Pub Date : 2019-11-28DOI: 10.14203/j.mev.2019.v10.61-71
Mikecon Cenit, Vaibhav Gandhi
This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed, 3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are used coherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus, the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require additional lift to provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper.
{"title":"[Retracted] Design and development of the sEMG-based exoskeleton strength enhancer for the legs","authors":"Mikecon Cenit, Vaibhav Gandhi","doi":"10.14203/j.mev.2019.v10.61-71","DOIUrl":"https://doi.org/10.14203/j.mev.2019.v10.61-71","url":null,"abstract":"This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed, 3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are used coherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus, the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require additional lift to provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41440386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-25DOI: 10.14203/j.mev.2019.v10.73-84
T. D. Atmaja, D. Andriani, Rudi Darussalam
Smart Grid is an advanced two way data and energy flow capable of self-healing, adaptive, resilient, and sustainable with prediction capability of possible fault. This article aimed to disclose Smart Grid communication in a logical way to facilitate the understanding of each component function. The study was focused on the improvement, advantages, common used design, and possible feature of Smart Grid communication components. The results of the study divide the Smart Grid communication application into two main category i.e. measurement equipment and network architecture. Measurement equipment consists of Advance Metering Infrastructure, Phasor Measurement Unit, Intelligent Electronic Devices, and Wide Area Measurement System. The network architecture is divided based on three hierarchies; local area network for 1 to 100 m with 100 kbps data rate, neighbour area network for 100 m to 10 km with 100 Mbps data rate, and wide area network for up to 100 km with 1 Gbps data rate. More information is provided regarding the routing protocol for each network from various available protocols. The final section presents the energy and data flow architecture for Smart Grid implementation based on the measurement equipment and the network suitability. This article is expected to provide a comprehensive guide and comparison surrounding the technologies supporting Smart Grid implementation especially on communication applications.
{"title":"Smart Grid communication applications: measurement equipment and networks architecture for data and energy flow","authors":"T. D. Atmaja, D. Andriani, Rudi Darussalam","doi":"10.14203/j.mev.2019.v10.73-84","DOIUrl":"https://doi.org/10.14203/j.mev.2019.v10.73-84","url":null,"abstract":"Smart Grid is an advanced two way data and energy flow capable of self-healing, adaptive, resilient, and sustainable with prediction capability of possible fault. This article aimed to disclose Smart Grid communication in a logical way to facilitate the understanding of each component function. The study was focused on the improvement, advantages, common used design, and possible feature of Smart Grid communication components. The results of the study divide the Smart Grid communication application into two main category i.e. measurement equipment and network architecture. Measurement equipment consists of Advance Metering Infrastructure, Phasor Measurement Unit, Intelligent Electronic Devices, and Wide Area Measurement System. The network architecture is divided based on three hierarchies; local area network for 1 to 100 m with 100 kbps data rate, neighbour area network for 100 m to 10 km with 100 Mbps data rate, and wide area network for up to 100 km with 1 Gbps data rate. More information is provided regarding the routing protocol for each network from various available protocols. The final section presents the energy and data flow architecture for Smart Grid implementation based on the measurement equipment and the network suitability. This article is expected to provide a comprehensive guide and comparison surrounding the technologies supporting Smart Grid implementation especially on communication applications.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"10 1","pages":"73-84"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49039981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This simulation study presents the effect of lightning strikes on the performance of arresters at 150 kV overhead lines. Lightning strikes have several parameters that affect the performance of line arresters (LA), namely lightning charge, and impulse energy. The simulation was attempted by injection of a direct strike to the ground wire with the peak voltage of 10 MV. The peak voltage was varied in terms of wavefront time (Tf) and the duration of lightning impulses (tau). In order to calculate current, charge and impulse energy of LA from various variations of Tf and tau, the trapezoidal numerical integration method is used. The current and impulse energy arising due to direct strikes and various variations of Tf and tau will be compared for each phase so that the influence of Tf and tau can be obtained from the performance of the LA and the current charge and impulse energy values are still within the limits of the IEEE C62.11 standard. The installation of LA and the position of arresters affected the peak voltage of lightning on the phase line when lightning struck it. The line arresters provide a drop in the peak voltage of lightning in phase lines. By installing line arresters in each tower, it will reduce the peak voltage of lightning on the phase line more significantly than the standalone line arrester. It is shown that the line arresters have to install at least six towers to reduce the peak voltage in the phase lines.
{"title":"The effect of lightning impulse characteristics and line arrester to the lightning protection performance on 150 kV overhead lines: ATP-EMTP computational approach","authors":"F. Murdiya, Febrizal Febrizal, Cecilia Stevany, Havel Alindo Sano, Firdaus Firdaus","doi":"10.14203/j.mev.2019.v10.49-59","DOIUrl":"https://doi.org/10.14203/j.mev.2019.v10.49-59","url":null,"abstract":"This simulation study presents the effect of lightning strikes on the performance of arresters at 150 kV overhead lines. Lightning strikes have several parameters that affect the performance of line arresters (LA), namely lightning charge, and impulse energy. The simulation was attempted by injection of a direct strike to the ground wire with the peak voltage of 10 MV. The peak voltage was varied in terms of wavefront time (Tf) and the duration of lightning impulses (tau). In order to calculate current, charge and impulse energy of LA from various variations of Tf and tau, the trapezoidal numerical integration method is used. The current and impulse energy arising due to direct strikes and various variations of Tf and tau will be compared for each phase so that the influence of Tf and tau can be obtained from the performance of the LA and the current charge and impulse energy values are still within the limits of the IEEE C62.11 standard. The installation of LA and the position of arresters affected the peak voltage of lightning on the phase line when lightning struck it. The line arresters provide a drop in the peak voltage of lightning in phase lines. By installing line arresters in each tower, it will reduce the peak voltage of lightning on the phase line more significantly than the standalone line arrester. It is shown that the line arresters have to install at least six towers to reduce the peak voltage in the phase lines.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"10 1","pages":"49-59"},"PeriodicalIF":0.0,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43327124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.49-56
Y. Putrasari, Achmad Praptijanto, Arifin Nur, W. B. Santoso, Mulia Pratama, Ahmad Dimyani, S. Suherman, B. Wahono, M. K. A. Wardana, O. Lim
Efforts to find alternative fuels and reduce emissions of CI engines have been conducted, one of which is the use of diesel hydrogen dual fuel. One of the goals of using hydrogen in dual-fuel combustion systems is to reduce particulate emissions and increase engine power. This study investigates the thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition. The hydrogen was used as a secondary fuel in a single cylinder 667 cm3 diesel engine. The hydrogen was supplied to intake manifold by fumigation method, and diesel was injected directly into the combustion chamber. The results show that the performance test yielding an increase around 10% in the value of thermal efficiency of diesel engines with the addition of hydrogen either at 2000 or 2500 rpm. Meanwhile, emission analyses show that the addition of hydrogen at 2000 and 2500 rpm lead to the decrease of NOx value up to 43%. Furthermore, the smokeless emissions around 0% per kWh were occurred by hydrogen addition at 2000 and 2500 rpm of engine speeds with load operation under 20 Nm.
{"title":"Thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition","authors":"Y. Putrasari, Achmad Praptijanto, Arifin Nur, W. B. Santoso, Mulia Pratama, Ahmad Dimyani, S. Suherman, B. Wahono, M. K. A. Wardana, O. Lim","doi":"10.14203/j.mev.2018.v9.49-56","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.49-56","url":null,"abstract":"Efforts to find alternative fuels and reduce emissions of CI engines have been conducted, one of which is the use of diesel hydrogen dual fuel. One of the goals of using hydrogen in dual-fuel combustion systems is to reduce particulate emissions and increase engine power. This study investigates the thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition. The hydrogen was used as a secondary fuel in a single cylinder 667 cm3 diesel engine. The hydrogen was supplied to intake manifold by fumigation method, and diesel was injected directly into the combustion chamber. The results show that the performance test yielding an increase around 10% in the value of thermal efficiency of diesel engines with the addition of hydrogen either at 2000 or 2500 rpm. Meanwhile, emission analyses show that the addition of hydrogen at 2000 and 2500 rpm lead to the decrease of NOx value up to 43%. Furthermore, the smokeless emissions around 0% per kWh were occurred by hydrogen addition at 2000 and 2500 rpm of engine speeds with load operation under 20 Nm.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46006902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.81-88
Amin Amin, Kristian Ismail, A. Hapid
Cell imbalance has always happened in the series-connected battery. Series-connected battery needs to be balanced to maintain capacity and maximize the batteries lifespan. Cell balancing helps to dispart energy equally among battery cells. For active cell balancing, the use of a DC-DC converter module for cell balancing is quite common to achieve high efficiency, reliability, and high power density converter. This paper describes the implementation of a LiFePO4 battery charger based on the DC-DC converter module used for cell balancing application. A constant current-constant voltage (CC-CV) controller for the charger, which is a general charging method applied to the LiFePO4 battery, is presented for preventing overcharging when considering the nonlinear property of a LiFePO4 battery. The prototype is made up with an input voltage of 43V to 110V and the maximum output voltage of 3.75V, allowing to charge a LiFePO4 cell battery and balancing the battery pack with many cells from 15 to 30 cells. The goal is to have a LiFePO4 battery charger with an approximate power of 40W and the maximum output current of 10A. Experimental results on a 160AH LiFePO4 battery for some state of charge (SoC) shows that the maximum battery voltage has been limited at 3.77 volt and maximum charging current could reach up to 10.64 A. The results show that the charger can maintain battery voltage at the maximum reference voltage and avoid the LiFePO4 battery from overcharging.
{"title":"Implementation of a LiFePO4 battery charger for cell balancing application","authors":"Amin Amin, Kristian Ismail, A. Hapid","doi":"10.14203/j.mev.2018.v9.81-88","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.81-88","url":null,"abstract":"Cell imbalance has always happened in the series-connected battery. Series-connected battery needs to be balanced to maintain capacity and maximize the batteries lifespan. Cell balancing helps to dispart energy equally among battery cells. For active cell balancing, the use of a DC-DC converter module for cell balancing is quite common to achieve high efficiency, reliability, and high power density converter. This paper describes the implementation of a LiFePO4 battery charger based on the DC-DC converter module used for cell balancing application. A constant current-constant voltage (CC-CV) controller for the charger, which is a general charging method applied to the LiFePO4 battery, is presented for preventing overcharging when considering the nonlinear property of a LiFePO4 battery. The prototype is made up with an input voltage of 43V to 110V and the maximum output voltage of 3.75V, allowing to charge a LiFePO4 cell battery and balancing the battery pack with many cells from 15 to 30 cells. The goal is to have a LiFePO4 battery charger with an approximate power of 40W and the maximum output current of 10A. Experimental results on a 160AH LiFePO4 battery for some state of charge (SoC) shows that the maximum battery voltage has been limited at 3.77 volt and maximum charging current could reach up to 10.64 A. The results show that the charger can maintain battery voltage at the maximum reference voltage and avoid the LiFePO4 battery from overcharging.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45126306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.89-100
R. Ristiana, A. S. Rohman, E. Rijanto, A. Purwadi, E. Hidayat, C. Machbub
This paper develops an optimal speed control using a linear quadratic integral (LQI) control standard with/without an observer in the system based on an integrated battery-electric vehicle (IBEV) model. The IBEV model includes the dynamics of the electric motor, longitudinal vehicle, inverter, and battery. The IBEV model has one state variable of indirectly measured and unobservable, but the system is detectable. The objectives of this study were: (a) to create a speed control that gets the exact solution for a system with one indirect measurement and unobservable state variable; and (b) to create a speed control that has the potential to make a more efficient energy system. A full state feedback LQI controller without an observer is used as a benchmark. Two output feedback LQI controllers are designed; including one controller uses an order-4 observer and the other uses an order-5 observer. The order-4 observer does not include the battery state of charge as an observer state whereas the order-5 observer is designed by making all the state variable as the observer state and using the battery state of charge as an additional system output. An electric passenger minibus for public transport with 1500 kg weight was used as the vehicle model. Simulations were performed when the vehicle moves in a flat surface with the increased speed from stationary to 60 km/h and moves according to standard NEDC driving profile. The simulation results showed that both the output feedback LQI controllers provided similar speed performance as compared to the full state feedback LQI controller. However, the output feedback LQI controller with the order-5 observer consumed less energy than with the order-4 observer, which is about 10% for NEDC driving profile and 12% for a flat surface. It can be concluded that the LQI controller with order-5 observer gives better energy efficiency than the LQI controller with order-4 observer
{"title":"Designing optimal speed control with observer using integrated battery-electric vehicle (IBEV) model for energy efficiency","authors":"R. Ristiana, A. S. Rohman, E. Rijanto, A. Purwadi, E. Hidayat, C. Machbub","doi":"10.14203/j.mev.2018.v9.89-100","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.89-100","url":null,"abstract":"This paper develops an optimal speed control using a linear quadratic integral (LQI) control standard with/without an observer in the system based on an integrated battery-electric vehicle (IBEV) model. The IBEV model includes the dynamics of the electric motor, longitudinal vehicle, inverter, and battery. The IBEV model has one state variable of indirectly measured and unobservable, but the system is detectable. The objectives of this study were: (a) to create a speed control that gets the exact solution for a system with one indirect measurement and unobservable state variable; and (b) to create a speed control that has the potential to make a more efficient energy system. A full state feedback LQI controller without an observer is used as a benchmark. Two output feedback LQI controllers are designed; including one controller uses an order-4 observer and the other uses an order-5 observer. The order-4 observer does not include the battery state of charge as an observer state whereas the order-5 observer is designed by making all the state variable as the observer state and using the battery state of charge as an additional system output. An electric passenger minibus for public transport with 1500 kg weight was used as the vehicle model. Simulations were performed when the vehicle moves in a flat surface with the increased speed from stationary to 60 km/h and moves according to standard NEDC driving profile. The simulation results showed that both the output feedback LQI controllers provided similar speed performance as compared to the full state feedback LQI controller. However, the output feedback LQI controller with the order-5 observer consumed less energy than with the order-4 observer, which is about 10% for NEDC driving profile and 12% for a flat surface. It can be concluded that the LQI controller with order-5 observer gives better energy efficiency than the LQI controller with order-4 observer","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47057887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.41-48
S. Yousufuddin
The research presented in this article expresses experimental results on combustion duration effect on the dual fueled engine. In particular, the research was focused on the emissions occurred specifically from a hydrogen-ethanol dual fueled engine. This study was performed on a compression ignition engine that was converted to run and act as a spark ignition engine. This modified engine was fueled by hydrogen–ethanol with various percentage substitutions of hydrogen. The substitution was altered from 20 to 80% at a constant speed of 1500 rpm. The various engine emission characteristics such as CO, Hydrocarbon, and NOx were experimentally determined. This study resulted that at a compression ratio of 11:1 and combustion duration of 25°CA, the best operating conditions of the engine were shown. Moreover, the optimum fuel combination was established at 60 to 80% of hydrogen substitution to ethanol. The experimental results also revealed that at 100% load and at compression ratios 7, 9, and 11; the CO and HC emissions have decreased while NOx increased and followed with the increase in the percentage of hydrogen addition and combustion duration. It was concluded that the retarding combustion duration was preferred for NOx emission control in the engine.
{"title":"Combustion duration influence on hydrogen-ethanol dual fueled engine emissions: An experimental analysis","authors":"S. Yousufuddin","doi":"10.14203/j.mev.2018.v9.41-48","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.41-48","url":null,"abstract":"The research presented in this article expresses experimental results on combustion duration effect on the dual fueled engine. In particular, the research was focused on the emissions occurred specifically from a hydrogen-ethanol dual fueled engine. This study was performed on a compression ignition engine that was converted to run and act as a spark ignition engine. This modified engine was fueled by hydrogen–ethanol with various percentage substitutions of hydrogen. The substitution was altered from 20 to 80% at a constant speed of 1500 rpm. The various engine emission characteristics such as CO, Hydrocarbon, and NOx were experimentally determined. This study resulted that at a compression ratio of 11:1 and combustion duration of 25°CA, the best operating conditions of the engine were shown. Moreover, the optimum fuel combination was established at 60 to 80% of hydrogen substitution to ethanol. The experimental results also revealed that at 100% load and at compression ratios 7, 9, and 11; the CO and HC emissions have decreased while NOx increased and followed with the increase in the percentage of hydrogen addition and combustion duration. It was concluded that the retarding combustion duration was preferred for NOx emission control in the engine.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46585140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.73-80
Gunawan Dewantoro, Anton Suprayudi, D. Santoso
One of the critical issues when navigating wheeled robot is the ability to move effectively. Omnidirectional robots might overcome these nonholonomic constraints. However, the motion planning and travel speed of the movement has been in continuous research. This study proposed segregation of states to improve the holonomic motion system with omnidirectional wheels, which is specially designed for soccer robots. The system used five separate defined states in order to move toward all directions by means of speed variations of each wheel, yielding both linear and curved trajectories. The controller received some parameter values from the main controller to generate robot motion according to the game algorithm. The results show that the robot is able to move in an omnidirectional way with the maximum linear speed of 3.2 m/s. The average error of movement direction is 4.3°, and the average error of facing direction is 4.8°. The shortest average time for a robot to make a rotational motion is 2.84 seconds without any displacement from the pivot point. Also, the robot can dribble the ball forward and backward successfully. In addition, the robot can change its facing direction while carrying the ball with a ball shift of less than 15 cm for 5 seconds. The results shows that state segregations improve the robots capability to conduct many variations of motions, while the ball-handling system is helpful to prevent the ball gets disengaged from the robot grip so the robot can dribble accordingly.
{"title":"Enhancement of motionability based on segregation of states for holonomic soccer robot","authors":"Gunawan Dewantoro, Anton Suprayudi, D. Santoso","doi":"10.14203/j.mev.2018.v9.73-80","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.73-80","url":null,"abstract":"One of the critical issues when navigating wheeled robot is the ability to move effectively. Omnidirectional robots might overcome these nonholonomic constraints. However, the motion planning and travel speed of the movement has been in continuous research. This study proposed segregation of states to improve the holonomic motion system with omnidirectional wheels, which is specially designed for soccer robots. The system used five separate defined states in order to move toward all directions by means of speed variations of each wheel, yielding both linear and curved trajectories. The controller received some parameter values from the main controller to generate robot motion according to the game algorithm. The results show that the robot is able to move in an omnidirectional way with the maximum linear speed of 3.2 m/s. The average error of movement direction is 4.3°, and the average error of facing direction is 4.8°. The shortest average time for a robot to make a rotational motion is 2.84 seconds without any displacement from the pivot point. Also, the robot can dribble the ball forward and backward successfully. In addition, the robot can change its facing direction while carrying the ball with a ball shift of less than 15 cm for 5 seconds. The results shows that state segregations improve the robots capability to conduct many variations of motions, while the ball-handling system is helpful to prevent the ball gets disengaged from the robot grip so the robot can dribble accordingly.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48215466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.65-72
Duc minh Dao, P. Pham, Tuyetlien Tran, T. Le
A lower limb rehabilitation device was designed using the compressed air cylinder in order to answer the particular request in Vietnam. This paper is presenting the results of a study of the device response. Dynamic equation of the actuator and equations of the proportional valve have been established. The relationship between the input signal and the output signal of the actuator was derived. Inventor® software was used to design the mechanical structure of the device. Matlab® software was used to calculate the parameters values of the PID controller by simulating the response of the actuator. The results show that the response time of both knee drive and hip drive mechanisms are 8 seconds while the overshoot of both knee drive and hip drive mechanisms are 1%. Moreover, the starting torque of the knee drive mechanism is 17 Nm, and the starting torque of the hip drive mechanism is 35 Nm. The simulation results show that the PID controller gives a fast response time and a low overshoot.
{"title":"Study on the transient response of lower limb rehabilitation actuator using the pneumatic cylinder","authors":"Duc minh Dao, P. Pham, Tuyetlien Tran, T. Le","doi":"10.14203/j.mev.2018.v9.65-72","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.65-72","url":null,"abstract":"A lower limb rehabilitation device was designed using the compressed air cylinder in order to answer the particular request in Vietnam. This paper is presenting the results of a study of the device response. Dynamic equation of the actuator and equations of the proportional valve have been established. The relationship between the input signal and the output signal of the actuator was derived. Inventor® software was used to design the mechanical structure of the device. Matlab® software was used to calculate the parameters values of the PID controller by simulating the response of the actuator. The results show that the response time of both knee drive and hip drive mechanisms are 8 seconds while the overshoot of both knee drive and hip drive mechanisms are 1%. Moreover, the starting torque of the knee drive mechanism is 17 Nm, and the starting torque of the hip drive mechanism is 35 Nm. The simulation results show that the PID controller gives a fast response time and a low overshoot.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47225544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-30DOI: 10.14203/j.mev.2018.v9.57-64
M. Effendy, N. Mardiyah, Khusnul Hidayat
Maximum power point tracking (MPPT) is a technique to maximize the power output of photovoltaic (PV). Therefore, to achieve higher PV efficiency, the development of MPPT control algorithm is necessary. Recently, it was revealed that fuzzy logic controller (FLC) is better than other control algorithms and is possible toe developed. This study fabricated and implemented MPPT based on the proposed a new FLC. Input Calculator (IC) via sensors reads current and voltage of PV and generates the comparison of voltage and current of PV, then IC output becomes fuzzy algorithm input. Fuzzy algorithm produces duty cycle that drives synchronous buck converter. The result showed that MPPT system with proposed FLC method has 99.1% efficiency while MPPT system with PO method has 95.5% efficiency. From the obtained result, it can be concluded that the MPPT based on the proposed FLC can increase the overall efficiency of the system to 99.3%.
{"title":"Efficiency improvement of photovolatic by using maximum power point tracking based on a new fuzzy logic controller","authors":"M. Effendy, N. Mardiyah, Khusnul Hidayat","doi":"10.14203/j.mev.2018.v9.57-64","DOIUrl":"https://doi.org/10.14203/j.mev.2018.v9.57-64","url":null,"abstract":"Maximum power point tracking (MPPT) is a technique to maximize the power output of photovoltaic (PV). Therefore, to achieve higher PV efficiency, the development of MPPT control algorithm is necessary. Recently, it was revealed that fuzzy logic controller (FLC) is better than other control algorithms and is possible toe developed. This study fabricated and implemented MPPT based on the proposed a new FLC. Input Calculator (IC) via sensors reads current and voltage of PV and generates the comparison of voltage and current of PV, then IC output becomes fuzzy algorithm input. Fuzzy algorithm produces duty cycle that drives synchronous buck converter. The result showed that MPPT system with proposed FLC method has 99.1% efficiency while MPPT system with PO method has 95.5% efficiency. From the obtained result, it can be concluded that the MPPT based on the proposed FLC can increase the overall efficiency of the system to 99.3%.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45455751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}