Pub Date : 2022-12-29DOI: 10.14203/j.mev.2022.v13.214-221
S. Sujito, Ridho Riski Hadi, L. Gumilar, Abdullah Iskandar Syah, Moh. Zainul Falah, Tran Huy Duy
The availability of electrical energy is an important issue. Along with the growth of the human population, electrical energy also increases. This study addresses problems in the operation of the electric power system. One of the problems that occur is the power imbalance due to scale growth between demand and generation. Alternative countermeasures that can be done are to prepare for the possibility that will occur in the future or what we are familiar with forecasting. Forecasting using the multiple linear regression method with this research variable assumes the household sector, business, industry, and public sectors, and is considered by the influence of population, gross regional domestic product, and District Minimum Wage. In forecasting, it is necessary to evaluate the accuracy using mean absolute percentage error (MAPE). MAPE evaluation results show a value of 0.142 % in the household sector, 0.085 % in the business sector, 1.983 % in the industrial sector, and 0.131 % in the total customer sector.
{"title":"Long-term forecasting for growth of electricity load based on customer sectors","authors":"S. Sujito, Ridho Riski Hadi, L. Gumilar, Abdullah Iskandar Syah, Moh. Zainul Falah, Tran Huy Duy","doi":"10.14203/j.mev.2022.v13.214-221","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.214-221","url":null,"abstract":"The availability of electrical energy is an important issue. Along with the growth of the human population, electrical energy also increases. This study addresses problems in the operation of the electric power system. One of the problems that occur is the power imbalance due to scale growth between demand and generation. Alternative countermeasures that can be done are to prepare for the possibility that will occur in the future or what we are familiar with forecasting. Forecasting using the multiple linear regression method with this research variable assumes the household sector, business, industry, and public sectors, and is considered by the influence of population, gross regional domestic product, and District Minimum Wage. In forecasting, it is necessary to evaluate the accuracy using mean absolute percentage error (MAPE). MAPE evaluation results show a value of 0.142 % in the household sector, 0.085 % in the business sector, 1.983 % in the industrial sector, and 0.131 % in the total customer sector.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47405108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-29DOI: 10.14203/j.mev.2022.v13.147-156
Edwin R. Arboleda
This study offers a novel solution to deal with the complicated electronic circuitry for speed controller and too complex mechanical design of rotating mechanism of an orbital shaker. The developed prototype used a transformer that varies the supply voltage to control the speed of rotation of the orbital shaker. The prototype has five speed levels which depend on the input voltage. These speeds are 180 rpm at 12 V, 258 rpm at 15 V, 360 rpm at 18 V, 427 rpm at 21 V, and 470 rpm at 24 V. The prototype was tested to run continuously for 48 hours for each speed level, with speed being measured every hour using a tachometer. Statistical computation shows that the speed remains constant for the entire 48 hour period. Evaluation of results shows that the speed controller and the novel mechanical design for the orbital shaking motion achieved their functions. For this reason, it can be concluded that the prototype is durable and safe for use in orbital shaking applications.
{"title":"Design, construction, and evaluation of transformer-based orbital shaker for coffee micropropagation","authors":"Edwin R. Arboleda","doi":"10.14203/j.mev.2022.v13.147-156","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.147-156","url":null,"abstract":"This study offers a novel solution to deal with the complicated electronic circuitry for speed controller and too complex mechanical design of rotating mechanism of an orbital shaker. The developed prototype used a transformer that varies the supply voltage to control the speed of rotation of the orbital shaker. The prototype has five speed levels which depend on the input voltage. These speeds are 180 rpm at 12 V, 258 rpm at 15 V, 360 rpm at 18 V, 427 rpm at 21 V, and 470 rpm at 24 V. The prototype was tested to run continuously for 48 hours for each speed level, with speed being measured every hour using a tachometer. Statistical computation shows that the speed remains constant for the entire 48 hour period. Evaluation of results shows that the speed controller and the novel mechanical design for the orbital shaking motion achieved their functions. For this reason, it can be concluded that the prototype is durable and safe for use in orbital shaking applications.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47863497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.15-23
M. Z. Romdlony, M. R. Rosa, Edwin Muhammad Puji Syamsudin, B. Trilaksono, Agung Surya Wibowo
This paper presents the implementation of an adaptive control approach to the ball and beam system (BBS). The dynamics of a BBS are non-linear, and in the implementation, the uncertainty of the system's parameters may occur. In this research, the linear state-feedback model reference adaptive control (MRAC) is used to synchronize the states of the BBS with the states of the given reference model. This research investigates the performance of the MRAC method for a linear system that is applied to a non-linear system or BBS. In order to get a faster states convergence response, we define the initial condition of the feedback gains. In addition, the feedback gains are limited to get less oscillation response. The results show the error convergence is improved for the different sets of the sinusoidal reference signal for the MRAC with modified feedback gains. The ball position convergence improvement of MRAC with modified feedback gains for sinusoidal reference with an amplitude of 0.25, 0.5, and 0.75 are 35.1 %, 36 %, and 52.4 %, respectively.
{"title":"Design and application of models reference adaptive control (MRAC) on ball and beam","authors":"M. Z. Romdlony, M. R. Rosa, Edwin Muhammad Puji Syamsudin, B. Trilaksono, Agung Surya Wibowo","doi":"10.14203/j.mev.2022.v13.15-23","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.15-23","url":null,"abstract":"This paper presents the implementation of an adaptive control approach to the ball and beam system (BBS). The dynamics of a BBS are non-linear, and in the implementation, the uncertainty of the system's parameters may occur. In this research, the linear state-feedback model reference adaptive control (MRAC) is used to synchronize the states of the BBS with the states of the given reference model. This research investigates the performance of the MRAC method for a linear system that is applied to a non-linear system or BBS. In order to get a faster states convergence response, we define the initial condition of the feedback gains. In addition, the feedback gains are limited to get less oscillation response. The results show the error convergence is improved for the different sets of the sinusoidal reference signal for the MRAC with modified feedback gains. The ball position convergence improvement of MRAC with modified feedback gains for sinusoidal reference with an amplitude of 0.25, 0.5, and 0.75 are 35.1 %, 36 %, and 52.4 %, respectively.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42976541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.79-87
Royke Vincentius Febriyana, Ramadhan S. Pernyata, Dita Andansari
Small and medium-sized enterprises (SMEs) have a big role in Indonesian economic development. The government has set four strategies in an effort to boost Indonesian economic development. One of the four strategies mentions the SMEs, and the other mentions the use of 4.0 technology. Working capital has been the main issue need to be considered in the SMEs. Thus, the affordability must be considered in the use of 4.0 technology in SMEs. One of the 4.0 technologies that are possible to be used in the SMEs is a three-axis milling machine. One of the limitations of the machine is that it cannot do the back-side machining process. The paper examines the possibility of manual back-side machining on the three-axis milling machine without adding a rotary axis. Four methods were conducted by adding two-point markings on the x-axis, two-point markings on the y-axis, four-point markings on the x- and y-axis, and four-point markings on the x- and y-axis plus a series of offsetting processes. After conducting several qualitative observations and measurements on the mismatched position of the front and the back machining, and also analyzing the problems that emerged during the processes of the four different methods, it is concluded that adding four points markings on the x- and y-axis plus doing a series of offsetting processes is the best method to have two-sided manual machining with three-axis computer numerical control (CNC) milling machine.
{"title":"Two-sided manual machining method for three-axis CNC milling machine for small and medium-sized enterprises","authors":"Royke Vincentius Febriyana, Ramadhan S. Pernyata, Dita Andansari","doi":"10.14203/j.mev.2022.v13.79-87","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.79-87","url":null,"abstract":"Small and medium-sized enterprises (SMEs) have a big role in Indonesian economic development. The government has set four strategies in an effort to boost Indonesian economic development. One of the four strategies mentions the SMEs, and the other mentions the use of 4.0 technology. Working capital has been the main issue need to be considered in the SMEs. Thus, the affordability must be considered in the use of 4.0 technology in SMEs. One of the 4.0 technologies that are possible to be used in the SMEs is a three-axis milling machine. One of the limitations of the machine is that it cannot do the back-side machining process. The paper examines the possibility of manual back-side machining on the three-axis milling machine without adding a rotary axis. Four methods were conducted by adding two-point markings on the x-axis, two-point markings on the y-axis, four-point markings on the x- and y-axis, and four-point markings on the x- and y-axis plus a series of offsetting processes. After conducting several qualitative observations and measurements on the mismatched position of the front and the back machining, and also analyzing the problems that emerged during the processes of the four different methods, it is concluded that adding four points markings on the x- and y-axis plus doing a series of offsetting processes is the best method to have two-sided manual machining with three-axis computer numerical control (CNC) milling machine.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43523044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.1-14
Nur Jamiludin Ramadhan, N. Lilansa, Afaf Fadhil Rifa’i, Hoe D. Nguyen
Most arm robot has an inefficient operating time because it requires operator to input destination coordinates. Besides, main problem of arm robot is object’s vulnerability when it is manipulated by the robot. This research goals is to develop an arm robot control system which has ability to automatically detect object using image processing in order to reduce operating time. It is also able to control gripping force for eliminating damage to objects caused by robot gripper. This research is implemented in LabVIEW 2011 software to control arm robot model which can represent industrial scale robot. The software is designed with informative visualization to help user learn and understand robotic control concept deeply. The system can automatically detect object position based on pattern recognition method which has four steps: pre-processing process to initialize picture taken by camera, segmentation process for separating object from the background, classification process to determine characteristics of object, and position estimation process to estimate object position in the picture. The object’s position data are then calculated by using kinematic equation to control the robot’s motion. The results show that the system is able to detect object and move the robot automatically with accuracy rate in x-axis is 95.578 % and in y-axis is 92.878 %. The system also implements modified PI control method with FSR as input to control gripping force with maximum overshoot value 10 %. Arm robot model control system developed is successfully meet the expectation. The system control can be implemented to industrial scale arm robot with several modification because of kinematic similarity between model and industrial scale robot.
{"title":"Pattern recognition based movement control and gripping forces control system on arm robot model using LabVIEW","authors":"Nur Jamiludin Ramadhan, N. Lilansa, Afaf Fadhil Rifa’i, Hoe D. Nguyen","doi":"10.14203/j.mev.2022.v13.1-14","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.1-14","url":null,"abstract":"Most arm robot has an inefficient operating time because it requires operator to input destination coordinates. Besides, main problem of arm robot is object’s vulnerability when it is manipulated by the robot. This research goals is to develop an arm robot control system which has ability to automatically detect object using image processing in order to reduce operating time. It is also able to control gripping force for eliminating damage to objects caused by robot gripper. This research is implemented in LabVIEW 2011 software to control arm robot model which can represent industrial scale robot. The software is designed with informative visualization to help user learn and understand robotic control concept deeply. The system can automatically detect object position based on pattern recognition method which has four steps: pre-processing process to initialize picture taken by camera, segmentation process for separating object from the background, classification process to determine characteristics of object, and position estimation process to estimate object position in the picture. The object’s position data are then calculated by using kinematic equation to control the robot’s motion. The results show that the system is able to detect object and move the robot automatically with accuracy rate in x-axis is 95.578 % and in y-axis is 92.878 %. The system also implements modified PI control method with FSR as input to control gripping force with maximum overshoot value 10 %. Arm robot model control system developed is successfully meet the expectation. The system control can be implemented to industrial scale arm robot with several modification because of kinematic similarity between model and industrial scale robot.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42502931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.60-71
Rizal Nurdiansyah, N. Windarko, Renny Rakhmawati, Muhammad Abdul Haq
Ultracapacitors have been attracting interest to apply as energy storage devices with advantages of fast charging capability, high power density, and long lifecycle. As a storage device, accurate monitoring is required to ensure and operate safely during the charge/discharge process. Therefore, high accuracy estimation of the state of charge (SOC) is needed to keep the Ultracapacitor working properly. This paper proposed SOC estimation using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS is tested by comparing it to true SOC based on an equivalent circuit model. To find the best method, the ANFIS is modified and tested with various membership functions of triangular, trapezoidal, and gaussian. The results show that triangular membership is the best method due to its high accuracy. An experimental test is also conducted to verify simulation results. As an overall result, the triangular membership shows the best estimation. Simulation results show SOC estimation mean absolute percentage error (MAPE) is 0.70 % for charging and 0.83 % for discharging. Furthermore, experimental results show that MAPE of SOC estimation is 0.76 % for random current. The results of simulations and experimental tests show that ANFIS with a triangular membership function has the most reliable ability with a minimum error value in estimating the state of charge on the Ultracapacitor even under conditions of indeterminate random current.
{"title":"State of charge estimation of ultracapacitor based on equivalent circuit model using adaptive neuro-fuzzy inference system","authors":"Rizal Nurdiansyah, N. Windarko, Renny Rakhmawati, Muhammad Abdul Haq","doi":"10.14203/j.mev.2022.v13.60-71","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.60-71","url":null,"abstract":"Ultracapacitors have been attracting interest to apply as energy storage devices with advantages of fast charging capability, high power density, and long lifecycle. As a storage device, accurate monitoring is required to ensure and operate safely during the charge/discharge process. Therefore, high accuracy estimation of the state of charge (SOC) is needed to keep the Ultracapacitor working properly. This paper proposed SOC estimation using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS is tested by comparing it to true SOC based on an equivalent circuit model. To find the best method, the ANFIS is modified and tested with various membership functions of triangular, trapezoidal, and gaussian. The results show that triangular membership is the best method due to its high accuracy. An experimental test is also conducted to verify simulation results. As an overall result, the triangular membership shows the best estimation. Simulation results show SOC estimation mean absolute percentage error (MAPE) is 0.70 % for charging and 0.83 % for discharging. Furthermore, experimental results show that MAPE of SOC estimation is 0.76 % for random current. The results of simulations and experimental tests show that ANFIS with a triangular membership function has the most reliable ability with a minimum error value in estimating the state of charge on the Ultracapacitor even under conditions of indeterminate random current.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46154941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.24-35
Louise Indah Utami, Ika Yuliyani, Yanti Suprianti, P. Iriani
Combined cycle power plant (CCPP) is a closed-cycle power plant, where the heat from the gas turbine’s (GT) exhaust gas will be streamed to the heat recovery steam generator (HRSG) to be utilized by steam turbine (ST). CCPP Block 4 (Jawa-2) PT Indonesia Power Priok POMU has an installed capacity of 880 MW, consists of 2 GT units (301.5 MW each) and 1 ST unit (307.5 MW). The performance of a power plant depends on its load, as the efficiency of the turbine generator is low when operated at low loads. The data as of July 2019 showed that 2.2.1 (2 GT, 2 HRSG, 1 ST) configuration has been used in three conditions where the CC net load was around 30 - 45 %, which in fact could be compensated by the 1.1.1 (1 GT, 1 HRSG, 1 ST) configuration. This resulted in a decrease of the CC net efficiency up to 21.34 %. The optimization that can be done is to change the load configuration from 2.2.1 to 1.1.1 at 0 - 50 % of CC net load through simulations, by including the influence of the GT and HRSG start-up processes. The result of this optimization is that the CCPP performance increases due to higher performance of each turbine generator. Thus, the optimization results during July 2019 provided energy saving of 1,146.09 MMBTU or equivalent to cost saving of IDR 152,249,551.76.
联合循环发电厂(CCPP)是一种闭式循环发电厂,来自燃气轮机(GT)废气的热量将流入热回收蒸汽发生器(HRSG),供蒸汽轮机(ST)使用。CCPP区块4(爪哇-2)PT Indonesia Power Priok POMU的装机容量为880 MW,由2台GT机组(每台301.5 MW)和1台ST机组(307.5 MW)组成。发电厂的性能取决于其负载,因为涡轮发电机在低负载下运行时效率较低。截至2019年7月的数据显示,2.2.1(2 GT,2 HRSG,1 ST)配置已在CC净负荷约为30-45%的三种情况下使用,事实上可以通过1.1.1(1 GT,1 HRSG,一ST)配置进行补偿。这导致CC净效率下降了21.34%。可以进行的优化是通过模拟将负荷配置从2.2.1更改为1.1.1,负荷为CC净负荷的0-50%,包括燃气轮机和HRSG启动过程的影响。这种优化的结果是,由于每个涡轮发电机的性能更高,CCPP性能提高。因此,2019年7月的优化结果提供了1146.09 MMBTU的节能,或相当于152249551.76印尼盾的成本节约。
{"title":"Load optimization on the performance of combined cycle power plant Block 4 PT Indonesia Power Priok POMU","authors":"Louise Indah Utami, Ika Yuliyani, Yanti Suprianti, P. Iriani","doi":"10.14203/j.mev.2022.v13.24-35","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.24-35","url":null,"abstract":"Combined cycle power plant (CCPP) is a closed-cycle power plant, where the heat from the gas turbine’s (GT) exhaust gas will be streamed to the heat recovery steam generator (HRSG) to be utilized by steam turbine (ST). CCPP Block 4 (Jawa-2) PT Indonesia Power Priok POMU has an installed capacity of 880 MW, consists of 2 GT units (301.5 MW each) and 1 ST unit (307.5 MW). The performance of a power plant depends on its load, as the efficiency of the turbine generator is low when operated at low loads. The data as of July 2019 showed that 2.2.1 (2 GT, 2 HRSG, 1 ST) configuration has been used in three conditions where the CC net load was around 30 - 45 %, which in fact could be compensated by the 1.1.1 (1 GT, 1 HRSG, 1 ST) configuration. This resulted in a decrease of the CC net efficiency up to 21.34 %. The optimization that can be done is to change the load configuration from 2.2.1 to 1.1.1 at 0 - 50 % of CC net load through simulations, by including the influence of the GT and HRSG start-up processes. The result of this optimization is that the CCPP performance increases due to higher performance of each turbine generator. Thus, the optimization results during July 2019 provided energy saving of 1,146.09 MMBTU or equivalent to cost saving of IDR 152,249,551.76.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49572681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.95-100
Zanu Saputra, R. V. Manurung, Aminuddin Debataraja, M. I. Nugraha, Tien-Fu Lu
This paper concerns enhancing a lead detection sensor using a combination of polypyrrole (PPy), Nafion (N), and ionic liquid (IL) with thick-film or screen-printing technology on sensitive material-based carbon electrodes. Electrode characterization using a scanning electron microscope (SEM) was conducted to see the morphology of sensitive materials, showing that the spherical particles were distributed evenly on the electrode surface. Analysis using energy dispersive spectroscopy (EDS) shows that the element's atomic composition is 84.92 %, 8.81 %, 6.26 %, and 0.01 % for carbon, nitrogen, oxygen, and bismuth, respectively. Potentiostat measurement with the ambient temperature of 25 °C on a standard lead solution with concentration ranging from 0.05 to 0.5 mg/l yields an average output voltage ranging from 2.16 to 2.27 V. It can be concluded that the sensor is able to detect lead with a sensitivity of 0.21 V in each addition of solution concentration (mg/l) and give an 84 % concentration contribution to the voltage.
{"title":"Carbon electrode sensitivity enhancement for lead detection using polypyrrole, ionic liquid, and nafion composite","authors":"Zanu Saputra, R. V. Manurung, Aminuddin Debataraja, M. I. Nugraha, Tien-Fu Lu","doi":"10.14203/j.mev.2022.v13.95-100","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.95-100","url":null,"abstract":"This paper concerns enhancing a lead detection sensor using a combination of polypyrrole (PPy), Nafion (N), and ionic liquid (IL) with thick-film or screen-printing technology on sensitive material-based carbon electrodes. Electrode characterization using a scanning electron microscope (SEM) was conducted to see the morphology of sensitive materials, showing that the spherical particles were distributed evenly on the electrode surface. Analysis using energy dispersive spectroscopy (EDS) shows that the element's atomic composition is 84.92 %, 8.81 %, 6.26 %, and 0.01 % for carbon, nitrogen, oxygen, and bismuth, respectively. Potentiostat measurement with the ambient temperature of 25 °C on a standard lead solution with concentration ranging from 0.05 to 0.5 mg/l yields an average output voltage ranging from 2.16 to 2.27 V. It can be concluded that the sensor is able to detect lead with a sensitivity of 0.21 V in each addition of solution concentration (mg/l) and give an 84 % concentration contribution to the voltage.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48515497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.48-59
B. Arthaya, Raymond Christian, T. Tamba, D. Tükel
The study starts by modeling a simple 2-DOF (degrees of freedom) moving platform that employs two actuators to provide two kinds of rotational motion on the moving platform and each motion is driven by an electrical motor. A preliminary study to better understand motion generation is conducted by deriving a mathematical model of the platform. Based on this model, the relationship between the rotations of the two driving motors and the pitch and roll movements of the platform is determined. The range of movements must be limited both in the pitch and roll planes to a certain maximum and minimum values of tilting angles. This preliminary design of the platform is introduced to demonstrate motions that might be experienced by the user in roll and pitch directions. The motion generated has fulfilled the constraint with respect to the vestibular system. Results of experimental works show that the first motor angle between -26° and 27° is suitable for the roll plane; meanwhile, the angles range of -52° and 54° for the second motor is suitable for the pitch plane. Furthermore, some simple experiments were conducted to examine the correctness of the model through the comparison between testing results obtained from simulation and experimental work. In the reported results, the moving platform was set to some initial poses and was driven to the home position and the recording showed acceptable results. This moving platform can later be used for more comprehensive experiments, i.e., vehicle dynamic testing, driving training purposes, and human factor analyses.
{"title":"Design and kinematic analysis of a two-DOF moving platform as a base for a car simulator","authors":"B. Arthaya, Raymond Christian, T. Tamba, D. Tükel","doi":"10.14203/j.mev.2022.v13.48-59","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.48-59","url":null,"abstract":"The study starts by modeling a simple 2-DOF (degrees of freedom) moving platform that employs two actuators to provide two kinds of rotational motion on the moving platform and each motion is driven by an electrical motor. A preliminary study to better understand motion generation is conducted by deriving a mathematical model of the platform. Based on this model, the relationship between the rotations of the two driving motors and the pitch and roll movements of the platform is determined. The range of movements must be limited both in the pitch and roll planes to a certain maximum and minimum values of tilting angles. This preliminary design of the platform is introduced to demonstrate motions that might be experienced by the user in roll and pitch directions. The motion generated has fulfilled the constraint with respect to the vestibular system. Results of experimental works show that the first motor angle between -26° and 27° is suitable for the roll plane; meanwhile, the angles range of -52° and 54° for the second motor is suitable for the pitch plane. Furthermore, some simple experiments were conducted to examine the correctness of the model through the comparison between testing results obtained from simulation and experimental work. In the reported results, the moving platform was set to some initial poses and was driven to the home position and the recording showed acceptable results. This moving platform can later be used for more comprehensive experiments, i.e., vehicle dynamic testing, driving training purposes, and human factor analyses.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43187682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-29DOI: 10.14203/j.mev.2022.v13.36-47
E. Ganji, M. Mahdavian
One of the requirements for controlling hybrid power systems is designing an appropriate excitation system, flexibility, protection, and coordination of all components to improve system stability. In this paper, various types of equipment simulated in the linear form and non-linear models are connected to the power supply. In the same direction, while presenting a new controller for the diesel generator excitation system and a filter used to purify and attenuate current harmonics is reported on the stability of a grid-independent system. Finally, the variation of the mode for the voltage and power of the system has been confirmed at the time of error and complete system stability. Also, the important indicators in the analysis are obtained in the lowest values, which can be seen from the controlled harmonics of the system of this data. In addition, the variation of the mode for the voltage and power of the system has been confirmed and the important indicators in the analysis are obtained in the lowest values.
{"title":"Improvement of power grid stability and load distribution using diesel excitation controller","authors":"E. Ganji, M. Mahdavian","doi":"10.14203/j.mev.2022.v13.36-47","DOIUrl":"https://doi.org/10.14203/j.mev.2022.v13.36-47","url":null,"abstract":"One of the requirements for controlling hybrid power systems is designing an appropriate excitation system, flexibility, protection, and coordination of all components to improve system stability. In this paper, various types of equipment simulated in the linear form and non-linear models are connected to the power supply. In the same direction, while presenting a new controller for the diesel generator excitation system and a filter used to purify and attenuate current harmonics is reported on the stability of a grid-independent system. Finally, the variation of the mode for the voltage and power of the system has been confirmed at the time of error and complete system stability. Also, the important indicators in the analysis are obtained in the lowest values, which can be seen from the controlled harmonics of the system of this data. In addition, the variation of the mode for the voltage and power of the system has been confirmed and the important indicators in the analysis are obtained in the lowest values.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49475076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}