Pub Date : 2018-07-31DOI: 10.14203/j.mev.2018.v9.1-7
A. Hakim, W. T. Handoyo, P. Wullandari
Energy and exergy analysis has been conducted on photovoltaic (PV) system in Bantul Regency, a special region of Yogyakarta, Indonesia. The PV exergy analysis was used to determine the performance of the PV system by considering environmental factors other than solar irradiance. This research aims to obtain values of exergy and energy efficiencies in the PV system. The experiment results show that the energy efficiency value produced by the PV system was 8.62–74.18%, meanwhile its exergy efficiency was 0.29%-9.40%, respectively. The value of exergy efficiency is lower than the value of energy efficiency. This result confirmed that the environmental factor greatly affects the output of the PV system. It can be concluded that high solar radiation does not always increase the production of exergy, since it is also influenced by the environmental temperature and the PV cells' temperature.
{"title":"An energy and exergy analysis of photovoltaic system in Bantul Regency, Indonesia","authors":"A. Hakim, W. T. Handoyo, P. Wullandari","doi":"10.14203/j.mev.2018.v9.1-7","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.1-7","url":null,"abstract":"Energy and exergy analysis has been conducted on photovoltaic (PV) system in Bantul Regency, a special region of Yogyakarta, Indonesia. The PV exergy analysis was used to determine the performance of the PV system by considering environmental factors other than solar irradiance. This research aims to obtain values of exergy and energy efficiencies in the PV system. The experiment results show that the energy efficiency value produced by the PV system was 8.62–74.18%, meanwhile its exergy efficiency was 0.29%-9.40%, respectively. The value of exergy efficiency is lower than the value of energy efficiency. This result confirmed that the environmental factor greatly affects the output of the PV system. It can be concluded that high solar radiation does not always increase the production of exergy, since it is also influenced by the environmental temperature and the PV cells' temperature.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48106983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-31DOI: 10.14203/j.mev.2018.v9.8-16
Kadek Heri Sanjaya, Yukhi Mustaqim Kusuma Sya'Bana, S. Hutchinson, C. Diels
Sleep-related driving fatigue has been recognised as one main cause of traffic accidents. In Indonesia, experiment-based driving fatigue study is still very limited, therefore it is necessary to develop laboratory-based experiment procedure for sleep-related fatigue study. In this preliminary study, we performed a literature review to find references for the procedure and three pilot experiments to test the instruments and procedure to be used in measuring driving fatigue. Three subjects participated, both from experienced and inexperienced drivers. Our pilot experiments were performed on a driving simulator using OpenDS software with brake and lane change test reaction time measurement. We measured sleepiness by using Karolinska Sleepiness Scale (KSS) Questionnaire. The conditions of the experiment were based on illumination intensity as well as pre- and post-lunch session. We found that lane change reaction time is more potential than brake reaction time to measure driving performance as shown by the more fluctuating data. Post-lunch seems to induce drowsiness greater than illumination intensity. KSS questionnaire seems non-linear with driving performance data. We need to test further these speculations in the future studies involving a sufficient number of subjects. We also need to compare the effect of circadian rhythm and sleep deprivation on driving fatigue. The use of eye closure and physiological measurement in further study will enable us to measure driving fatigue more objectively. Considering the limitations, more preliminary experiments are required to be performed before conducting the main experiment of driving fatigue.
{"title":"Preliminary investigation of sleep-related driving fatigue experiment in Indonesia","authors":"Kadek Heri Sanjaya, Yukhi Mustaqim Kusuma Sya'Bana, S. Hutchinson, C. Diels","doi":"10.14203/j.mev.2018.v9.8-16","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.8-16","url":null,"abstract":"Sleep-related driving fatigue has been recognised as one main cause of traffic accidents. In Indonesia, experiment-based driving fatigue study is still very limited, therefore it is necessary to develop laboratory-based experiment procedure for sleep-related fatigue study. In this preliminary study, we performed a literature review to find references for the procedure and three pilot experiments to test the instruments and procedure to be used in measuring driving fatigue. Three subjects participated, both from experienced and inexperienced drivers. Our pilot experiments were performed on a driving simulator using OpenDS software with brake and lane change test reaction time measurement. We measured sleepiness by using Karolinska Sleepiness Scale (KSS) Questionnaire. The conditions of the experiment were based on illumination intensity as well as pre- and post-lunch session. We found that lane change reaction time is more potential than brake reaction time to measure driving performance as shown by the more fluctuating data. Post-lunch seems to induce drowsiness greater than illumination intensity. KSS questionnaire seems non-linear with driving performance data. We need to test further these speculations in the future studies involving a sufficient number of subjects. We also need to compare the effect of circadian rhythm and sleep deprivation on driving fatigue. The use of eye closure and physiological measurement in further study will enable us to measure driving fatigue more objectively. Considering the limitations, more preliminary experiments are required to be performed before conducting the main experiment of driving fatigue.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43606015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-31DOI: 10.14203/J.MEV.2018.V9.%P
D. Andriani
AND
和
{"title":"Preface MEV Vol 9 Iss 1","authors":"D. Andriani","doi":"10.14203/J.MEV.2018.V9.%P","DOIUrl":"https://doi.org/10.14203/J.MEV.2018.V9.%P","url":null,"abstract":"AND","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46915739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-31DOI: 10.14203/j.mev.2018.v9.25-31
M. Černý, Michal Dzurilla, M. Musil, M. Gašparík
This paper presents a new principle of inductive vibration power harvester. Harvester is a pendulum that uses energy capacitor which is the mass. The mass is connected to the pendulum via a gearbox to achieve greater movement of the pendulum that generates an electromagnetic voltage. The harvester is developed at a very low frequency (1-10 Hz) which uses the rectified magnetic fluxes. Magnets are statically placed in the harvester case, and relative motion is carried out by the coil. Magnets are static, and the coil moves due to the weight ratio of magnets which the steel leads of the magnetic flux and the coil itself. This paper is focused on a harvester with a mechanical amplifier with the proposed technique is brings the plow harvester access with an auxiliary force. The experimental results indicate that the optimal results of the harvester with an accumulator for the resonant zone are 3.75 Hz, 7 Hz, and 10 Hz.
{"title":"Pendulum energy harvester with amplifier","authors":"M. Černý, Michal Dzurilla, M. Musil, M. Gašparík","doi":"10.14203/j.mev.2018.v9.25-31","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.25-31","url":null,"abstract":"This paper presents a new principle of inductive vibration power harvester. Harvester is a pendulum that uses energy capacitor which is the mass. The mass is connected to the pendulum via a gearbox to achieve greater movement of the pendulum that generates an electromagnetic voltage. The harvester is developed at a very low frequency (1-10 Hz) which uses the rectified magnetic fluxes. Magnets are statically placed in the harvester case, and relative motion is carried out by the coil. Magnets are static, and the coil moves due to the weight ratio of magnets which the steel leads of the magnetic flux and the coil itself. This paper is focused on a harvester with a mechanical amplifier with the proposed technique is brings the plow harvester access with an auxiliary force. The experimental results indicate that the optimal results of the harvester with an accumulator for the resonant zone are 3.75 Hz, 7 Hz, and 10 Hz.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46077472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-31DOI: 10.14203/j.mev.2018.v9.17-24
V. Rexhepi, P. Nakov
Power transformers are one of the most expensive components; therefore the focus on their status and its continuous operation is the primary task. In the power systems, condition assessment of performance and reliability is based on the state of components, measurements, testing and maintenance as well as their diagnosis. Hence, condition assessment of power transformer parameters is the most important regarding their status and finding incipient failures. Among many factors, the most factors that affects the safe operation and life expentancy of the transformer is the moisture in oil. It is known that the low moisture oil in power transformers causes many problems including electrical breakdown, increase the amount of partial discharge, decreases the dielectric withstand strength and other phenomena. Thus, knowledge about the moisture concentration in a power transformer is significantly important for safe operation and lifespan. In this study, moisture level in oil is estimated and its status classification is proposed by using fuzzy logic techniques for the power transformer monitoring and condition assessment. Moreover, the goal of the study is to find methods and techniques for the condition assessment of power transformers status based on the state of moisture in oil using the fuzzy logic technique. These applied techniques increase the power system reliability, help to reduce incipient failures, and give the better maintenance plan using an algorithm based on logic rules. Also, by using the fuzzy logic techniques, it is easier to prevent failures which may have consequences not only for transformers but also for the power system as a whole.
{"title":"Condition assessment of power transformers status based on moisture level using fuzzy logic techniques","authors":"V. Rexhepi, P. Nakov","doi":"10.14203/j.mev.2018.v9.17-24","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.17-24","url":null,"abstract":"Power transformers are one of the most expensive components; therefore the focus on their status and its continuous operation is the primary task. In the power systems, condition assessment of performance and reliability is based on the state of components, measurements, testing and maintenance as well as their diagnosis. Hence, condition assessment of power transformer parameters is the most important regarding their status and finding incipient failures. Among many factors, the most factors that affects the safe operation and life expentancy of the transformer is the moisture in oil. It is known that the low moisture oil in power transformers causes many problems including electrical breakdown, increase the amount of partial discharge, decreases the dielectric withstand strength and other phenomena. Thus, knowledge about the moisture concentration in a power transformer is significantly important for safe operation and lifespan. In this study, moisture level in oil is estimated and its status classification is proposed by using fuzzy logic techniques for the power transformer monitoring and condition assessment. Moreover, the goal of the study is to find methods and techniques for the condition assessment of power transformers status based on the state of moisture in oil using the fuzzy logic technique. These applied techniques increase the power system reliability, help to reduce incipient failures, and give the better maintenance plan using an algorithm based on logic rules. Also, by using the fuzzy logic techniques, it is easier to prevent failures which may have consequences not only for transformers but also for the power system as a whole.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42326229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-31DOI: 10.14203/j.mev.2018.v9.32-40
G. Nugroho, Dicky Dectaviansyah
In conducting a disaster monitoring mission, an unmanned aerial vehicle (UAV) has to travel a long distance to cover the region that is hited by a disaster. In the monitoring mission, Air Data and Attitude Heading Reference System (ADAHRS) data are very important to always be displayed on the ground control station (GCS). Unfortunately, the area of monitoring mission is very wide, whereas the usage of an omnidirectional antenna in the disaster monitoring mission is limited to the UAV maximum range. Therefore, a high gain directional antenna is needed. However, the directional antenna has a disadvantage of always being directed to the target. To solve this problem, antenna tracker is made to track the UAV continuously so that the directional antenna can always be directed to the flying UAV. An antenna tracker using a 32-bit microcontroller and GPS with two degrees-of-freedom was developed. It is able to move 360 degrees on azimuth axis (yaw) and 90 degrees on elevation axis (pitch). Meanwhile, the directional antenna is three elements yagi type with a radiation capability of 6 dBi. By using the antenna tracker, larger UAV range was obtained and the connection between the UAV and the GCS could always be maintained with a minimum fluctuation of RSSI signal, compared to those without using antenna tracker.
{"title":"Design, manufacture and performance analysis of an automatic antenna tracker for an unmanned aerial vehicle (UAV)","authors":"G. Nugroho, Dicky Dectaviansyah","doi":"10.14203/j.mev.2018.v9.32-40","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.32-40","url":null,"abstract":"In conducting a disaster monitoring mission, an unmanned aerial vehicle (UAV) has to travel a long distance to cover the region that is hited by a disaster. In the monitoring mission, Air Data and Attitude Heading Reference System (ADAHRS) data are very important to always be displayed on the ground control station (GCS). Unfortunately, the area of monitoring mission is very wide, whereas the usage of an omnidirectional antenna in the disaster monitoring mission is limited to the UAV maximum range. Therefore, a high gain directional antenna is needed. However, the directional antenna has a disadvantage of always being directed to the target. To solve this problem, antenna tracker is made to track the UAV continuously so that the directional antenna can always be directed to the flying UAV. An antenna tracker using a 32-bit microcontroller and GPS with two degrees-of-freedom was developed. It is able to move 360 degrees on azimuth axis (yaw) and 90 degrees on elevation axis (pitch). Meanwhile, the directional antenna is three elements yagi type with a radiation capability of 6 dBi. By using the antenna tracker, larger UAV range was obtained and the connection between the UAV and the GCS could always be maintained with a minimum fluctuation of RSSI signal, compared to those without using antenna tracker.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44078228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-28DOI: 10.14203/j.mev.2017.v8.70-75
Yukhi Mustaqim Kusuma Sya'Bana, Kadek Heri Sanjaya, M. R. Kurnia, J. Shippen
This is the preliminary finding of a study to simulate lumbar and neck flexion while ingress to the paratransit. The result of simulation will determine design aspect criteria as a preliminary step before ideation and implementation design steps. Biomechanics of Bodies (BoB) is software that used to represent passenger task during paratransit ingress simulation, with skeleton model that used is height 165 cm and weight 65 kg. Environment to represent this simulation is measured Suzuki Carry SS 2013 as a private car that has been modified into a public transportation in accordance with the Indonesian government road-worthy test. Due to the low height of the entrance and the high ground clearance, lumbar and neck joint angle was a focus of this ingress simulation. The peak angle at the neck joint is 40° when 2 s skeleton nod in the door limitation ingress and lumbar flexion is 70° when 5 s skeleton is walking while bend over that will increase the load on that area. Based on biomechanical simulation approach, we may suggest the dimension of public transportation design framework developments, especially paratransit.
这是一项研究的初步发现,该研究模拟了进入副Transit时的腰椎和颈部屈曲。模拟结果将确定设计方面的标准,作为构思和实施设计步骤之前的初步步骤。车身生物力学(BoB)是一种用于在副驾驶进入模拟过程中代表乘客任务的软件,使用的骨架模型高165厘米,重65公斤。代表该模拟的环境是铃木Carry SS 2013,它是一辆根据印尼政府道路测试改装成公共交通工具的私家车。由于入口高度低,离地间隙大,腰椎和颈部关节角度是此次入口模拟的重点。当2 s的骨骼在门限制入口点头时,颈关节处的峰值角度为40°,当5 s的骨骼弯腰行走时,腰椎屈曲为70°,这将增加该区域的负荷。基于生物力学模拟方法,我们可以提出公共交通设计框架发展的维度,尤其是副框架。
{"title":"Simulation of lumbar and neck angle flexion while ingress of paratransit (angkot) in Indonesia as a preliminary design study","authors":"Yukhi Mustaqim Kusuma Sya'Bana, Kadek Heri Sanjaya, M. R. Kurnia, J. Shippen","doi":"10.14203/j.mev.2017.v8.70-75","DOIUrl":"https://doi.org/10.14203/j.mev.2017.v8.70-75","url":null,"abstract":"This is the preliminary finding of a study to simulate lumbar and neck flexion while ingress to the paratransit. The result of simulation will determine design aspect criteria as a preliminary step before ideation and implementation design steps. Biomechanics of Bodies (BoB) is software that used to represent passenger task during paratransit ingress simulation, with skeleton model that used is height 165 cm and weight 65 kg. Environment to represent this simulation is measured Suzuki Carry SS 2013 as a private car that has been modified into a public transportation in accordance with the Indonesian government road-worthy test. Due to the low height of the entrance and the high ground clearance, lumbar and neck joint angle was a focus of this ingress simulation. The peak angle at the neck joint is 40° when 2 s skeleton nod in the door limitation ingress and lumbar flexion is 70° when 5 s skeleton is walking while bend over that will increase the load on that area. Based on biomechanical simulation approach, we may suggest the dimension of public transportation design framework developments, especially paratransit.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"8 1","pages":"70-75"},"PeriodicalIF":0.0,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44859086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-28DOI: 10.14203/j.mev.2017.v8.102-114
I. Febijanto
The use of Pure Plant Oil (PPO) as a fuel blend in a power plant is mandatory as stipulated in the Ministerial Decree of Energy and Mineral Resource of the Republic of Indonesia. However, the implementation of PPO used in power generation has many obstacles due to a lack of information concerning the impacts of PPO used in the operating performance of the power generation engine. In this study, the effect of PPO as a blended fuel with High-Speed Diesel (HSD) was studied by using the gas turbine with a capacity of 18 MW. The PPO was blended based on volume with a ratio of 0%, 5%, 10% and 20%. As the results, it is shown that the use of PPO with a blend ratio of 20% is the maximum fuel blend ratio according to the threshold value of a flue gas temperature and a vibration velocity in the gas turbine.
{"title":"The Impacts of a Biofuel Use on the Gas Turbine Operating Performance","authors":"I. Febijanto","doi":"10.14203/j.mev.2017.v8.102-114","DOIUrl":"https://doi.org/10.14203/j.mev.2017.v8.102-114","url":null,"abstract":"The use of Pure Plant Oil (PPO) as a fuel blend in a power plant is mandatory as stipulated in the Ministerial Decree of Energy and Mineral Resource of the Republic of Indonesia. However, the implementation of PPO used in power generation has many obstacles due to a lack of information concerning the impacts of PPO used in the operating performance of the power generation engine. In this study, the effect of PPO as a blended fuel with High-Speed Diesel (HSD) was studied by using the gas turbine with a capacity of 18 MW. The PPO was blended based on volume with a ratio of 0%, 5%, 10% and 20%. As the results, it is shown that the use of PPO with a blend ratio of 20% is the maximum fuel blend ratio according to the threshold value of a flue gas temperature and a vibration velocity in the gas turbine.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"8 1","pages":"102-114"},"PeriodicalIF":0.0,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43691163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-28DOI: 10.14203/j.mev.2017.v8.76-84
M. Djalal, H. Setiadi, A. Imran
Micro hydro has been chosen because it has advantages both economically, technically and as well as in terms of environmental friendliness. Micro hydro is suitable to be used in areas that difficult to be reached by the grid. Problems that often occur in the micro hydro system are not the constant rotation of the generator that caused by a change in load demand of the consumer. Thus causing frequency fluctuations in the system that can lead to damage both in the plant and in terms of consumer electrical appliances. The appropriate control technology should be taken to support the optimum performance of micro hydro. Therefore, this study will discuss a strategy of load frequency control by using Energy Storage. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are devices that can store energy in the form of a fast magnetic field in the superconducting coil. For the optimum performance, it is necessary to get the optimum tuning of SMES and CES parameters. The artificial intelligence methods, Cuckoo Search Algorithm (CSA) are used to obtain the optimum parameters in the micro hydro system. The simulation results show that the application of the CSA that use to tune the parameters of hybrid SMES-CES-PID can reduce overshoot oscillation of frequency response in micro hydro power plant.
选择微型水力发电是因为它在经济、技术和环境友好方面都有优势。微型水电适用于电网难以到达的地区。在微型水电系统中经常出现的问题不是由于用户负荷需求的变化而引起的发电机不断旋转。从而引起系统的频率波动,从而导致工厂和消费电器的损坏。应采取适当的控制技术,以支持微水电的最佳性能。因此,本研究将探讨一种基于储能的负荷频率控制策略。超导磁能存储(SMES)和电容储能(CES)是在超导线圈中以快速磁场的形式存储能量的器件。为了获得最优的性能,有必要对SMES和CES参数进行最优调整。采用人工智能方法和布谷鸟搜索算法(CSA)来获得微水电系统的最优参数。仿真结果表明,应用CSA对混合型smb - ce - pid进行参数整定可以减小微水电厂频率响应的超调振荡。
{"title":"Frequency stability improvement of micro hydro power system using hybrid SMES and CES based on Cuckoo search algorithm","authors":"M. Djalal, H. Setiadi, A. Imran","doi":"10.14203/j.mev.2017.v8.76-84","DOIUrl":"https://doi.org/10.14203/j.mev.2017.v8.76-84","url":null,"abstract":"Micro hydro has been chosen because it has advantages both economically, technically and as well as in terms of environmental friendliness. Micro hydro is suitable to be used in areas that difficult to be reached by the grid. Problems that often occur in the micro hydro system are not the constant rotation of the generator that caused by a change in load demand of the consumer. Thus causing frequency fluctuations in the system that can lead to damage both in the plant and in terms of consumer electrical appliances. The appropriate control technology should be taken to support the optimum performance of micro hydro. Therefore, this study will discuss a strategy of load frequency control by using Energy Storage. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are devices that can store energy in the form of a fast magnetic field in the superconducting coil. For the optimum performance, it is necessary to get the optimum tuning of SMES and CES parameters. The artificial intelligence methods, Cuckoo Search Algorithm (CSA) are used to obtain the optimum parameters in the micro hydro system. The simulation results show that the application of the CSA that use to tune the parameters of hybrid SMES-CES-PID can reduce overshoot oscillation of frequency response in micro hydro power plant.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"8 1","pages":"76-84"},"PeriodicalIF":0.0,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41440096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-26DOI: 10.14203/j.mev.2017.v8.95-102
F. Murdiya, Febrizal Febrizal, A. Amri
This paper reports an application of a series resonance converter as a high voltage generator to drive a surface barrier discharge with a magnetic field. The high voltage was about 5 kV with the frequency of 25 kHz. It was connected to circular aluminum plates as the anode electrode and a rectangular aluminum plate as the cathode electrode. These electrodes were separated by a glass dielectric as the barrier. The experiment result indicated that the discharge current with magnetic field was lower than without magnetic field. The plasma on the surface barrier with magnetic field was more luminous than without magnetic field. It also indicated that the area of Lissajous diagram for the surface barrier discharge with magnetic field was slightly decreased than without magnetic field. It could be concluded that the magnetic field affects the plasma progress on the surface barrier. Molecular dynamic (MD) could be used in understanding the ionization process of air molecules. The ionization energies for CO 2, N 2, and O 2 were 0.0502 kcal/mol, 0.0526 kcal/mol and 0.430 kcal/mol, respectively in 1,000 seconds. The highest ionization energy was O 2 .
{"title":"The performance of surface barrier discharge in magnetic field driven by half bridge series resonance converter","authors":"F. Murdiya, Febrizal Febrizal, A. Amri","doi":"10.14203/j.mev.2017.v8.95-102","DOIUrl":"https://doi.org/10.14203/j.mev.2017.v8.95-102","url":null,"abstract":"This paper reports an application of a series resonance converter as a high voltage generator to drive a surface barrier discharge with a magnetic field. The high voltage was about 5 kV with the frequency of 25 kHz. It was connected to circular aluminum plates as the anode electrode and a rectangular aluminum plate as the cathode electrode. These electrodes were separated by a glass dielectric as the barrier. The experiment result indicated that the discharge current with magnetic field was lower than without magnetic field. The plasma on the surface barrier with magnetic field was more luminous than without magnetic field. It also indicated that the area of Lissajous diagram for the surface barrier discharge with magnetic field was slightly decreased than without magnetic field. It could be concluded that the magnetic field affects the plasma progress on the surface barrier. Molecular dynamic (MD) could be used in understanding the ionization process of air molecules. The ionization energies for CO 2, N 2, and O 2 were 0.0502 kcal/mol, 0.0526 kcal/mol and 0.430 kcal/mol, respectively in 1,000 seconds. The highest ionization energy was O 2 .","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"8 1","pages":"95-102"},"PeriodicalIF":0.0,"publicationDate":"2017-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44162361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}