{"title":"Przeglad wybranych podejsc w zakresie prognozowania rozwoju obszarow miast;Przeglad wybranych podejsc w zakresie prognozowania rozwoju obszarow miast;The review of some chosen approaches to foresee the development of urban areas.","authors":"M. Radło-Kulisiewicz","doi":"10.14681/AFKIT.2015.008","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.008","url":null,"abstract":"","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":"109-122"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
STRESZCZENIE: Powszechny dostęp do Internetu jak i łatwość pozyskiwania danych przestrzennych sprzyjają powstawaniu geoporatali. Ich różnorodność dotyczy nie tylko zasięgu (krajowe, regionalne, gminne), ale i szerokiego wachlarza tematycznego (dla np. wodniaków, grzybiarzy, globtroterów...). Pozwala to na korzystanie z geoportali większej i zróżnicowanej grupie społeczeństwa. Pomimo takiej różnorodności można zauważyć, że kierowane są one do osób dorosłych oraz młodzieży posiadającej już pewien zasób wiedzy geograficznej. Biorąc pod uwagę, że już od najmłodszych lat dzieci stykają się z Internetem, dobrą praktyką mogłoby być opracowanie portalu geoinformacyjnego dla dzieci. Tak wczesna nauka pozwoliłaby na formowanie ‘geointelektu’ dziecka, rozwijając jego inteligencję wizualno-przestrzenną. Poznawanie świata, także w wirtualnej formie, to sposób na kształtowanie wyobraźni u dzieci. To rodzaj nauki w formie zabawy, a zatem w niezauważalny sposób dziecko może przyswajać ‘geowiedzę’. W artykule autorka, przy pomocy swojej 8-letniej córki oraz jej rówieśników, pragnie przedstawić koncepcje geoportalu dla dzieci, w którym zawarte ma być to, co dla małego odbiorcy jest ważne. Za pomocą kolorowych piktogramów przedstawia takie miejsca, gdzie można się bawić (place zabaw, boiska), zjeść „małe Conieco” (lodziarnie), czy wybrać się z rodziną do ‘atrakcyjnych punktów’ (parki, kina, dworzec kolejowy). Dla osiągnięcia lepszej identyfikacji przestrzennej dziecięcy portal geoinformacyjny wzbogacono pokazując także charakterystyczne budowle (ratusz, kościoły) jak i obiekty przyrodnicze (rzeka, jezioro). Geoportal dla najmłodszego pokolenia to kształtowanie dobrych nawyków w surfowaniu po Internecie, a także przeciwwaga dla będących w powszechnym użyciu portali społecznościowych.
{"title":"Koncepcja portalu geoinformacyjnego dla najmłodszego pokolenia na przykładzie miasta Koszalin","authors":"Zofia Szczepaniak-Kołtun","doi":"10.14681/AFKIT.2015.010","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.010","url":null,"abstract":"STRESZCZENIE: Powszechny dostęp do Internetu jak i łatwość pozyskiwania danych przestrzennych sprzyjają powstawaniu geoporatali. Ich różnorodność dotyczy nie tylko zasięgu (krajowe, regionalne, gminne), ale i szerokiego wachlarza tematycznego (dla np. wodniaków, grzybiarzy, globtroterów...). Pozwala to na korzystanie z geoportali większej i zróżnicowanej grupie społeczeństwa. Pomimo takiej różnorodności można zauważyć, że kierowane są one do osób dorosłych oraz młodzieży posiadającej już pewien zasób wiedzy geograficznej. Biorąc pod uwagę, że już od najmłodszych lat dzieci stykają się z Internetem, dobrą praktyką mogłoby być opracowanie portalu geoinformacyjnego dla dzieci. Tak wczesna nauka pozwoliłaby na formowanie ‘geointelektu’ dziecka, rozwijając jego inteligencję wizualno-przestrzenną. Poznawanie świata, także w wirtualnej formie, to sposób na kształtowanie wyobraźni u dzieci. To rodzaj nauki w formie zabawy, a zatem w niezauważalny sposób dziecko może przyswajać ‘geowiedzę’. W artykule autorka, przy pomocy swojej 8-letniej córki oraz jej rówieśników, pragnie przedstawić koncepcje geoportalu dla dzieci, w którym zawarte ma być to, co dla małego odbiorcy jest ważne. Za pomocą kolorowych piktogramów przedstawia takie miejsca, gdzie można się bawić (place zabaw, boiska), zjeść „małe Conieco” (lodziarnie), czy wybrać się z rodziną do ‘atrakcyjnych punktów’ (parki, kina, dworzec kolejowy). Dla osiągnięcia lepszej identyfikacji przestrzennej dziecięcy portal geoinformacyjny wzbogacono pokazując także charakterystyczne budowle (ratusz, kościoły) jak i obiekty przyrodnicze (rzeka, jezioro). Geoportal dla najmłodszego pokolenia to kształtowanie dobrych nawyków w surfowaniu po Internecie, a także przeciwwaga dla będących w powszechnym użyciu portali społecznościowych.","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":"139-148"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gestosc chmury punktow pochodzacej z mobilnego skanowania laserowego;Gestosc chmury punktow pochodzacej z mobilnego skanowania laserowego;Density of point clouds in mobile laser scanning.","authors":"A. Warchoł","doi":"10.14681/AFKIT.2015.011","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.011","url":null,"abstract":"","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":"149-161"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system Titan by Optech with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.
{"title":"Multispectral airborne laser scanning - a new trend in the development of LiDAR technology","authors":"K. Bakuła","doi":"10.14681/AFKIT.2015.002","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.002","url":null,"abstract":"Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system Titan by Optech with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":"25-44"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.
{"title":"Use of parallel computing in mass processing of laser data","authors":"J. Będkowski, R. Bratuś, M. Prochaska, A. Rzonca","doi":"10.14681/AFKIT.2015.003","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.003","url":null,"abstract":"The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Wężyk, Marta Szostak, K. Zieba, P. Rysiak, P. Hawryło, M. Ratajczak
In April 2013, the Laboratory of Geomatics launched the project under the acronym “Bartek 3D” in cooperation with the Research Section of Students from the AGH in Krakow, Pedagogical University and the Jagiellonian University as well. The main aim of the project is to monitor the biggest and probably one of the oldest trees in Poland Oak Bartek in Zagnańsk (N 5059’14”; E 2038’59”), based on multi-temporal Terrestrial Laser Scanning (TLS) technology. One of the results of the project should be a 3D model of Oak Bartek and detection of the changes in the shape of the tree. Terrestrial Laser Scanning and the traditional forest inventory measurements were performed during the Leaf-OFF season in April 2013 and April 2014 and repeated in Leaf-ON period in July 2013 and October 2014 with using scanners: FARO FOCUS 3D, RIEGL VZ-400, LEICA C10 and RevScan (HandyScan). The results based on TLS technology showed some differences comparing to existing data obtained by traditional measurements for forestry inventory: • Height (H) of the tree: altimeter Vertex (Haglöf) H = 29.31 m; HTLS = 28.49 m; • Trunk circumference (L) measured with stretched tape: LST = 9.80 m; adjacent along the shape of bark: LT = 13.70 m; TLS measurments: LTLS1/4 = 9.97 m oraz LRevScan = 13.54 m • The average diameter at breast height (DBH130cm) calculated on the basis of 3D basal area of stem DBHTLS1/4 = 3.03 m (DBHT = 3.12 m).
{"title":"Preliminary results of the monumental tree monitoring based on terrestrial laser scanning - a case study of the Oak Bartek in Zagnańsk (Poland)","authors":"P. Wężyk, Marta Szostak, K. Zieba, P. Rysiak, P. Hawryło, M. Ratajczak","doi":"10.14681/AFKIT.2015.014","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.014","url":null,"abstract":"In April 2013, the Laboratory of Geomatics launched the project under the acronym “Bartek 3D” in cooperation with the Research Section of Students from the AGH in Krakow, Pedagogical University and the Jagiellonian University as well. The main aim of the project is to monitor the biggest and probably one of the oldest trees in Poland Oak Bartek in Zagnańsk (N 5059’14”; E 2038’59”), based on multi-temporal Terrestrial Laser Scanning (TLS) technology. One of the results of the project should be a 3D model of Oak Bartek and detection of the changes in the shape of the tree. Terrestrial Laser Scanning and the traditional forest inventory measurements were performed during the Leaf-OFF season in April 2013 and April 2014 and repeated in Leaf-ON period in July 2013 and October 2014 with using scanners: FARO FOCUS 3D, RIEGL VZ-400, LEICA C10 and RevScan (HandyScan). The results based on TLS technology showed some differences comparing to existing data obtained by traditional measurements for forestry inventory: • Height (H) of the tree: altimeter Vertex (Haglöf) H = 29.31 m; HTLS = 28.49 m; • Trunk circumference (L) measured with stretched tape: LST = 9.80 m; adjacent along the shape of bark: LT = 13.70 m; TLS measurments: LTLS1/4 = 9.97 m oraz LRevScan = 13.54 m • The average diameter at breast height (DBH130cm) calculated on the basis of 3D basal area of stem DBHTLS1/4 = 3.03 m (DBHT = 3.12 m).","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Status fotogrametrii w ustawie prawo geodezyjne i kartograficzne i przepisach powiązanych","authors":"K. Pyka, P. Myszka","doi":"10.14681/afkit.2015.007","DOIUrl":"https://doi.org/10.14681/afkit.2015.007","url":null,"abstract":"","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zastosowanie profilu morfologicznego i map granulometrycznych w wyodrębnianiu budynków na zdjęciach satelitarnych o bardzo dużej rozdzielczości","authors":"P. Kupidura, Monika Skulimowska","doi":"10.14684/AKFIT.2015.006","DOIUrl":"https://doi.org/10.14684/AKFIT.2015.006","url":null,"abstract":"","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":"83-96"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66830053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatyczne określanie średnicy pnia, podstawy korony oraz wysokości sosny zwyczajnej (Pinus Silvestris L.) na podstawie analiz chmur punktów 3D pochodzących z wielostanowiskowego naziemnego skanowania laserowego","authors":"M. Ratajczak, P. Wężyk","doi":"10.14681/AFKIT.2015.009","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.009","url":null,"abstract":"","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66829003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Wawrzaszek, M. Krupiński, W. Drzewiecki, S. Aleksandrowicz
{"title":"Multifraktalna analiza zobrazowań satelitarnych","authors":"A. Wawrzaszek, M. Krupiński, W. Drzewiecki, S. Aleksandrowicz","doi":"10.14681/AFKIT.2015.012","DOIUrl":"https://doi.org/10.14681/AFKIT.2015.012","url":null,"abstract":"","PeriodicalId":30976,"journal":{"name":"Archiwum Fotogrametrii Kartografii i Teledetekcji","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66828590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}