首页 > 最新文献

ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)最新文献

英文 中文
Frequentist and Bayesian Change-Point Models: A Missing Link 频率论和贝叶斯变点模型:缺失的一环
David Ardia, A. Dufays, C. O. Criado
We show that the minimum description length (MDL) criterion widely used to estimate lin- ear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows for results from the frequentist and Bayesian literatures to be bridged together. In this estimation framework, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. This approach is further extended to other popular information criteria (such as Akaike, Bayes, and Hannan-Quinn’s). Moreover, we propose several CP methods that take advantage of the MDL probabilistic representation. Based on simulated and macroeconomic data, the novel methods detect and date structural breaks with the same or improved level of accuracy than state-of-the- art approaches. Finally, we highlight the usefulness of combining CP methods for long time series, both in terms of improved detection accuracy and reduced computational cost.
我们证明了广泛用于估计线性变点(CP)模型的最小描述长度(MDL)准则对应于具有特定先验分布类别的贝叶斯模型的边际似然。这允许频率主义者和贝叶斯文献的结果连接在一起。在这个估计框架中,人们可以依靠估计的CP数量和位置的一致性以及频率方法的计算效率,获得在给定时间观察到CP的概率,计算模型后验概率,并通过贝叶斯后验选择或组合CP方法。这种方法进一步扩展到其他流行的信息标准(如Akaike、Bayes和Hannan-Quinn的标准)。此外,我们还提出了几种利用MDL概率表示的CP方法。基于模拟和宏观经济数据,新方法检测和确定结构断裂的日期,其精度与最先进的方法相同或更高。最后,我们强调了结合CP方法对长时间序列的有用性,无论是在提高检测精度方面还是在降低计算成本方面。
{"title":"Frequentist and Bayesian Change-Point Models: A Missing Link","authors":"David Ardia, A. Dufays, C. O. Criado","doi":"10.2139/ssrn.3499824","DOIUrl":"https://doi.org/10.2139/ssrn.3499824","url":null,"abstract":"We show that the minimum description length (MDL) criterion widely used to estimate lin- ear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows for results from the frequentist and Bayesian literatures to be bridged together. In this estimation framework, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. This approach is further extended to other popular information criteria (such as Akaike, Bayes, and Hannan-Quinn’s). Moreover, we propose several CP methods that take advantage of the MDL probabilistic representation. Based on simulated and macroeconomic data, the novel methods detect and date structural breaks with the same or improved level of accuracy than state-of-the- art approaches. Finally, we highlight the usefulness of combining CP methods for long time series, both in terms of improved detection accuracy and reduced computational cost.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"22 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120857326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sparse Change-Point VAR models 稀疏变点VAR模型
A. Dufays, Li Zhuo, J. Rombouts, Yong Song
Change-point (CP) VAR models face a dimensionality curse due to the proliferation of parameters that arises when new breaks are detected. To handle large data sets, we introduce the Sparse CP-VAR model that determines which parameters truly vary when a break is detected. By doing so, the number of new parameters to estimate at each regime is drastically reduced and the CP dynamic becomes easier to interpret. The Sparse CP-VAR model disentangles the dynamics of the mean parameters and the covariance matrix. The former uses CP dynamics with shrinkage prior distributions while the latter is driven by an infinite hidden Markov framework. A simulation study highlights that the framework detects correctly the number of breaks per model parameter, and that it takes advantage of common breaks in the cross-sectional dimension to more precisely estimate them. Our applications on financial and macroeconomic systems highlight that the Sparse CP-VAR model helps interpreting the detected breaks. It turns out that many spillover effects have zero regimes meaning that they are zero for the entire sample period. Forecasting wise, the Sparse CP-VAR model is competitive against several recent time-varying parameter and CP-VAR models in terms of log predictive densities.
变化点(CP) VAR模型由于检测到新的中断时产生的参数激增而面临维度诅咒。为了处理大型数据集,我们引入了稀疏CP-VAR模型,该模型确定了当检测到中断时哪些参数真正变化。通过这样做,在每个状态下估计的新参数的数量大大减少,CP动态变得更容易解释。稀疏CP-VAR模型分解了平均参数和协方差矩阵的动态关系。前者使用具有收缩先验分布的CP动态,后者由无限隐马尔可夫框架驱动。仿真研究表明,该框架可以正确地检测每个模型参数的断裂数,并利用截面尺寸中的常见断裂来更精确地估计它们。我们在金融和宏观经济系统上的应用强调了稀疏CP-VAR模型有助于解释检测到的中断。事实证明,许多溢出效应具有零机制,这意味着它们在整个样本周期内为零。在预测方面,稀疏CP-VAR模型在对数预测密度方面与最近的几个时变参数和CP-VAR模型相竞争。
{"title":"Sparse Change-Point VAR models","authors":"A. Dufays, Li Zhuo, J. Rombouts, Yong Song","doi":"10.2139/ssrn.3461692","DOIUrl":"https://doi.org/10.2139/ssrn.3461692","url":null,"abstract":"Change-point (CP) VAR models face a dimensionality curse due to the proliferation of parameters that arises when new breaks are detected. To handle large data sets, we introduce the Sparse CP-VAR model that determines which parameters truly vary when a break is detected. By doing so, the number of new parameters to estimate at each regime is drastically reduced and the CP dynamic becomes easier to interpret. The Sparse CP-VAR model disentangles the dynamics of the mean parameters and the covariance matrix. The former uses CP dynamics with shrinkage prior distributions while the latter is driven by an infinite hidden Markov framework. A simulation study highlights that the framework detects correctly the number of breaks per model parameter, and that it takes advantage of common breaks in the cross-sectional dimension to more precisely estimate them. Our applications on financial and macroeconomic systems highlight that the Sparse CP-VAR model helps interpreting the detected breaks. It turns out that many spillover effects have zero regimes meaning that they are zero for the entire sample period. Forecasting wise, the Sparse CP-VAR model is competitive against several recent time-varying parameter and CP-VAR models in terms of log predictive densities.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"59 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116521085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Многомодельная Оценка Инновационного Развития 78 Российских Регионов По Опережающим Индикаторам За Период 2005–2017гг. (Multimodel Estimation for Innovative Development of 78 Russian Regions Using Leading Indicators During 2005-2017)
V. Semenychev, Anastasiya Korobetskaya
Russian Abstract: Предложен комплекс опережающих индикаторов инновационной динамики России и их многокомпонентные оценки для 78 регионов за период 2005-2017 годов. Индикаторы характеризуют динамику основных отраслей российской экономики (строительства, торговли, добычи полезных ископаемых, обрабатывающей промышленности) трендами, циклическими, сезонными колебаниями и их взаимодействиями. Динамика продукции сельского хозяйства, в большей степени обусловленная климатическими и природными условиями, пока не рассматривались. Для трендов индикаторов предложены одна линейная и шесть существенно нелинейных (нелинейных по параметрам) моделей. Сезонная компонента моделировалась гармоникой с сезонными коэффициентами, а циклы Китчина, Жугляра и Кузнеца - суммой гармоник с некратными частотами (по Е.Е. Слуцкому). Взаимодействие компонент рассматривалось как линейное (аддитивной), так и нелинейное (аддитивно-мультипликативное). Скорректированный коэффициент детерминации обосновал более точные модели. Было уделено внимание расширению адаптации инструментария, прогнозированию всех регулярных компонент индикаторов, характеристикам инновационного развития и синхронности циклов отдельных регионов. Представлен новый и большей точности материал для руководителей, служб и предприятий регионов, определены дальнейшие перспективы развития предложенного инструментария.

English Abstract: The authors proposed a set of leading indicators of innovation dynamics in Russia and their multicomponent estimates for 78 regions during 2005-2017. The indicators show dynamics of the most important economic sectors in Russia (building, trade, mining, manufacturing and its branches) while agricultural production, which dynamics mostly depends on climate and geography, have not yet been considered The models include trends, cycles, seasonal component and their interactions. For trends one linear and six substantially nonlinear (nonlinear in the parameters) models are used. The seasonal component was modeled by seasonal coefficients. Kitchin, Juglar and Kuznets cycles was modeled using sum of three sine curves with non-proportional frequencies (as suggested by E.Slutsky). The interaction of components was considered both linear (additive) and nonlinear (additive-multiplicative). The most accurate models were justified using adjusted coefficient of determination. Special attention is paid to adaptive modeling tools expansion, leading indicators decomposition and forecasting, innovative development analysis and regional cycles synchrony or asynchrony. As a result of the modeling the authors presented new and more accurate material for regional authorities and managers. Further development of the proposed modeling tools are also suggested.
俄罗斯的Abstract:提供了一系列领先于俄罗斯创新动态的指标及其对2005-2017年78个地区的多元化评估。指标显示了俄罗斯经济(建设、贸易、采矿业、制造业)趋势、周期、季节性波动及其相互作用的动态。在很大程度上,由于气候和自然条件,农业产品的动态尚未得到考虑。对于趋势指标,提供了一种线性和六种主要非线性(参数非线性)模型。季节性成分是用季节性系数谐波模拟的,而kitchin、zhuglar和铁匠的周期是一个非频率谐波的总和。这种相互作用被认为是线性(附加值)和非线性(附加值)。修正的定义系数为更精确的模型提供了基础。人们注意到工具适应的扩大,预测指标的所有正则成分,创新发展特征和单个区域周期同步。该地区的高管、服务和企业提供了新的、更精确的材料,并确定了拟议工具的未来前景。英语Abstract:俄罗斯领先的动力学和2005-2017区间78区间的多项研究。俄罗斯最受欢迎的经济动态展览(建筑、贸易、矿业和矿业开发),没有动力趋势模型,圆盘,系列,和their互动。对于单行和六次substanealar来说,模特就是这样。季节性公司是季节性公司的模型。Kitchin、Juglar和Kuznets cycles都是三个未开发的特性的模型。components的互动是连接的boditive和nonlinear。最受欢迎的模特儿是《解剖学》中最受欢迎的模特儿。特别的刺激是扩展到adaptive模拟器,开创性的解构和力量,创新的分析和区域电路同步或同步。这是对新教练和新教练模式的回应。未来的模型工具开发是also suggested。
{"title":"Многомодельная Оценка Инновационного Развития 78 Российских Регионов По Опережающим Индикаторам За Период 2005–2017гг. (Multimodel Estimation for Innovative Development of 78 Russian Regions Using Leading Indicators During 2005-2017)","authors":"V. Semenychev, Anastasiya Korobetskaya","doi":"10.2139/ssrn.3373579","DOIUrl":"https://doi.org/10.2139/ssrn.3373579","url":null,"abstract":"<b>Russian Abstract:</b> Предложен комплекс опережающих индикаторов инновационной динамики России и их многокомпонентные оценки для 78 регионов за период 2005-2017 годов. Индикаторы характеризуют динамику основных отраслей российской экономики (строительства, торговли, добычи полезных ископаемых, обрабатывающей промышленности) трендами, циклическими, сезонными колебаниями и их взаимодействиями. Динамика продукции сельского хозяйства, в большей степени обусловленная климатическими и природными условиями, пока не рассматривались. Для трендов индикаторов предложены одна линейная и шесть существенно нелинейных (нелинейных по параметрам) моделей. Сезонная компонента моделировалась гармоникой с сезонными коэффициентами, а циклы Китчина, Жугляра и Кузнеца - суммой гармоник с некратными частотами (по Е.Е. Слуцкому). Взаимодействие компонент рассматривалось как линейное (аддитивной), так и нелинейное (аддитивно-мультипликативное). Скорректированный коэффициент детерминации обосновал более точные модели. Было уделено внимание расширению адаптации инструментария, прогнозированию всех регулярных компонент индикаторов, характеристикам инновационного развития и синхронности циклов отдельных регионов. Представлен новый и большей точности материал для руководителей, служб и предприятий регионов, определены дальнейшие перспективы развития предложенного инструментария.<br><br><b>English Abstract:</b> The authors proposed a set of leading indicators of innovation dynamics in Russia and their multicomponent estimates for 78 regions during 2005-2017. The indicators show dynamics of the most important economic sectors in Russia (building, trade, mining, manufacturing and its branches) while agricultural production, which dynamics mostly depends on climate and geography, have not yet been considered The models include trends, cycles, seasonal component and their interactions. For trends one linear and six substantially nonlinear (nonlinear in the parameters) models are used. The seasonal component was modeled by seasonal coefficients. Kitchin, Juglar and Kuznets cycles was modeled using sum of three sine curves with non-proportional frequencies (as suggested by E.Slutsky). The interaction of components was considered both linear (additive) and nonlinear (additive-multiplicative). The most accurate models were justified using adjusted coefficient of determination. Special attention is paid to adaptive modeling tools expansion, leading indicators decomposition and forecasting, innovative development analysis and regional cycles synchrony or asynchrony. As a result of the modeling the authors presented new and more accurate material for regional authorities and managers. Further development of the proposed modeling tools are also suggested.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131703048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecast Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance 经济与金融大数据集的动态学习预测密度组合
R. Casarin, S. Grassi, Francesco Ravazzollo, H. V. Dijk
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential clustering mechanism that allocates the large set of forecast densities into a small number of subsets and the combination weights of the large set of densities are modelled as a dynamic factor model with a number of factors equal to the number of subsets. The forecast density combination is represented as a large finite mixture in nonlinear state space form. An efficient simulation-based Bayesian inferential procedure is proposed using parallel sequential clustering and filtering, implemented on graphics processing units. The approach is applied to track the Standard & Poor 500 index combining more than 7000 forecast densities based on 1856 US individual stocks that are are clustered in a relatively small subset. Substantial forecast and economic gains are obtained, in particular, in the tails using Value-at-Risk. Using a large macroeconomic data set of 142 series, similar forecast gains, including probabilities of recession, are obtained from multivariate forecast density combinations of US real GDP, Inflation, Treasury Bill yield and Employment. Evidence obtained on the dynamic patterns in the financial as well as macroeconomic clusters provide valuable signals useful for improved modelling and more effective economic and financial policies.
介绍了一种灵活的预报密度组合方法,可以处理大数据集。它通过允许模型集不完备性和组合权值的动态学习扩展了专家混合方法。采用顺序聚类机制引入降维步骤,将大的预测密度集分配到少量的子集中,并将大密度集的组合权重建模为一个动态因子模型,其中多个因子等于子集的数量。预测密度组合以非线性状态空间形式表示为一个大的有限混合。提出了一种基于并行顺序聚类和滤波的高效仿真贝叶斯推理方法,并在图形处理单元上实现。该方法用于跟踪标准普尔500指数,该指数结合了基于1856只美国个股的7000多个预测密度,这些预测密度集中在一个相对较小的子集中。通过使用风险价值,可以获得大量的预测和经济收益,特别是在尾部。使用142个系列的大型宏观经济数据集,从美国实际GDP、通货膨胀、国库券收益率和就业的多元预测密度组合中获得了类似的预测收益,包括衰退的概率。获得的关于金融和宏观经济集群动态模式的证据为改进模型和制定更有效的经济和金融政策提供了有用的宝贵信号。
{"title":"Forecast Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance","authors":"R. Casarin, S. Grassi, Francesco Ravazzollo, H. V. Dijk","doi":"10.2139/ssrn.3363556","DOIUrl":"https://doi.org/10.2139/ssrn.3363556","url":null,"abstract":"A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential clustering mechanism that allocates the large set of forecast densities into a small number of subsets and the combination weights of the large set of densities are modelled as a dynamic factor model with a number of factors equal to the number of subsets. The forecast density combination is represented as a large finite mixture in nonlinear state space form. An efficient simulation-based Bayesian inferential procedure is proposed using parallel sequential clustering and filtering, implemented on graphics processing units. The approach is applied to track the Standard & Poor 500 index combining more than 7000 forecast densities based on 1856 US individual stocks that are are clustered in a relatively small subset. Substantial forecast and economic gains are obtained, in particular, in the tails using Value-at-Risk. Using a large macroeconomic data set of 142 series, similar forecast gains, including probabilities of recession, are obtained from multivariate forecast density combinations of US real GDP, Inflation, Treasury Bill yield and Employment. Evidence obtained on the dynamic patterns in the financial as well as macroeconomic clusters provide valuable signals useful for improved modelling and more effective economic and financial policies.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121850367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Tracking Inattention 跟踪注意力不集中
Nathan G. Goldstein
This study proposes a real-time estimate of inattention, based on micro-level data. I show that a simple specification that estimates the persistence of a forecaster's deviation from the mean provides a direct estimate of parameters of information frictions according to prominent models of expectations. The new estimate can also be interpreted as a hybrid measure of both information frictions and behavioral frictions. Using the new specification, I revise several key findings documented in the previous literature. I find higher levels of inattention and document new forms of variations over time and across variables, horizons, individuals, and types of agents. I also report new results from long-run forecasts and document an unprecedented response to COVID-19.
本研究提出了一种基于微观层面数据的注意力不集中的实时估计方法。我展示了一个简单的规范,估计预测者偏离平均值的持久性,根据突出的期望模型,提供了对信息摩擦参数的直接估计。新的估计也可以解释为信息摩擦和行为摩擦的混合测量。使用新的规范,我修改了以前文献中记录的几个关键发现。我发现了更高层次的注意力不集中,并记录了随着时间的推移,不同变量、视野、个体和代理类型的新形式的变化。我还报告了长期预测的新结果,并记录了对COVID-19的前所未有的反应。
{"title":"Tracking Inattention","authors":"Nathan G. Goldstein","doi":"10.2139/ssrn.3641353","DOIUrl":"https://doi.org/10.2139/ssrn.3641353","url":null,"abstract":"\u0000 This study proposes a real-time estimate of inattention, based on micro-level data. I show that a simple specification that estimates the persistence of a forecaster's deviation from the mean provides a direct estimate of parameters of information frictions according to prominent models of expectations. The new estimate can also be interpreted as a hybrid measure of both information frictions and behavioral frictions. Using the new specification, I revise several key findings documented in the previous literature. I find higher levels of inattention and document new forms of variations over time and across variables, horizons, individuals, and types of agents. I also report new results from long-run forecasts and document an unprecedented response to COVID-19.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129048107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Evaluating Strange Forecasts: The Curious Case of Football Match Scorelines 评估奇怪的预测:足球比赛比分的奇怪案例
J. Reade, Carl Singleton, Alasdair Brown
This study analyses point forecasts of exact scoreline outcomes for football matches in the English Premier League. These forecasts were made for distinct competitions and originally judged differently. We compare these with implied probability forecasts using bookmaker odds and a crowd of tipsters, as well as point and probability forecasts generated from a statistical model. From evaluating these sources and types of forecast, using various methods, we argue that regression encompassing is the most appropriate way to compare point and probability forecasts, and find that both these types of forecasts for football match scorelines generally add information to one another.
本研究分析了英超足球比赛的准确比分结果的点预测。这些预测是针对不同的比赛做出的,最初的判断也不同。我们将这些与使用庄家赔率和一群提示者的隐含概率预测以及从统计模型生成的点和概率预测进行比较。通过使用各种方法评估这些来源和预测类型,我们认为回归包含是比较点预测和概率预测的最合适方法,并发现这两种类型的足球比赛比分预测通常会相互添加信息。
{"title":"Evaluating Strange Forecasts: The Curious Case of Football Match Scorelines","authors":"J. Reade, Carl Singleton, Alasdair Brown","doi":"10.2139/ssrn.3340598","DOIUrl":"https://doi.org/10.2139/ssrn.3340598","url":null,"abstract":"This study analyses point forecasts of exact scoreline outcomes for football matches in the English Premier League. These forecasts were made for distinct competitions and originally judged differently. We compare these with implied probability forecasts using bookmaker odds and a crowd of tipsters, as well as point and probability forecasts generated from a statistical model. From evaluating these sources and types of forecast, using various methods, we argue that regression encompassing is the most appropriate way to compare point and probability forecasts, and find that both these types of forecasts for football match scorelines generally add information to one another.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"29 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120889941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Measurement of Current Market Correlations Based on Ensemble Statistics 基于集合统计的当前市场相关性度量
Jack Sarkissian, Joel H. Sebold
We employ averaging over statistical ensemble of assets to derive an index characterizing the level of correlations in a financial market – the eCORR index. This index does not require lengthy historical data and reacts immediately to any changes in correlations. Study of statistical properties of eCORR for US equity markets reveals how volatility is distributed between the common part and the part specific to individual equities. It also allows to demonstrate and quantify the correlation-drawdown hysteresis effect. The eCORR index promises to be useful for early detection of market correlations, managing risk concentrations and maintaining portfolio diversification.
我们采用对资产的统计集合进行平均,得出一个表征金融市场相关性水平的指数——eCORR指数。该索引不需要冗长的历史数据,并对相关性的任何变化立即作出反应。对美国股票市场eCORR统计特性的研究揭示了波动性如何在共同部分和特定于个股的部分之间分布。它还允许演示和量化相关缩差滞后效应。eCORR指数有望在早期发现市场相关性、管理风险集中度和维持投资组合多样化方面发挥作用。
{"title":"Measurement of Current Market Correlations Based on Ensemble Statistics","authors":"Jack Sarkissian, Joel H. Sebold","doi":"10.2139/ssrn.3308669","DOIUrl":"https://doi.org/10.2139/ssrn.3308669","url":null,"abstract":"We employ averaging over statistical ensemble of assets to derive an index characterizing the level of correlations in a financial market – the eCORR index. This index does not require lengthy historical data and reacts immediately to any changes in correlations. Study of statistical properties of eCORR for US equity markets reveals how volatility is distributed between the common part and the part specific to individual equities. It also allows to demonstrate and quantify the correlation-drawdown hysteresis effect. The eCORR index promises to be useful for early detection of market correlations, managing risk concentrations and maintaining portfolio diversification.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116064944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Predicting Fiscal Crises 预测财政危机
Pub Date : 2018-08-01 DOI: 10.5089/9781484372555.001
Svetlana Cerovic, Kerstin Gerling, Andrew Hodge, Paulo A. Medas
This paper identifies leading indicators of fiscal crises based on a large sample of countries at different stages of development over 1970-2015. Our results are robust to different methodologies and sample periods. Previous literature on early warning sistems (EWS) for fiscal crises is scarce and based on small samples of advanced and emerging markets, raising doubts about the robustness of the results. Using a larger sample, our analysis shows that both nonfiscal (external and internal imbalances) and fiscal variables help predict crises among advanced and emerging economies. Our models performed well in out-of-sample forecasting and in predicting the most recent crises, a weakness of EWS in general. We also build EWS for low income countries, which had been overlooked in the literature.
本文基于1970-2015年间处于不同发展阶段的国家的大样本,确定了财政危机的领先指标。我们的结果对不同的方法和样本周期都是稳健的。先前关于财政危机预警系统(EWS)的文献很少,而且是基于发达市场和新兴市场的小样本,这使人们对结果的稳健性产生了怀疑。通过使用更大的样本,我们的分析表明,非财政变量(外部和内部失衡)和财政变量都有助于预测发达经济体和新兴经济体的危机。我们的模型在样本外预测和预测最近的危机方面表现良好,这是EWS的一个普遍弱点。我们还为低收入国家建立了EWS,这在文献中被忽视了。
{"title":"Predicting Fiscal Crises","authors":"Svetlana Cerovic, Kerstin Gerling, Andrew Hodge, Paulo A. Medas","doi":"10.5089/9781484372555.001","DOIUrl":"https://doi.org/10.5089/9781484372555.001","url":null,"abstract":"This paper identifies leading indicators of fiscal crises based on a large sample of countries at different stages of development over 1970-2015. Our results are robust to different methodologies and sample periods. Previous literature on early warning sistems (EWS) for fiscal crises is scarce and based on small samples of advanced and emerging markets, raising doubts about the robustness of the results. Using a larger sample, our analysis shows that both nonfiscal (external and internal imbalances) and fiscal variables help predict crises among advanced and emerging economies. Our models performed well in out-of-sample forecasting and in predicting the most recent crises, a weakness of EWS in general. We also build EWS for low income countries, which had been overlooked in the literature.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131651270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Iterated Combination Forecast and Treasury Bond Predictability 迭代组合预测与国债可预测性
Hai Lin, Wenjie Liu, Chunchi Wu, Guofu Zhou
Using a large number of predictors and based on an extended iterated combination approach of Lin, Wu, and Zhou (2017), we document both statistical and economic significance of Treasury bond return predictability. Macroeconomic and aggregate liquidity variables contain predictive information for bond returns and combining them with term structure and Ludvigson-Ng macro factors significantly improve out-of-sample forecast gains. We also find that variance forecasts can be substantially improved with our approach, yielding significant gains in asset allocation decision. Our results show that information from a large number of predictors collectively contributes to the time-varying Treasury bond premia, and this is robust to different return measures, horizons and sample periods.
使用大量预测因子,并基于Lin、Wu和Zhou(2017)的扩展迭代组合方法,我们证明了国债收益可预测性的统计和经济意义。宏观经济和总流动性变量包含债券收益的预测信息,将它们与期限结构和Ludvigson-Ng宏观因素结合起来可以显著提高样本外预测收益。我们还发现,方差预测可以通过我们的方法得到实质性的改进,在资产配置决策中产生显著的收益。我们的研究结果表明,来自大量预测因子的信息共同促成了时变的国债溢价,并且这对于不同的回报措施,视野和样本周期都是稳健的。
{"title":"Iterated Combination Forecast and Treasury Bond Predictability","authors":"Hai Lin, Wenjie Liu, Chunchi Wu, Guofu Zhou","doi":"10.2139/ssrn.3220751","DOIUrl":"https://doi.org/10.2139/ssrn.3220751","url":null,"abstract":"Using a large number of predictors and based on an extended iterated combination approach of Lin, Wu, and Zhou (2017), we document both statistical and economic significance of Treasury bond return predictability. Macroeconomic and aggregate liquidity variables contain predictive information for bond returns and combining them with term structure and Ludvigson-Ng macro factors significantly improve out-of-sample forecast gains. We also find that variance forecasts can be substantially improved with our approach, yielding significant gains in asset allocation decision. Our results show that information from a large number of predictors collectively contributes to the time-varying Treasury bond premia, and this is robust to different return measures, horizons and sample periods.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"434-435 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121469654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Breadth Momentum and the Canary Universe: Defensive Asset Allocation (DAA) 广度动量和金丝雀宇宙:防御性资产配置(DAA)
W. Keller, Jan Willem Keuning
We improve on our Vigilant Asset Allocation (VAA) by the introduction of a separate “canary” universe for signaling the need for crash protection, using the concept of breadth momentum. The amount of cash is now governed by the number of canary assets with bad (non-positive) momentum. The risky part is still based on relative momentum (or relative strength), just like VAA. We call this strategy Defensive Assets Allocation (DAA). The aim of DAA is to lower the average cash (or bond) fraction while keeping nearly the same degree of crash protection as with VAA. Using a very simple model from Dec 1926 to Dec 1970 with only the SP500 index as risky asset, we find an optimal canary universe of VWO and BND (aka EEM and AGG), which turns out to be rather effective also for nearly all our VAA universes, from Dec 1970 to Mar 2018. The average cash fraction of DAA is often less than half that of VAA’s, while return and risk are similar and for recent years even better. The usage of a separate “canary” universe for signaling the need for crash protection also improves the tracking error with respect to the passive (buy-and-hold) benchmark and limits turnover.
我们通过引入一个单独的“金丝雀”宇宙来改进我们的警惕资产配置(VAA),该宇宙使用广度动量的概念来发出碰撞保护需求的信号。现金的数量现在是由不良(非正)势头的金丝雀资产的数量决定的。风险部分仍然基于相对动量(或相对强度),就像VAA一样。我们称之为防御性资产配置(DAA)策略。DAA的目的是降低平均现金(或债券)比例,同时保持与VAA几乎相同的崩溃保护程度。使用一个非常简单的模型,从1926年12月到1970年12月,仅将标准普尔500指数作为风险资产,我们发现了一个最佳的VWO和BND(又名EEM和AGG)的金丝雀宇宙,事实证明,从1970年12月到2018年3月,这对我们几乎所有的VAA宇宙都相当有效。DAA的平均现金比例通常不到VAA的一半,而回报率和风险相似,近年来甚至更高。使用一个单独的“金丝雀”空间来表示需要进行崩溃保护,也改善了相对于被动(买入并持有)基准的跟踪误差,并限制了周转率。
{"title":"Breadth Momentum and the Canary Universe: Defensive Asset Allocation (DAA)","authors":"W. Keller, Jan Willem Keuning","doi":"10.2139/ssrn.3212862","DOIUrl":"https://doi.org/10.2139/ssrn.3212862","url":null,"abstract":"We improve on our Vigilant Asset Allocation (VAA) by the introduction of a separate “canary” universe for signaling the need for crash protection, using the concept of breadth momentum. The amount of cash is now governed by the number of canary assets with bad (non-positive) momentum. The risky part is still based on relative momentum (or relative strength), just like VAA. We call this strategy Defensive Assets Allocation (DAA). The aim of DAA is to lower the average cash (or bond) fraction while keeping nearly the same degree of crash protection as with VAA. Using a very simple model from Dec 1926 to Dec 1970 with only the SP500 index as risky asset, we find an optimal canary universe of VWO and BND (aka EEM and AGG), which turns out to be rather effective also for nearly all our VAA universes, from Dec 1970 to Mar 2018. The average cash fraction of DAA is often less than half that of VAA’s, while return and risk are similar and for recent years even better. The usage of a separate “canary” universe for signaling the need for crash protection also improves the tracking error with respect to the passive (buy-and-hold) benchmark and limits turnover.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131146550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1