Pub Date : 2024-11-08DOI: 10.1021/acs.biomac.4c01099
Rafał Jerzy Kopiasz, Maciej Dranka, Waldemar Tomaszewski, Patrycja Kowalska, Beata Butruk-Raszeja, Karolina Drężek, Jolanta Mierzejewska, Tomasz Ciach, Dominik Jańczewski
One of the promising candidates for new antimicrobial agents is membrane-lytic compounds that kill microbes through cell membrane permeabilization, such as antimicrobial peptides (AMPs) and their synthetic mimics (SMAMPs). Although SMAMPs have been under investigation for nearly 30 years, a few challenges must be addressed before they can reach clinical use. In this work, a step-growth polymerization leading to already-known highly antimicrobial ionenes was redirected toward the formation of macrocyclic quaternary ammonium salts (MQAs) employing a high dilution principle. Antimicrobial assays and cytotoxicity studies revealed the high antimicrobial activity of MQAs and better selectivity than their polymeric analogues. Therefore, MQAs seem to be a new class of promising antibacterial agents. Additionally, membrane-lytic experiments using large unilamellar liposomes (LUVs) and whole cells revealed significant differences between MQAs and ionenes in their ability to adsorb onto the surface of LUVs and microbes as well as their ability to permeate the lipid bilayer.
{"title":"Antimicrobial Macrocycles - Synthesis, Characterization, and Activity Comparison with Their Linear Polycationic Analogues.","authors":"Rafał Jerzy Kopiasz, Maciej Dranka, Waldemar Tomaszewski, Patrycja Kowalska, Beata Butruk-Raszeja, Karolina Drężek, Jolanta Mierzejewska, Tomasz Ciach, Dominik Jańczewski","doi":"10.1021/acs.biomac.4c01099","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01099","url":null,"abstract":"<p><p>One of the promising candidates for new antimicrobial agents is membrane-lytic compounds that kill microbes through cell membrane permeabilization, such as antimicrobial peptides (AMPs) and their synthetic mimics (SMAMPs). Although SMAMPs have been under investigation for nearly 30 years, a few challenges must be addressed before they can reach clinical use. In this work, a step-growth polymerization leading to already-known highly antimicrobial ionenes was redirected toward the formation of macrocyclic quaternary ammonium salts (MQAs) employing a high dilution principle. Antimicrobial assays and cytotoxicity studies revealed the high antimicrobial activity of MQAs and better selectivity than their polymeric analogues. Therefore, MQAs seem to be a new class of promising antibacterial agents. Additionally, membrane-lytic experiments using large unilamellar liposomes (LUVs) and whole cells revealed significant differences between MQAs and ionenes in their ability to adsorb onto the surface of LUVs and microbes as well as their ability to permeate the lipid bilayer.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1021/acs.biomac.4c01128
Ping Wei, Kai Chen, Jinghua Chen
The ability to design liver-targeted gene delivery vectors is plagued with difficulties ranging from carrier-mediated cellular toxicity to challenges in encapsulating sensitive nucleic acids. Herein, we present an ultrasound-responsive glycopolymersome strategy for in situ loading of nucleic acids and achieving hepatocyte-specific gene delivery. This glycopolymersome is self-assembled from a block copolymer, N-acetylgalactosamine-grafted poly(glutamic acid)-block-poly(ε-caprolactone) (PGAGalNAc-b-PCL). GalNAc is introduced to afford liver targeting through the selective binding to the asialoglycoprotein receptor overexpressed on hepatocytes. External ultrasound is utilized to assist in encapsulating nucleic acids within the hydrophilic lumen of glycopolymersomes by exploiting their ultrasound responsiveness nature. Biological studies confirmed the successful encapsulation of plasmid DNA (pDNA) and small interfering RNA (siRNA), rapid nuclear internalization, and efficient gene transfection. These findings collectively demonstrated that this ultrasound-responsive glycopolymersome could be exploited as a novel safe and efficient gene vector targeting hepatocytes.
在设计肝脏靶向基因递送载体方面存在诸多困难,包括载体介导的细胞毒性和封装敏感核酸的挑战。在此,我们提出了一种超声响应糖聚体策略,用于原位装载核酸并实现肝细胞特异性基因递送。这种聚糖体由嵌段共聚物--N-乙酰半乳糖胺接枝聚(谷氨酸)-嵌段-聚(ε-己内酰胺)(PGAGalNAc-b-PCL)自组装而成。引入 GalNAc 可通过选择性地与肝细胞上过度表达的 Asialoglycoprotein 受体结合,实现肝脏靶向。利用外部超声波的超声响应特性,将核酸包裹在糖聚合体的亲水性内腔中。生物学研究证实,该方法能成功封装质粒 DNA (pDNA) 和小干扰 RNA (siRNA)、快速核内化和高效基因转染。这些研究结果共同表明,这种超声响应性糖聚合体可作为一种新型安全高效的基因载体用于靶向肝细胞。
{"title":"Engineering an Ultrasound-Responsive Glycopolymersome for Hepatocyte-Specific Gene Delivery.","authors":"Ping Wei, Kai Chen, Jinghua Chen","doi":"10.1021/acs.biomac.4c01128","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01128","url":null,"abstract":"<p><p>The ability to design liver-targeted gene delivery vectors is plagued with difficulties ranging from carrier-mediated cellular toxicity to challenges in encapsulating sensitive nucleic acids. Herein, we present an ultrasound-responsive glycopolymersome strategy for <i>in situ</i> loading of nucleic acids and achieving hepatocyte-specific gene delivery. This glycopolymersome is self-assembled from a block copolymer, <i>N</i>-acetylgalactosamine-grafted poly(glutamic acid)-<i>block</i>-poly(ε-caprolactone) (PGAGalNAc-<i>b</i>-PCL). GalNAc is introduced to afford liver targeting through the selective binding to the asialoglycoprotein receptor overexpressed on hepatocytes. External ultrasound is utilized to assist in encapsulating nucleic acids within the hydrophilic lumen of glycopolymersomes by exploiting their ultrasound responsiveness nature. Biological studies confirmed the successful encapsulation of plasmid DNA (pDNA) and small interfering RNA (siRNA), rapid nuclear internalization, and efficient gene transfection. These findings collectively demonstrated that this ultrasound-responsive glycopolymersome could be exploited as a novel safe and efficient gene vector targeting hepatocytes.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1021/acs.biomac.4c00765
Andrea Malandrino, Huijun Zhang, Nico Schwarm, David Böhringer, Delf Kah, Christian Kuster, Aldo R Boccaccini, Ben Fabry
Under 3D culture conditions, cells tend to spread, migrate, and proliferate better in more viscoelastic and plastic hydrogels. Here, we present evidence that the improved cell behavior is facilitated by the lower steric hindrance of a more viscoelastic and plastic matrix with weaker intermolecular bonds. To determine intermolecular bond stability, we slowly insert semispherical tipped needles (100-700 μm diameter) into alginate dialdehyde-gelatin hydrogels and measure stiffness, yield strength, plasticity, and the force at which the surface ruptures (puncture force). To tune these material properties without affecting matrix stiffness, we precross-link the hydrogels with CaCl2 droplets prior to mixing in NIH/3T3 fibroblasts and final cross-linking with CaCl2. Precross-linking introduces microscopic weak spots in the hydrogel, increases plasticity, and decreases puncture force and yield strength. Fibroblasts spread and migrate better in precross-linked hydrogels, demonstrating that intermolecular bond stability is a critical determinant of cell behavior under 3D culture conditions.
{"title":"Plasticity of 3D Hydrogels Predicts Cell Biological Behavior.","authors":"Andrea Malandrino, Huijun Zhang, Nico Schwarm, David Böhringer, Delf Kah, Christian Kuster, Aldo R Boccaccini, Ben Fabry","doi":"10.1021/acs.biomac.4c00765","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00765","url":null,"abstract":"<p><p>Under 3D culture conditions, cells tend to spread, migrate, and proliferate better in more viscoelastic and plastic hydrogels. Here, we present evidence that the improved cell behavior is facilitated by the lower steric hindrance of a more viscoelastic and plastic matrix with weaker intermolecular bonds. To determine intermolecular bond stability, we slowly insert semispherical tipped needles (100-700 μm diameter) into alginate dialdehyde-gelatin hydrogels and measure stiffness, yield strength, plasticity, and the force at which the surface ruptures (puncture force). To tune these material properties without affecting matrix stiffness, we precross-link the hydrogels with CaCl<sub>2</sub> droplets prior to mixing in NIH/3T3 fibroblasts and final cross-linking with CaCl<sub>2</sub>. Precross-linking introduces microscopic weak spots in the hydrogel, increases plasticity, and decreases puncture force and yield strength. Fibroblasts spread and migrate better in precross-linked hydrogels, demonstrating that intermolecular bond stability is a critical determinant of cell behavior under 3D culture conditions.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1021/acs.biomac.4c01011
Leila Tabrizi, Ross McGarry, Kaja Turzanska, Lazaros Varvarezos, Muireann Fallon, Ruairi Brannigan, John T Costello, Deirdre Fitzgerald-Hughes, Mary T Pryce
This study presents the development and characterization of a novel porphyrin-Jeffamine polymer conjugate designed to function as a photosensitizer prodrug for antimicrobial photodynamic therapy (aPDT). The conjugate features a photosensitive porphyrin unit covalently attached to a biocompatible polymer backbone, with enhanced solubility, stability, and bioavailability compared to those of the free porphyrin derivatives. The photophysical properties were studied using transient absorption spectroscopy spanning the fs-μs time scales in addition to emission studies. The production of reactive oxygen species upon photoactivation enabled effective bacterial cell killing. Spectroscopic studies confirmed strong binding of the conjugate to DNA through intercalation, likely disrupting DNA replication and transcription. Interaction studies with bovine serum albumin demonstrated substantial serum protein binding, which may positively impact the pharmacokinetics and biodistribution. Overall, this porphyrin-polymer conjugate offers a multifunctional theranostic platform, combining antimicrobial action with DNA and protein binding potential, positioning it as a promising candidate for aPDT and bioimaging applications.
本研究介绍了一种新型卟啉-Jeffamine 聚合物共轭物的开发和表征,该共轭物可作为光敏剂原药用于抗菌光动力疗法(aPDT)。该共轭物的特点是光敏卟啉单元共价连接到生物相容性聚合物骨架上,与游离卟啉衍生物相比,其溶解性、稳定性和生物利用度都有所提高。除了发射研究外,还利用跨越 fs-μs 时间尺度的瞬态吸收光谱对光物理性质进行了研究。光激活后产生的活性氧能有效杀死细菌细胞。光谱研究证实,共轭物通过插层作用与 DNA 紧密结合,很可能会破坏 DNA 复制和转录。与牛血清白蛋白的相互作用研究表明,卟啉与大量血清蛋白结合,这可能会对药代动力学和生物分布产生积极影响。总之,这种卟啉-聚合物共轭物提供了一个多功能治疗平台,将抗菌作用与 DNA 和蛋白质结合潜力结合在一起,使其成为一种很有希望应用于 aPDT 和生物成像的候选物质。
{"title":"Porphyrin-Polymer as a Photosensitizer Prodrug for Antimicrobial Photodynamic Therapy and Biomolecule Binding Ability.","authors":"Leila Tabrizi, Ross McGarry, Kaja Turzanska, Lazaros Varvarezos, Muireann Fallon, Ruairi Brannigan, John T Costello, Deirdre Fitzgerald-Hughes, Mary T Pryce","doi":"10.1021/acs.biomac.4c01011","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01011","url":null,"abstract":"<p><p>This study presents the development and characterization of a novel porphyrin-Jeffamine polymer conjugate designed to function as a photosensitizer prodrug for antimicrobial photodynamic therapy (aPDT). The conjugate features a photosensitive porphyrin unit covalently attached to a biocompatible polymer backbone, with enhanced solubility, stability, and bioavailability compared to those of the free porphyrin derivatives. The photophysical properties were studied using transient absorption spectroscopy spanning the fs-μs time scales in addition to emission studies. The production of reactive oxygen species upon photoactivation enabled effective bacterial cell killing. Spectroscopic studies confirmed strong binding of the conjugate to DNA through intercalation, likely disrupting DNA replication and transcription. Interaction studies with bovine serum albumin demonstrated substantial serum protein binding, which may positively impact the pharmacokinetics and biodistribution. Overall, this porphyrin-polymer conjugate offers a multifunctional theranostic platform, combining antimicrobial action with DNA and protein binding potential, positioning it as a promising candidate for aPDT and bioimaging applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1021/acs.biomac.4c01229
Leon Bixenmann, Taufiq Ahmad, Fabian Stephan, Lutz Nuhn
Polymers with hemiacetal esters integrated in their backbone provide beneficial degradation profiles for (immuno-) drug delivery. However, their fast hydrolysis and low drug loading capacity have limited their applications so far. Therefore, this study focuses on the stability and loading capacity of hemiacetal ester polymers. The hydrophobicity of the micellar core has a tremendous effect on the hemiacetal ester stability. For that purpose, we introduce a new monomer with a phenyl moiety for stabilizing the micellar core and improving drug loading. The carrier functionality can further be expanded by post-polymerization modifications via activated ester groups at the polymer chain end. This allows for covalent dye labeling, which provides substantial insights into the polymers' in vitro performance. Flow cytometric analyses on RAW dual macrophages revealed intact micelles exhibiting significantly higher cellular uptake compared to degraded species, thus, highlighting the potential of end group functionalized poly(hemiacetal ester)s for (immuno)drug delivery purposes.
骨架中含有半缩醛酯的聚合物可为(免疫)给药提供有益的降解特性。然而,它们的快速水解和低药物负载能力限制了它们的应用。因此,本研究重点关注半缩醛酯聚合物的稳定性和载药能力。胶束核心的疏水性对半缩醛酯的稳定性有很大影响。为此,我们引入了一种带有苯基的新单体,以稳定胶束核心并提高药物负载能力。通过聚合物链末端的活化酯基团进行聚合后修饰,可进一步扩展载体功能。这样就可以进行共价染料标记,从而深入了解聚合物的体外性能。对 RAW 双巨噬细胞进行的流式细胞分析表明,与降解的胶束相比,完整的胶束具有更高的细胞摄取率,从而突出了端基功能化聚(半缩醛酯)用于(免疫)药物输送的潜力。
{"title":"End-Group Dye-Labeled Poly(hemiacetal ester) Block Copolymers: Enhancing Hydrolytic Stability and Loading Capacity for Micellar (Immuno-)Drug Delivery.","authors":"Leon Bixenmann, Taufiq Ahmad, Fabian Stephan, Lutz Nuhn","doi":"10.1021/acs.biomac.4c01229","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01229","url":null,"abstract":"<p><p>Polymers with hemiacetal esters integrated in their backbone provide beneficial degradation profiles for (immuno-) drug delivery. However, their fast hydrolysis and low drug loading capacity have limited their applications so far. Therefore, this study focuses on the stability and loading capacity of hemiacetal ester polymers. The hydrophobicity of the micellar core has a tremendous effect on the hemiacetal ester stability. For that purpose, we introduce a new monomer with a phenyl moiety for stabilizing the micellar core and improving drug loading. The carrier functionality can further be expanded by post-polymerization modifications via activated ester groups at the polymer chain end. This allows for covalent dye labeling, which provides substantial insights into the polymers' <i>in vitro</i> performance. Flow cytometric analyses on RAW dual macrophages revealed intact micelles exhibiting significantly higher cellular uptake compared to degraded species, thus, highlighting the potential of end group functionalized poly(hemiacetal ester)s for (immuno)drug delivery purposes.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/acs.biomac.4c01172
Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back
The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.
{"title":"Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films.","authors":"Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back","doi":"10.1021/acs.biomac.4c01172","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01172","url":null,"abstract":"<p><p>The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices (nD) of 1.63-1.70 and Abbe numbers (vD) of 12.8-38.5. An investigation of the relationship of the vD values with the substituents on the benzene rings of the monomers indicates that methoxy and vinyl groups can collectively increase the vD values. In comparison with allyl groups, vinyl groups endow the polymers with both higher nD and vD. Moreover, these polymers also display high transmittance, high thermostability, and low haze values in the visible-light region, suggesting that these biobased functional monomers are satisfactory precursors used in the fabrication of optical devices.
{"title":"Biobased Sulfur- and Phosphate-Containing High-Refractive-Index Polymers: Substituent Effects on Optical Properties of Polymers.","authors":"Zongao Dou, Hemin Zhang, Jiajun Li, Jing Sun, Qiang Fang","doi":"10.1021/acs.biomac.4c01291","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01291","url":null,"abstract":"<p><p>Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices (<i>n</i><sub>D</sub>) of 1.63-1.70 and Abbe numbers (<i>v</i><sub>D</sub>) of 12.8-38.5. An investigation of the relationship of the <i>v</i><sub>D</sub> values with the substituents on the benzene rings of the monomers indicates that methoxy and vinyl groups can collectively increase the <i>v</i><sub>D</sub> values. In comparison with allyl groups, vinyl groups endow the polymers with both higher <i>n</i><sub>D</sub> and <i>v</i><sub>D</sub>. Moreover, these polymers also display high transmittance, high thermostability, and low haze values in the visible-light region, suggesting that these biobased functional monomers are satisfactory precursors used in the fabrication of optical devices.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the use of pH-responsive nanogels for delivering Bosutinib (BOSU) in colon cancer treatment. Nanogels were formulated using three polymers: hyaluronic acid (HA), carboxymethyl dextran (CMD), and gelatin methacryloyl (GelMA). These nanogels achieved high drug entrapment efficiencies (80-90%) through polymer mixing with BOSU, followed by EDC/NHS cross-linking and sonication. The nanogels were stable, with negative zeta potentials (-20 to -30 mV) and particle sizes between 100 and 200 nm. Fourier-transform infrared analysis confirmed successful methacrylation in GelMA nanogels. Sustained BOSU release at pH 5.0 was observed, resembling tumor environments, compared to slower release at normal pH (7.4). Cytotoxicity tests showed 70-80% cell survival reduction in HCT116 colon cancer cells at higher doses, and GelMA-BOSU nanogels notably reduced cell migration. Antiangiogenic effects were confirmed in a chick chorioallantoic membrane model, highlighting the potential of these nanogels for targeted BOSU delivery in colon cancer therapy.
{"title":"Comparative Study of pH-Responsive and Aggregation Stability of Bosutinib-Loaded Nanogels Comprising Gelatin Methacryloyl, Carboxymethyl Dextran, and Hyaluronic Acid for Controlled Drug Delivery in Colorectal Cancer: An Extensive In Vitro Investigation.","authors":"Sankha Bhattacharya, Shashikant Bagade, Preeti Chidambar Sangave, Devendra Kumar, Imran Shaik, Dhrubojyoti Mukherjee","doi":"10.1021/acs.biomac.4c01209","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01209","url":null,"abstract":"<p><p>This study investigates the use of pH-responsive nanogels for delivering Bosutinib (BOSU) in colon cancer treatment. Nanogels were formulated using three polymers: hyaluronic acid (HA), carboxymethyl dextran (CMD), and gelatin methacryloyl (GelMA). These nanogels achieved high drug entrapment efficiencies (80-90%) through polymer mixing with BOSU, followed by EDC/NHS cross-linking and sonication. The nanogels were stable, with negative zeta potentials (-20 to -30 mV) and particle sizes between 100 and 200 nm. Fourier-transform infrared analysis confirmed successful methacrylation in GelMA nanogels. Sustained BOSU release at pH 5.0 was observed, resembling tumor environments, compared to slower release at normal pH (7.4). Cytotoxicity tests showed 70-80% cell survival reduction in HCT116 colon cancer cells at higher doses, and GelMA-BOSU nanogels notably reduced cell migration. Antiangiogenic effects were confirmed in a chick chorioallantoic membrane model, highlighting the potential of these nanogels for targeted BOSU delivery in colon cancer therapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/acs.biomac.4c01245
Cole A Williams, Daniel J Stone, Soumil Y Joshi, Gokhan Yilmaz, Parisa Farzeen, Sungjin Jeon, Zamira Harris-Ryden, C Remzi Becer, Sanket A Deshmukh, Cassandra E Callmann
The precise modulation of protein-carbohydrate interactions is critical in glycobiology, where multivalent binding governs key cellular processes. As such, synthetic glycopolymers are useful for probing these interactions. Herein, we developed precision glycopolymers (PGPs) with unambiguous local chemical composition and well-defined global structure and systematically evaluated the effect of polymer length, hydrophobicity, and backbone hybridization as well as glycan density and identity on the binding to both mammalian and plant lectins. Our studies identified glycan density as a critical factor, with PGPs below 50% grafting density showing significantly weaker lectin interactions. Coarse-grained molecular dynamics simulations suggest that the observed phenomena may be due to a decrease in carbohydrate-carbohydrate interactions in fully grafted PGPs, leading to improved solvent accessibility. In functional assays, these PGPs reduced the cell viability and migration in 4T1 breast cancer cells. Our findings establish a structure-activity relationship in glycopolymers, providing new strategies for designing synthetic glycomacromolecules for a myriad of applications.
{"title":"Systematic Evaluation of Macromolecular Carbohydrate-Lectin Recognition Using Precision Glycopolymers.","authors":"Cole A Williams, Daniel J Stone, Soumil Y Joshi, Gokhan Yilmaz, Parisa Farzeen, Sungjin Jeon, Zamira Harris-Ryden, C Remzi Becer, Sanket A Deshmukh, Cassandra E Callmann","doi":"10.1021/acs.biomac.4c01245","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01245","url":null,"abstract":"<p><p>The precise modulation of protein-carbohydrate interactions is critical in glycobiology, where multivalent binding governs key cellular processes. As such, synthetic glycopolymers are useful for probing these interactions. Herein, we developed precision glycopolymers (PGPs) with unambiguous local chemical composition and well-defined global structure and systematically evaluated the effect of polymer length, hydrophobicity, and backbone hybridization as well as glycan density and identity on the binding to both mammalian and plant lectins. Our studies identified glycan density as a critical factor, with PGPs below 50% grafting density showing significantly weaker lectin interactions. Coarse-grained molecular dynamics simulations suggest that the observed phenomena may be due to a decrease in carbohydrate-carbohydrate interactions in fully grafted PGPs, leading to improved solvent accessibility. In functional assays, these PGPs reduced the cell viability and migration in 4T1 breast cancer cells. Our findings establish a structure-activity relationship in glycopolymers, providing new strategies for designing synthetic glycomacromolecules for a myriad of applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We prepared biocompatible elastic fibers with high porosity and high tensile strength from poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate], which is a microbial polyester that can be produced from renewable carbon resources by isothermal crystallization. It was possible to control the pore size by adjusting the isothermal crystallization time. Most of the pores were approximately less than 10 μm in diameter, did not penetrate, and were distributed discontinuously throughout the fibers. The elasticity of the fibers was apparently attributable to the generation of tie molecules with planar zigzag conformations between lamellar crystals and to the deformation of the pores. The ligature area occupied by the porous fibers in surgical knots was reduced by 75% compared with that of nonporous fibers. This is expected to make the ligature more difficult to untie and reduce the feeling of foreign matter. X-ray tomography revealed that the porous fibers had a relatively small fiber diameter owing to the collapse of the porous area. The rate of enzymatic degradation of the porous fibers was more than four times that of nonporous fibers. These results suggest that this elastic porous fiber will have many applications, including in the medical and marine material fields.
{"title":"Evaluation of the Highly Ordered Structure, Ligature, and Enzymatic Degradation of Poly[(<i>R</i>)-3-hydroxybutyrate-<i>co</i>-4-hydroxybutyrate] Elastic Porous Fibers.","authors":"Sakura Tsujimoto, Taku Omura, Katsuya Komiyama, Taizo Kabe, Akira Maehara, Atsuhiko Murayama, Hitoshi Hirata, Miwa Suzuki, Ken-Ichi Kasuya, Daisuke Takahashi, Tadahisa Iwata","doi":"10.1021/acs.biomac.4c01144","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01144","url":null,"abstract":"<p><p>We prepared biocompatible elastic fibers with high porosity and high tensile strength from poly[(<i>R</i>)-3-hydroxybutyrate-<i>co</i>-4-hydroxybutyrate], which is a microbial polyester that can be produced from renewable carbon resources by isothermal crystallization. It was possible to control the pore size by adjusting the isothermal crystallization time. Most of the pores were approximately less than 10 μm in diameter, did not penetrate, and were distributed discontinuously throughout the fibers. The elasticity of the fibers was apparently attributable to the generation of tie molecules with planar zigzag conformations between lamellar crystals and to the deformation of the pores. The ligature area occupied by the porous fibers in surgical knots was reduced by 75% compared with that of nonporous fibers. This is expected to make the ligature more difficult to untie and reduce the feeling of foreign matter. X-ray tomography revealed that the porous fibers had a relatively small fiber diameter owing to the collapse of the porous area. The rate of enzymatic degradation of the porous fibers was more than four times that of nonporous fibers. These results suggest that this elastic porous fiber will have many applications, including in the medical and marine material fields.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}