treatment strategy for gliomas, though most current drugs suffer from limited efficacy and significant toxicity. This study focuses on a cRGD-siEGFR coupling compound synthesized in a previous stage. Prior research indicated that cRGD-siEGFR molecules exhibited certain targeting and antitumor properties but faced issues of inadequate targeting, low efficacy, and high renal toxicity. To enhance antitumor efficacy and mitigate side effects, a pH-responsive, long-circulating, and highly targeted siRNA delivery system, the cRGD-PEG-siEGFR conjugate, was developed. The targeting, antitumor effects, and biological distribution of cRGD-PEG-siEGFR were examined. The results demonstrated that cRGD-PEG-siEGFR was effectively taken up by αvβ3-positive U87MG cells, specifically silenced EGFR gene expression, and exhibited antitumor effects. In normal physiological conditions, it avoided uptake by normal cells, thereby reducing side effects. Furthermore, in vivo biodistribution experiments revealed that cRGD-PEG-siEGFR, compared to cRGD-siEGFR, significantly decreased renal accumulation and exhibited prolonged circulation. Consequently, cRGD-PEG-siRNA emerges as a promising drug candidate with attributes of long circulation, high targeting, pH responsiveness, and substantial antitumor efficacy.
{"title":"A pH-Sensitive cRGD-PEG-siRNA Conjugated Compound Targeting Glioblastoma","authors":"Qing Su, Junxiao Chen, Ziyuan Liu, Yiqi Fan and Shuai He*, ","doi":"10.1021/acs.bioconjchem.4c0025510.1021/acs.bioconjchem.4c00255","DOIUrl":"https://doi.org/10.1021/acs.bioconjchem.4c00255https://doi.org/10.1021/acs.bioconjchem.4c00255","url":null,"abstract":"<p >Glioblastoma ranks among the most prevalent primary intracranial tumors, characterized by high mortality and poor prognosis. Chemotherapy remains a key treatment strategy for gliomas, though most current drugs suffer from limited efficacy and significant toxicity. This study focuses on a cRGD-siEGFR coupling compound synthesized in a previous stage. Prior research indicated that cRGD-siEGFR molecules exhibited certain targeting and antitumor properties but faced issues of inadequate targeting, low efficacy, and high renal toxicity. To enhance antitumor efficacy and mitigate side effects, a pH-responsive, long-circulating, and highly targeted siRNA delivery system, the cRGD-PEG-siEGFR conjugate, was developed. The targeting, antitumor effects, and biological distribution of cRGD-PEG-siEGFR were examined. The results demonstrated that cRGD-PEG-siEGFR was effectively taken up by αvβ3-positive U87MG cells, specifically silenced EGFR gene expression, and exhibited antitumor effects. In normal physiological conditions, it avoided uptake by normal cells, thereby reducing side effects. Furthermore, in vivo biodistribution experiments revealed that cRGD-PEG-siEGFR, compared to cRGD-siEGFR, significantly decreased renal accumulation and exhibited prolonged circulation. Consequently, cRGD-PEG-siRNA emerges as a promising drug candidate with attributes of long circulation, high targeting, pH responsiveness, and substantial antitumor efficacy.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":"35 11","pages":"1732–1743 1732–1743"},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}