首页 > 最新文献

Biomacromolecules最新文献

英文 中文
MXene-Incorporated Conductive Hydrogel Simulating Myocardial Microenvironment for Cardiac Repair and Functional Recovery
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-04-01 DOI: 10.1021/acs.biomac.4c0175210.1021/acs.biomac.4c01752
Shan Yu, Ling Wang, Mengdie Chen, Yanjun Chen and Zhenbo Peng*, 

Myocardial infarction (MI) remains one of the leading causes of mortality worldwide, necessitating advanced therapeutic strategies to address the resulting electrical disconnection and pathological remodeling. This study developed a conductive hydrogel by covalently cross-linking silk fibroin and hyaluronic acid, integrating MXene nanosheets to mimic the extracellular matrix (ECM). Results demonstrated that the incorporation of MXene significantly enhanced the hydrogel’s conductivity, with SH-M5 exhibiting the highest conductivity of 0.32 S/m. The SH-M5 hydrogel effectively improved electrical signal transmission and enhanced the recovery of the left ventricular function in myocardial infarction. These findings underscore the transformative role of MXene in enhancing the functional properties of hydrogels for myocardial repair. The conductive hydrogel demonstrated a unique capacity to integrate mechanical reinforcement, electrical conductivity, and biocompatibility, presenting a promising platform for treating myocardial infarction and advancing regenerative medicine.

心肌梗塞(MI)仍然是全球死亡的主要原因之一,因此需要先进的治疗策略来解决由此产生的电断开和病理重塑问题。这项研究通过共价交联蚕丝纤维素和透明质酸,开发出一种导电水凝胶,并将 MXene 纳米片材整合其中,以模拟细胞外基质(ECM)。结果表明,MXene 的加入大大提高了水凝胶的导电性,其中 SH-M5 的导电性最高,达到 0.32 S/m。SH-M5 水凝胶有效改善了电信号传输,并增强了心肌梗塞患者左心室功能的恢复。这些发现强调了 MXene 在增强水凝胶的功能特性以修复心肌方面的变革性作用。这种传导性水凝胶展示了将机械强化、导电性和生物相容性融为一体的独特能力,为治疗心肌梗塞和推进再生医学的发展提供了一个前景广阔的平台。
{"title":"MXene-Incorporated Conductive Hydrogel Simulating Myocardial Microenvironment for Cardiac Repair and Functional Recovery","authors":"Shan Yu,&nbsp;Ling Wang,&nbsp;Mengdie Chen,&nbsp;Yanjun Chen and Zhenbo Peng*,&nbsp;","doi":"10.1021/acs.biomac.4c0175210.1021/acs.biomac.4c01752","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01752https://doi.org/10.1021/acs.biomac.4c01752","url":null,"abstract":"<p >Myocardial infarction (MI) remains one of the leading causes of mortality worldwide, necessitating advanced therapeutic strategies to address the resulting electrical disconnection and pathological remodeling. This study developed a conductive hydrogel by covalently cross-linking silk fibroin and hyaluronic acid, integrating MXene nanosheets to mimic the extracellular matrix (ECM). Results demonstrated that the incorporation of MXene significantly enhanced the hydrogel’s conductivity, with SH-M5 exhibiting the highest conductivity of 0.32 S/m. The SH-M5 hydrogel effectively improved electrical signal transmission and enhanced the recovery of the left ventricular function in myocardial infarction. These findings underscore the transformative role of MXene in enhancing the functional properties of hydrogels for myocardial repair. The conductive hydrogel demonstrated a unique capacity to integrate mechanical reinforcement, electrical conductivity, and biocompatibility, presenting a promising platform for treating myocardial infarction and advancing regenerative medicine.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 4","pages":"2378–2389 2378–2389"},"PeriodicalIF":5.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper Nanoparticle Decorated Multilayer Nanocoatings for Controlled Nitric Oxide Release and Antimicrobial Performance with Biosafety.
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-31 DOI: 10.1021/acs.biomac.4c01798
Hyejoong Jeong, Jiwoong Heo, Moonhyun Choi, Jinkee Hong

Biomedical device-related bacterial infections are a leading cause of mortality, and traditional antibiotics contribute to resistance. Various surface modification strategies have been explored, but effective clinical solutions remain limited. This study introduces a novel antibacterial nanocoating with copper nanoparticles (CuNPs) that triggers localized nitric oxide (NO) release. The multilayered nanocoating is created using branched polyethylenimine (BPEI) and poly(acrylic acid) (PAA) via a Layer-by-Layer assembly method. CuNP-decorated nanocoatings are formed by reducing copper ions coordinated with amine/carboxylic acid groups. In a physiological environment, CuNPs oxidize to Cu(I), promoting NO release from endogenous NO donors. The nanocoating's thickness is adjustable to regulate amount of CuNPs and NO flux. The optimal thickness for effective NO release against Staphylococcus aureus and Pseudomonas aeruginosa is identified, preventing microbial adhesion and biofilm formation. Importantly, the coating remains cytocompatible due to minimal CuNPs, physiological NO levels, and stable coating properties under physiological conditions.

{"title":"Copper Nanoparticle Decorated Multilayer Nanocoatings for Controlled Nitric Oxide Release and Antimicrobial Performance with Biosafety.","authors":"Hyejoong Jeong, Jiwoong Heo, Moonhyun Choi, Jinkee Hong","doi":"10.1021/acs.biomac.4c01798","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01798","url":null,"abstract":"<p><p>Biomedical device-related bacterial infections are a leading cause of mortality, and traditional antibiotics contribute to resistance. Various surface modification strategies have been explored, but effective clinical solutions remain limited. This study introduces a novel antibacterial nanocoating with copper nanoparticles (CuNPs) that triggers localized nitric oxide (NO) release. The multilayered nanocoating is created using branched polyethylenimine (BPEI) and poly(acrylic acid) (PAA) via a Layer-by-Layer assembly method. CuNP-decorated nanocoatings are formed by reducing copper ions coordinated with amine/carboxylic acid groups. In a physiological environment, CuNPs oxidize to Cu(I), promoting NO release from endogenous NO donors. The nanocoating's thickness is adjustable to regulate amount of CuNPs and NO flux. The optimal thickness for effective NO release against <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> is identified, preventing microbial adhesion and biofilm formation. Importantly, the coating remains cytocompatible due to minimal CuNPs, physiological NO levels, and stable coating properties under physiological conditions.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143750155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Thermostable and Immunogenic Block Copolymer Nanoparticles (BNPs) for mRNA Delivery.
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-31 DOI: 10.1021/acs.biomac.4c01820
Jian Hang Lam, Gaurav Sinsinbar, Ser Yue Loo, Teck Wan Chia, Yan Jun Lee, Jing Yi Fong, Yoong Eng Chia, Rocco Roberto Penna, Shaoqiong Liu, Steve Pascolo, Katherine Schultheis, Madhavan Nallani

Combining an amphiphilic block copolymer polybutadiene-b-poly(ethylene glycol) (PBD-b-PEO), an ionizable lipid, a helper lipid, and cholesterol produces thermostable BNPs. Luciferase mRNA-BNPs can be stored for over 1 year at 4 °C with no evidence of degradation to the mRNA or nanocarrier. In vivo, mRNA-BNPs exhibit a greater affinity for secondary lymphoid organs than mRNA-lipid nanoparticles (LNPs) and are efficiently taken up by macrophages and dendritic cells. Freshly fabricated ovalbumin (OVA) mRNA-BNPs elicit robust OVA-specific IgG and functional memory CD8+ T cells that persist for at least 5 months. Immunogenicity remains intact after 24 weeks of storage at 4 °C. Anti-PEG antibodies are not boosted by the repeated administration of mRNA-BNPs, unlike mRNA-LNPs. Syrian hamsters vaccinated with SARS-CoV-2 spike mRNA-BNPs are protected against weight loss associated with infection and potently suppress pulmonary viral loads. Protective efficacy is comparable to that conferred by a Comirnaty biosimilar. Cumulatively, mRNA-BNPs are thermostable, immunogenic and possess the potential for clinical application.

{"title":"Development of Thermostable and Immunogenic Block Copolymer Nanoparticles (BNPs) for mRNA Delivery.","authors":"Jian Hang Lam, Gaurav Sinsinbar, Ser Yue Loo, Teck Wan Chia, Yan Jun Lee, Jing Yi Fong, Yoong Eng Chia, Rocco Roberto Penna, Shaoqiong Liu, Steve Pascolo, Katherine Schultheis, Madhavan Nallani","doi":"10.1021/acs.biomac.4c01820","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01820","url":null,"abstract":"<p><p>Combining an amphiphilic block copolymer polybutadiene-<i>b</i>-poly(ethylene glycol) (PBD-<i>b</i>-PEO), an ionizable lipid, a helper lipid, and cholesterol produces thermostable BNPs. Luciferase mRNA-BNPs can be stored for over 1 year at 4 °C with no evidence of degradation to the mRNA or nanocarrier. In vivo, mRNA-BNPs exhibit a greater affinity for secondary lymphoid organs than mRNA-lipid nanoparticles (LNPs) and are efficiently taken up by macrophages and dendritic cells. Freshly fabricated ovalbumin (OVA) mRNA-BNPs elicit robust OVA-specific IgG and functional memory CD8<sup>+</sup> T cells that persist for at least 5 months. Immunogenicity remains intact after 24 weeks of storage at 4 °C. Anti-PEG antibodies are not boosted by the repeated administration of mRNA-BNPs, unlike mRNA-LNPs. Syrian hamsters vaccinated with SARS-CoV-2 spike mRNA-BNPs are protected against weight loss associated with infection and potently suppress pulmonary viral loads. Protective efficacy is comparable to that conferred by a Comirnaty biosimilar. Cumulatively, mRNA-BNPs are thermostable, immunogenic and possess the potential for clinical application.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143750167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photodynamic Inactivation of Staphylococcus aureus and Biomolecules by Free and Encapsulated Indium(III) Phthalocyanines in PHB Nanoparticles: The Influence of the Position of the Coumarin Group.
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-31 DOI: 10.1021/acs.biomac.4c00862
Julyana Noval de Souza Ferreira, Barbara Silva Figueiredo, Vannyla Viktória Viana Vasconcelos, Antony Luca Luna Vieira de Abreu, Sheila Souza da Silva Ribeiro, Esra Nur Kaya, Mustafa Bulut, Joselito Nardy Ribeiro, Mahmut Durmuş, André Romero da Silva

Antimicrobial photodynamic therapy (APDT) is a promising alternative to inactivating resistant microorganisms. Metallic phthalocyanines (Pc) substituted with coumarin groups exhibit favorable photophysical properties for APDT; however, their hydrophobicity limits administration. This study investigates indium(III) Pc substituted with 7-oxy-3-(3',4',5'-trimethoxyphenyl)coumarin at nonperipheral (3nInOAc) and peripheral (4nInOAc) positions, both in their free form and encapsulated in polyhydroxybutyrate nanoparticles, for the photodynamic inactivation of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) bacteria. The photodynamic activity was also assessed through the photooxidation of tryptophan and bovine serum albumin. Theoretical calculations and molecular docking were performed to corroborate the experimental results, investigating the influence of molecular structure on the photodynamic and antimicrobial performance of Pc-loaded nanoparticles as well as their nanoparticulate properties. Overall, both free and encapsulated Pc were capable of photooxidizing biomolecules and exhibited moderate antimicrobial activity, with 4nInOAc demonstrating superior efficacy, achieving an average reduction of 2 logs (99%) in MSSA and MRSA colonies.

{"title":"Photodynamic Inactivation of <i>Staphylococcus aureus</i> and Biomolecules by Free and Encapsulated Indium(III) Phthalocyanines in PHB Nanoparticles: The Influence of the Position of the Coumarin Group.","authors":"Julyana Noval de Souza Ferreira, Barbara Silva Figueiredo, Vannyla Viktória Viana Vasconcelos, Antony Luca Luna Vieira de Abreu, Sheila Souza da Silva Ribeiro, Esra Nur Kaya, Mustafa Bulut, Joselito Nardy Ribeiro, Mahmut Durmuş, André Romero da Silva","doi":"10.1021/acs.biomac.4c00862","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00862","url":null,"abstract":"<p><p>Antimicrobial photodynamic therapy (APDT) is a promising alternative to inactivating resistant microorganisms. Metallic phthalocyanines (Pc) substituted with coumarin groups exhibit favorable photophysical properties for APDT; however, their hydrophobicity limits administration. This study investigates indium(III) Pc substituted with 7-oxy-3-(3',4',5'-trimethoxyphenyl)coumarin at nonperipheral (<b>3nInOAc</b>) and peripheral (<b>4nInOAc</b>) positions, both in their free form and encapsulated in polyhydroxybutyrate nanoparticles, for the photodynamic inactivation of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and methicillin-susceptible <i>Staphylococcus aureus</i> (MSSA) bacteria. The photodynamic activity was also assessed through the photooxidation of tryptophan and bovine serum albumin. Theoretical calculations and molecular docking were performed to corroborate the experimental results, investigating the influence of molecular structure on the photodynamic and antimicrobial performance of Pc-loaded nanoparticles as well as their nanoparticulate properties. Overall, both free and encapsulated Pc were capable of photooxidizing biomolecules and exhibited moderate antimicrobial activity, with <b>4nInOAc</b> demonstrating superior efficacy, achieving an average reduction of 2 logs (99%) in MSSA and MRSA colonies.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143750175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Thermostable and Immunogenic Block Copolymer Nanoparticles (BNPs) for mRNA Delivery
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-31 DOI: 10.1021/acs.biomac.4c0182010.1021/acs.biomac.4c01820
Jian Hang Lam, Gaurav Sinsinbar, Ser Yue Loo, Teck Wan Chia, Yan Jun Lee, Jing Yi Fong, Yoong Eng Chia, Rocco Roberto Penna, Shaoqiong Liu, Steve Pascolo, Katherine Schultheis and Madhavan Nallani*, 

Combining an amphiphilic block copolymer polybutadiene-b-poly(ethylene glycol) (PBD-b-PEO), an ionizable lipid, a helper lipid, and cholesterol produces thermostable BNPs. Luciferase mRNA-BNPs can be stored for over 1 year at 4 °C with no evidence of degradation to the mRNA or nanocarrier. In vivo, mRNA-BNPs exhibit a greater affinity for secondary lymphoid organs than mRNA-lipid nanoparticles (LNPs) and are efficiently taken up by macrophages and dendritic cells. Freshly fabricated ovalbumin (OVA) mRNA-BNPs elicit robust OVA-specific IgG and functional memory CD8+ T cells that persist for at least 5 months. Immunogenicity remains intact after 24 weeks of storage at 4 °C. Anti-PEG antibodies are not boosted by the repeated administration of mRNA-BNPs, unlike mRNA-LNPs. Syrian hamsters vaccinated with SARS-CoV-2 spike mRNA-BNPs are protected against weight loss associated with infection and potently suppress pulmonary viral loads. Protective efficacy is comparable to that conferred by a Comirnaty biosimilar. Cumulatively, mRNA-BNPs are thermostable, immunogenic and possess the potential for clinical application.

{"title":"Development of Thermostable and Immunogenic Block Copolymer Nanoparticles (BNPs) for mRNA Delivery","authors":"Jian Hang Lam,&nbsp;Gaurav Sinsinbar,&nbsp;Ser Yue Loo,&nbsp;Teck Wan Chia,&nbsp;Yan Jun Lee,&nbsp;Jing Yi Fong,&nbsp;Yoong Eng Chia,&nbsp;Rocco Roberto Penna,&nbsp;Shaoqiong Liu,&nbsp;Steve Pascolo,&nbsp;Katherine Schultheis and Madhavan Nallani*,&nbsp;","doi":"10.1021/acs.biomac.4c0182010.1021/acs.biomac.4c01820","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01820https://doi.org/10.1021/acs.biomac.4c01820","url":null,"abstract":"<p >Combining an amphiphilic block copolymer polybutadiene-<i>b</i>-poly(ethylene glycol) (PBD-<i>b</i>-PEO), an ionizable lipid, a helper lipid, and cholesterol produces thermostable BNPs. Luciferase mRNA-BNPs can be stored for over 1 year at 4 °C with no evidence of degradation to the mRNA or nanocarrier. In vivo, mRNA-BNPs exhibit a greater affinity for secondary lymphoid organs than mRNA-lipid nanoparticles (LNPs) and are efficiently taken up by macrophages and dendritic cells. Freshly fabricated ovalbumin (OVA) mRNA-BNPs elicit robust OVA-specific IgG and functional memory CD8<sup>+</sup> T cells that persist for at least 5 months. Immunogenicity remains intact after 24 weeks of storage at 4 °C. Anti-PEG antibodies are not boosted by the repeated administration of mRNA-BNPs, unlike mRNA-LNPs. Syrian hamsters vaccinated with SARS-CoV-2 spike mRNA-BNPs are protected against weight loss associated with infection and potently suppress pulmonary viral loads. Protective efficacy is comparable to that conferred by a Comirnaty biosimilar. Cumulatively, mRNA-BNPs are thermostable, immunogenic and possess the potential for clinical application.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 4","pages":"2444–2457 2444–2457"},"PeriodicalIF":5.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper Nanoparticle Decorated Multilayer Nanocoatings for Controlled Nitric Oxide Release and Antimicrobial Performance with Biosafety
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-31 DOI: 10.1021/acs.biomac.4c0179810.1021/acs.biomac.4c01798
Hyejoong Jeong*, Jiwoong Heo, Moonhyun Choi and Jinkee Hong*, 

Biomedical device-related bacterial infections are a leading cause of mortality, and traditional antibiotics contribute to resistance. Various surface modification strategies have been explored, but effective clinical solutions remain limited. This study introduces a novel antibacterial nanocoating with copper nanoparticles (CuNPs) that triggers localized nitric oxide (NO) release. The multilayered nanocoating is created using branched polyethylenimine (BPEI) and poly(acrylic acid) (PAA) via a Layer-by-Layer assembly method. CuNP-decorated nanocoatings are formed by reducing copper ions coordinated with amine/carboxylic acid groups. In a physiological environment, CuNPs oxidize to Cu(I), promoting NO release from endogenous NO donors. The nanocoating’s thickness is adjustable to regulate amount of CuNPs and NO flux. The optimal thickness for effective NO release against Staphylococcus aureus and Pseudomonas aeruginosa is identified, preventing microbial adhesion and biofilm formation. Importantly, the coating remains cytocompatible due to minimal CuNPs, physiological NO levels, and stable coating properties under physiological conditions.

与生物医学设备相关的细菌感染是导致死亡的主要原因,而传统抗生素会导致耐药性的产生。人们探索了各种表面改性策略,但有效的临床解决方案仍然有限。本研究介绍了一种新型抗菌纳米涂层,该涂层含有纳米铜粒子(CuNPs),可触发局部一氧化氮(NO)释放。这种多层纳米涂层是使用支化聚乙烯亚胺(BPEI)和聚丙烯酸(PAA)通过逐层组装法制成的。CuNP装饰纳米涂层是由与胺/羧酸基团配位的还原铜离子形成的。在生理环境中,CuNPs 会氧化成 Cu(I),促进内源性 NO 供体释放 NO。纳米涂层的厚度可调,以调节 CuNPs 的数量和 NO 的通量。已确定了能有效抑制金黄色葡萄球菌和铜绿假单胞菌释放 NO 的最佳厚度,从而防止微生物粘附和生物膜的形成。重要的是,由于 CuNPs 含量极低、NO 含量达到生理水平,而且涂层在生理条件下具有稳定的特性,因此涂层仍具有细胞兼容性。
{"title":"Copper Nanoparticle Decorated Multilayer Nanocoatings for Controlled Nitric Oxide Release and Antimicrobial Performance with Biosafety","authors":"Hyejoong Jeong*,&nbsp;Jiwoong Heo,&nbsp;Moonhyun Choi and Jinkee Hong*,&nbsp;","doi":"10.1021/acs.biomac.4c0179810.1021/acs.biomac.4c01798","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01798https://doi.org/10.1021/acs.biomac.4c01798","url":null,"abstract":"<p >Biomedical device-related bacterial infections are a leading cause of mortality, and traditional antibiotics contribute to resistance. Various surface modification strategies have been explored, but effective clinical solutions remain limited. This study introduces a novel antibacterial nanocoating with copper nanoparticles (CuNPs) that triggers localized nitric oxide (NO) release. The multilayered nanocoating is created using branched polyethylenimine (BPEI) and poly(acrylic acid) (PAA) via a Layer-by-Layer assembly method. CuNP-decorated nanocoatings are formed by reducing copper ions coordinated with amine/carboxylic acid groups. In a physiological environment, CuNPs oxidize to Cu(I), promoting NO release from endogenous NO donors. The nanocoating’s thickness is adjustable to regulate amount of CuNPs and NO flux. The optimal thickness for effective NO release against <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> is identified, preventing microbial adhesion and biofilm formation. Importantly, the coating remains cytocompatible due to minimal CuNPs, physiological NO levels, and stable coating properties under physiological conditions.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 4","pages":"2421–2432 2421–2432"},"PeriodicalIF":5.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photodynamic Inactivation of Staphylococcus aureus and Biomolecules by Free and Encapsulated Indium(III) Phthalocyanines in PHB Nanoparticles: The Influence of the Position of the Coumarin Group
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-31 DOI: 10.1021/acs.biomac.4c0086210.1021/acs.biomac.4c00862
Julyana Noval de Souza Ferreira, Barbara Silva Figueiredo, Vannyla Viktória Viana Vasconcelos, Antony Luca Luna Vieira de Abreu, Sheila Souza da Silva Ribeiro, Esra Nur Kaya, Mustafa Bulut, Joselito Nardy Ribeiro, Mahmut Durmuş and André Romero da Silva*, 

Antimicrobial photodynamic therapy (APDT) is a promising alternative to inactivating resistant microorganisms. Metallic phthalocyanines (Pc) substituted with coumarin groups exhibit favorable photophysical properties for APDT; however, their hydrophobicity limits administration. This study investigates indium(III) Pc substituted with 7-oxy-3-(3′,4′,5′-trimethoxyphenyl)coumarin at nonperipheral (3nInOAc) and peripheral (4nInOAc) positions, both in their free form and encapsulated in polyhydroxybutyrate nanoparticles, for the photodynamic inactivation of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) bacteria. The photodynamic activity was also assessed through the photooxidation of tryptophan and bovine serum albumin. Theoretical calculations and molecular docking were performed to corroborate the experimental results, investigating the influence of molecular structure on the photodynamic and antimicrobial performance of Pc-loaded nanoparticles as well as their nanoparticulate properties. Overall, both free and encapsulated Pc were capable of photooxidizing biomolecules and exhibited moderate antimicrobial activity, with 4nInOAc demonstrating superior efficacy, achieving an average reduction of 2 logs (99%) in MSSA and MRSA colonies.

{"title":"Photodynamic Inactivation of Staphylococcus aureus and Biomolecules by Free and Encapsulated Indium(III) Phthalocyanines in PHB Nanoparticles: The Influence of the Position of the Coumarin Group","authors":"Julyana Noval de Souza Ferreira,&nbsp;Barbara Silva Figueiredo,&nbsp;Vannyla Viktória Viana Vasconcelos,&nbsp;Antony Luca Luna Vieira de Abreu,&nbsp;Sheila Souza da Silva Ribeiro,&nbsp;Esra Nur Kaya,&nbsp;Mustafa Bulut,&nbsp;Joselito Nardy Ribeiro,&nbsp;Mahmut Durmuş and André Romero da Silva*,&nbsp;","doi":"10.1021/acs.biomac.4c0086210.1021/acs.biomac.4c00862","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00862https://doi.org/10.1021/acs.biomac.4c00862","url":null,"abstract":"<p >Antimicrobial photodynamic therapy (APDT) is a promising alternative to inactivating resistant microorganisms. Metallic phthalocyanines (Pc) substituted with coumarin groups exhibit favorable photophysical properties for APDT; however, their hydrophobicity limits administration. This study investigates indium(III) Pc substituted with 7-oxy-3-(3′,4′,5′-trimethoxyphenyl)coumarin at nonperipheral (<b>3nInOAc</b>) and peripheral (<b>4nInOAc</b>) positions, both in their free form and encapsulated in polyhydroxybutyrate nanoparticles, for the photodynamic inactivation of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and methicillin-susceptible <i>Staphylococcus aureus</i> (MSSA) bacteria. The photodynamic activity was also assessed through the photooxidation of tryptophan and bovine serum albumin. Theoretical calculations and molecular docking were performed to corroborate the experimental results, investigating the influence of molecular structure on the photodynamic and antimicrobial performance of Pc-loaded nanoparticles as well as their nanoparticulate properties. Overall, both free and encapsulated Pc were capable of photooxidizing biomolecules and exhibited moderate antimicrobial activity, with <b>4nInOAc</b> demonstrating superior efficacy, achieving an average reduction of 2 logs (99%) in MSSA and MRSA colonies.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 4","pages":"2076–2094 2076–2094"},"PeriodicalIF":5.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.biomac.4c00862","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ganoderma lucidum Polysaccharide/carboxymethyl Chitosan Hydrogels Modulate Macrophage Polarization for Wound Healing
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-28 DOI: 10.1021/acs.biomac.5c0011210.1021/acs.biomac.5c00112
Yu Zou, Yuheng Yang, Jingying Pei, Peilong Sun and Yan Wang*, 

Wound healing remains a global challenge for clinical and experimental research. Hydrogels prepared from natural polysaccharides show great potential in the wound healing process. In this study, novel hydrogels (G-GLP) were prepared using oxidized Ganoderma lucidum polysaccharides (OGLPs) and carboxymethyl chitosan via the Schiff base reaction, which did not require the addition of any chemical cross-linking agent. The hydrogels showed excellent mechanical properties and biocompatibility. Moreover, the hydrogels showed superior hemostatic performance in mouse liver trauma and tail amputation models. Importantly, G-GLP improved inflammation by promoting the polarization of the macrophage M2 subtype, inhibiting the M1 subtype and reducing intracellular levels of reactive oxygen species. In vivo experiments demonstrated that G-GLP accelerated healing in a total defect wound model by reducing inflammation and promoting blood vessel repair and collagen deposition. These results demonstrate that G-GLP has potential as an effective wound repair dressing.

{"title":"Ganoderma lucidum Polysaccharide/carboxymethyl Chitosan Hydrogels Modulate Macrophage Polarization for Wound Healing","authors":"Yu Zou,&nbsp;Yuheng Yang,&nbsp;Jingying Pei,&nbsp;Peilong Sun and Yan Wang*,&nbsp;","doi":"10.1021/acs.biomac.5c0011210.1021/acs.biomac.5c00112","DOIUrl":"https://doi.org/10.1021/acs.biomac.5c00112https://doi.org/10.1021/acs.biomac.5c00112","url":null,"abstract":"<p >Wound healing remains a global challenge for clinical and experimental research. Hydrogels prepared from natural polysaccharides show great potential in the wound healing process. In this study, novel hydrogels (G-GLP) were prepared using oxidized <i>Ganoderma lucidum</i> polysaccharides (OGLPs) and carboxymethyl chitosan via the Schiff base reaction, which did not require the addition of any chemical cross-linking agent. The hydrogels showed excellent mechanical properties and biocompatibility. Moreover, the hydrogels showed superior hemostatic performance in mouse liver trauma and tail amputation models. Importantly, G-GLP improved inflammation by promoting the polarization of the macrophage M2 subtype, inhibiting the M1 subtype and reducing intracellular levels of reactive oxygen species. In vivo experiments demonstrated that G-GLP accelerated healing in a total defect wound model by reducing inflammation and promoting blood vessel repair and collagen deposition. These results demonstrate that G-GLP has potential as an effective wound repair dressing.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 4","pages":"2675–2689 2675–2689"},"PeriodicalIF":5.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Assemblies from Constitutionally Isomeric Peptides Modulate Antimicrobial Activity
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-28 DOI: 10.1021/acs.biomac.5c0007110.1021/acs.biomac.5c00071
Yujia Lu, Guanyi Li, Yanwen Zhang, Yuxuan Ge, Bin Hao, Yu Yin, Yaxue Zhao* and Yin Wang*, 

Antimicrobial peptides (AMPs) are a class of peptides consisting of cationic amino acid residues and a hydrophobic segment, which have been used as an alternative to antibiotics in treating multidrug-resistant bacteria. However, the relationship among the molecular design, assembled structures, and resultant efficacy remains elusive. Herein, we report a class of constitutionally isomeric AMPs assembled into filaments with similar dimensions. Spectroscopic characterizations demonstrated that subtle changes in the position of amino acids led to dramatic variations in molecular packing and surface charges, which were verified by molecular dynamics simulations. In vitro antibacterial assays showed that all AMPs exerted antibacterial activity against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), but the efficacy was dependent on the molecular design. Given the good biocompatibility to eukaryotic cells, these AMPs could be potentially used as antibacterial agents. We believe that this finding provides an avenue to tune the bioactivity of AMPs by rational molecular design.

{"title":"Engineered Assemblies from Constitutionally Isomeric Peptides Modulate Antimicrobial Activity","authors":"Yujia Lu,&nbsp;Guanyi Li,&nbsp;Yanwen Zhang,&nbsp;Yuxuan Ge,&nbsp;Bin Hao,&nbsp;Yu Yin,&nbsp;Yaxue Zhao* and Yin Wang*,&nbsp;","doi":"10.1021/acs.biomac.5c0007110.1021/acs.biomac.5c00071","DOIUrl":"https://doi.org/10.1021/acs.biomac.5c00071https://doi.org/10.1021/acs.biomac.5c00071","url":null,"abstract":"<p >Antimicrobial peptides (AMPs) are a class of peptides consisting of cationic amino acid residues and a hydrophobic segment, which have been used as an alternative to antibiotics in treating multidrug-resistant bacteria. However, the relationship among the molecular design, assembled structures, and resultant efficacy remains elusive. Herein, we report a class of constitutionally isomeric AMPs assembled into filaments with similar dimensions. Spectroscopic characterizations demonstrated that subtle changes in the position of amino acids led to dramatic variations in molecular packing and surface charges, which were verified by molecular dynamics simulations. In vitro antibacterial assays showed that all AMPs exerted antibacterial activity against Gram-positive methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), but the efficacy was dependent on the molecular design. Given the good biocompatibility to eukaryotic cells, these AMPs could be potentially used as antibacterial agents. We believe that this finding provides an avenue to tune the bioactivity of AMPs by rational molecular design.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 4","pages":"2614–2624 2614–2624"},"PeriodicalIF":5.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ganoderma lucidum Polysaccharide/carboxymethyl Chitosan Hydrogels Modulate Macrophage Polarization for Wound Healing.
IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-28 DOI: 10.1021/acs.biomac.5c00112
Yu Zou, Yuheng Yang, Jingying Pei, Peilong Sun, Yan Wang

Wound healing remains a global challenge for clinical and experimental research. Hydrogels prepared from natural polysaccharides show great potential in the wound healing process. In this study, novel hydrogels (G-GLP) were prepared using oxidized Ganoderma lucidum polysaccharides (OGLPs) and carboxymethyl chitosan via the Schiff base reaction, which did not require the addition of any chemical cross-linking agent. The hydrogels showed excellent mechanical properties and biocompatibility. Moreover, the hydrogels showed superior hemostatic performance in mouse liver trauma and tail amputation models. Importantly, G-GLP improved inflammation by promoting the polarization of the macrophage M2 subtype, inhibiting the M1 subtype and reducing intracellular levels of reactive oxygen species. In vivo experiments demonstrated that G-GLP accelerated healing in a total defect wound model by reducing inflammation and promoting blood vessel repair and collagen deposition. These results demonstrate that G-GLP has potential as an effective wound repair dressing.

{"title":"<i>Ganoderma lucidum</i> Polysaccharide/carboxymethyl Chitosan Hydrogels Modulate Macrophage Polarization for Wound Healing.","authors":"Yu Zou, Yuheng Yang, Jingying Pei, Peilong Sun, Yan Wang","doi":"10.1021/acs.biomac.5c00112","DOIUrl":"https://doi.org/10.1021/acs.biomac.5c00112","url":null,"abstract":"<p><p>Wound healing remains a global challenge for clinical and experimental research. Hydrogels prepared from natural polysaccharides show great potential in the wound healing process. In this study, novel hydrogels (G-GLP) were prepared using oxidized <i>Ganoderma lucidum</i> polysaccharides (OGLPs) and carboxymethyl chitosan via the Schiff base reaction, which did not require the addition of any chemical cross-linking agent. The hydrogels showed excellent mechanical properties and biocompatibility. Moreover, the hydrogels showed superior hemostatic performance in mouse liver trauma and tail amputation models. Importantly, G-GLP improved inflammation by promoting the polarization of the macrophage M2 subtype, inhibiting the M1 subtype and reducing intracellular levels of reactive oxygen species. In vivo experiments demonstrated that G-GLP accelerated healing in a total defect wound model by reducing inflammation and promoting blood vessel repair and collagen deposition. These results demonstrate that G-GLP has potential as an effective wound repair dressing.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomacromolecules
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1