首页 > 最新文献

IJEIS Indonesian Journal of Electronics and Instrumentation Systems最新文献

英文 中文
Controlling and Monitoring of Temperature and Humidity of Oyster Mushrooms in Tropical Climates 热带气候下牡蛎蘑菇温湿度的控制与监测
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.73346
I. G. M. N. Desnanjaya, P. Sugiartawan
Controlling the temperature and humidity of oyster mushroom cultivation is done manually by spraying air on the mushroom container so it takes a lot of time and effort. This is done to meet the requirements for growing oyster mushrooms which are strongly influenced by temperature and humidity conditions so that they can grow well. In this study, a device for controlling and monitoring the temperature and humidity of oyster mushroom cultivation was made automatically based on Arduino UNO. This tool can regulate and monitor the temperature and humidity in oyster mushroom cultivation automatically so that the temperature and humidity can be maintained without having to spend a lot of time and effort. The components used in building the automatic temperature and humidity controller for mushroom cultivation based on the Arduino UNO are the dht11 sensors, Arduino UNO, L298N driver, relay, and 16x2 I2C LCD. From the results of the tests that have been carried out, it can be concluded that the temperature and humidity control and monitoring device for automatic oyster mushroom cultivation based on Arduino UNO has been able to work well in regulating and monitoring temperature and humidity as expected.
平菇栽培的温度和湿度控制是通过人工在香菇容器上喷洒空气来完成的,因此需要花费大量的时间和精力。这样做是为了满足生长平菇的要求,平菇受温度和湿度条件的影响很大,这样它们才能生长得很好。本研究基于Arduino UNO制作了一种平菇培养过程温湿度自动控制与监测装置。该工具可以自动调节和监测平菇栽培过程中的温湿度,使平菇栽培过程中温湿度的保持不需要花费大量的时间和精力。搭建基于Arduino UNO的香菇栽培温湿度自动控制器的元器件为dht11传感器、Arduino UNO、L298N驱动、继电器、16x2 I2C液晶显示屏。从已经进行的测试结果可以看出,基于Arduino UNO的平菇自动培养温湿度控制监测装置能够很好地调节和监测温湿度,达到了预期的效果。
{"title":"Controlling and Monitoring of Temperature and Humidity of Oyster Mushrooms in Tropical Climates","authors":"I. G. M. N. Desnanjaya, P. Sugiartawan","doi":"10.22146/ijeis.73346","DOIUrl":"https://doi.org/10.22146/ijeis.73346","url":null,"abstract":"Controlling the temperature and humidity of oyster mushroom cultivation is done manually by spraying air on the mushroom container so it takes a lot of time and effort. This is done to meet the requirements for growing oyster mushrooms which are strongly influenced by temperature and humidity conditions so that they can grow well. In this study, a device for controlling and monitoring the temperature and humidity of oyster mushroom cultivation was made automatically based on Arduino UNO. This tool can regulate and monitor the temperature and humidity in oyster mushroom cultivation automatically so that the temperature and humidity can be maintained without having to spend a lot of time and effort. The components used in building the automatic temperature and humidity controller for mushroom cultivation based on the Arduino UNO are the dht11 sensors, Arduino UNO, L298N driver, relay, and 16x2 I2C LCD. From the results of the tests that have been carried out, it can be concluded that the temperature and humidity control and monitoring device for automatic oyster mushroom cultivation based on Arduino UNO has been able to work well in regulating and monitoring temperature and humidity as expected.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42844342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sistem Peringatan Tingkat Kerentanan Bangunan Berbasis Sensor IMU dengan Metode Fuzzy 系统用模糊的方法警告基于IMU传感器的构建脆弱性等级
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.70141
Muhammad Fikri Ahsanandi, Lukman Awaludin
Negara Indonesia merupakan salah satu negara yang memiliki potensi besar terhadap terjadinya gempa bumi. Bangunan yang merupakan salah satu infrastruktur yang sangat penting bagi kehidupan manusia, merupakan sasaran utama bagi bencana alam gempa bumi yang sering terjadi dan dapat menimbulkan kerusakan yang tidak terduga. Oleh karena itu, diperlukan sebuah sistem peringatan yang dapat mengukur dan mengamati getaran yang terjadi dengan besar tertentu untuk mengetahui tingkat kerentanan bangunan tersebut.Sistem ini menggunakan metode logika fuzzy Mamdani dengan proses defuzzyfikasi centroid. Logika fuzzy tersebut digunakan pada sistem peringatan untuk menentukan tingkat bahayanya. Masukan dari sistem terdiri dari nilai resonansi bangunan dan nilai simpangan bangunan. Masukan tersebut diperoleh dari pembacaan sensor IMU MPU6050. Proses defuzzyfikasi menghasilkan nilai keluaran crisp berupa rentang keputusan alarm. Data yang diolah dari pembacaan sensor ditampilkan dalam web server sebagai antarmuka.    Berdasarkan hasil pengujian sistem peringatan tingkat kerentanan pada purwarupa bangunan yang telah dilakukan, akurasi logika fuzzy mencapai 95% dari 20 kali pengambilan data. Sistem peringatan yang dirancang dapat berjalan secara real time. Secara keseluruhan proses mulai dari pembacaan sensor hingga akuisisi data dapat berjalan dengan baik.     
印度尼西亚是最有可能发生地震的国家之一。这座建筑是人类生活中至关重要的基础设施之一,是频繁地震灾害的主要目标,可能造成不可预见的破坏。因此,需要一种警报系统,它可以测量和观察发生在一定程度上的振动,以确定建筑物脆弱性的程度。该系统使用模糊的哺乳动物逻辑方法与质心净化过程。模糊的逻辑被用于预警系统来确定危险程度。系统的输入包括建筑物的共振值和建筑物的横截面值。这些输入来自IMU传感器读数6050。净化过程产生crisp值的报警决策范围。传感器读取处理的数据将显示在web服务器中作为接口。根据对系统系统测试结果的警告,按照最新的构建原型,模糊逻辑的准确率达到了20倍。设计的警报系统可以实时运行。从传感器读取到数据采集的整个过程都很顺利。
{"title":"Sistem Peringatan Tingkat Kerentanan Bangunan Berbasis Sensor IMU dengan Metode Fuzzy","authors":"Muhammad Fikri Ahsanandi, Lukman Awaludin","doi":"10.22146/ijeis.70141","DOIUrl":"https://doi.org/10.22146/ijeis.70141","url":null,"abstract":"Negara Indonesia merupakan salah satu negara yang memiliki potensi besar terhadap terjadinya gempa bumi. Bangunan yang merupakan salah satu infrastruktur yang sangat penting bagi kehidupan manusia, merupakan sasaran utama bagi bencana alam gempa bumi yang sering terjadi dan dapat menimbulkan kerusakan yang tidak terduga. Oleh karena itu, diperlukan sebuah sistem peringatan yang dapat mengukur dan mengamati getaran yang terjadi dengan besar tertentu untuk mengetahui tingkat kerentanan bangunan tersebut.Sistem ini menggunakan metode logika fuzzy Mamdani dengan proses defuzzyfikasi centroid. Logika fuzzy tersebut digunakan pada sistem peringatan untuk menentukan tingkat bahayanya. Masukan dari sistem terdiri dari nilai resonansi bangunan dan nilai simpangan bangunan. Masukan tersebut diperoleh dari pembacaan sensor IMU MPU6050. Proses defuzzyfikasi menghasilkan nilai keluaran crisp berupa rentang keputusan alarm. Data yang diolah dari pembacaan sensor ditampilkan dalam web server sebagai antarmuka.    Berdasarkan hasil pengujian sistem peringatan tingkat kerentanan pada purwarupa bangunan yang telah dilakukan, akurasi logika fuzzy mencapai 95% dari 20 kali pengambilan data. Sistem peringatan yang dirancang dapat berjalan secara real time. Secara keseluruhan proses mulai dari pembacaan sensor hingga akuisisi data dapat berjalan dengan baik.     ","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48628750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediksi Diabetes Berdasarkan Pengukuran Mean Amplitude Glycemic Excursion (MAGE) Menggunakan Naïve Bayes 基于Naïve Bayes平均振幅血糖偏移(MAGE)测量的糖尿病预测
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.72608
Lailis Syafa’ah, M. S. Ma'arif, Amrul Faruq
 The mean amplitude of glycemic excursions (MAGE) is an important indicator in the assessment of glycemic variability (GV) which is used as a reference for continuous blood glucose control. In this case, quantitative considerations in monitoring blood sugar in diabetes are very important for diagnosis and then proceed with clinical treatment. This study focuses more on strengthening the training and testing data processing system and reducing the independent variables that occur during the classification process. To support this purpose, this study uses Cross Validation as a training and testing data processing with the number of K-Fold is 10 and Naïve Bayes as a classification method. The resulting accuracy is 93% which is an increase from previous studies with an RMSE value (error value) of 0.267. It was concluded that patients in the pre-diabetic and diabetic groups tend to have more varied blood glucose values than patients from the normal class.
血糖漂移平均振幅(MAGE)是评估血糖变异性(GV)的重要指标,可作为持续血糖控制的参考。在这种情况下,监测糖尿病患者血糖的定量考虑对于诊断和进行临床治疗非常重要。本研究更侧重于加强训练和测试数据处理系统,减少分类过程中出现的自变量。为了支持这一目的,本研究使用交叉验证作为训练和测试数据处理,K-Fold的次数为10,并使用Naïve贝叶斯作为分类方法。得到的准确度为93%,比以前的研究有所提高,RMSE值(误差值)为0.267。结论:糖尿病前期和糖尿病组患者的血糖值比正常组患者变化更大。
{"title":"Prediksi Diabetes Berdasarkan Pengukuran Mean Amplitude Glycemic Excursion (MAGE) Menggunakan Naïve Bayes","authors":"Lailis Syafa’ah, M. S. Ma'arif, Amrul Faruq","doi":"10.22146/ijeis.72608","DOIUrl":"https://doi.org/10.22146/ijeis.72608","url":null,"abstract":" The mean amplitude of glycemic excursions (MAGE) is an important indicator in the assessment of glycemic variability (GV) which is used as a reference for continuous blood glucose control. In this case, quantitative considerations in monitoring blood sugar in diabetes are very important for diagnosis and then proceed with clinical treatment. This study focuses more on strengthening the training and testing data processing system and reducing the independent variables that occur during the classification process. To support this purpose, this study uses Cross Validation as a training and testing data processing with the number of K-Fold is 10 and Naïve Bayes as a classification method. The resulting accuracy is 93% which is an increase from previous studies with an RMSE value (error value) of 0.267. It was concluded that patients in the pre-diabetic and diabetic groups tend to have more varied blood glucose values than patients from the normal class.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43203603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pembelajaran Mesin untuk Sistem Keamanan - Literatur Review 用于安全系统的机器学习——文献综述
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.69022
Nuruddin Wiranda, Fal Sadikin, Wanvy Arifha Saputra
Security systems are one of the crucial topics in the era of digital transformation. In the use of digital technology, security systems are used to ensure the confidentiality, integrity, and availability of data. Machine learning techniques can be applied to support the system's adaptability to the environment, so that prevention, detection and recovery can be carried out. Given the importance of these things, it is necessary to review the literature to find out how machine learning is applied to security systems. This paper presents a summary of 31 research papers to determine what machine learning techniques or methods are the most promising for prevention, detection and recovery. The research stages in this paper consist of 6 stages, namely: formulating research questions, searching for articles, documenting search strategies, selecting studies, assessing article quality, and extracting data obtained from articles. Based on the results of the study, it was found that the K-means method was the most promising for prevention, while for detection, SVM could be used, and for security recovery, machine learning could be implemented using NLP-based features.
安防系统是数字化转型时代的重要课题之一。在使用数字技术时,安全系统用于确保数据的机密性、完整性和可用性。可以应用机器学习技术来支持系统对环境的适应性,从而进行预防、检测和恢复。考虑到这些事情的重要性,有必要回顾一下文献,找出机器学习如何应用于安全系统。本文总结了31篇研究论文,以确定哪些机器学习技术或方法在预防、检测和恢复方面最有希望。本文的研究阶段分为6个阶段,分别是:制定研究问题,检索文章,记录检索策略,选择研究,评估文章质量,提取文章数据。根据研究结果,K-means方法最有希望用于预防,而对于检测,可以使用SVM,对于安全恢复,可以使用基于nlp的特征实现机器学习。
{"title":"Pembelajaran Mesin untuk Sistem Keamanan - Literatur Review","authors":"Nuruddin Wiranda, Fal Sadikin, Wanvy Arifha Saputra","doi":"10.22146/ijeis.69022","DOIUrl":"https://doi.org/10.22146/ijeis.69022","url":null,"abstract":"Security systems are one of the crucial topics in the era of digital transformation. In the use of digital technology, security systems are used to ensure the confidentiality, integrity, and availability of data. Machine learning techniques can be applied to support the system's adaptability to the environment, so that prevention, detection and recovery can be carried out. Given the importance of these things, it is necessary to review the literature to find out how machine learning is applied to security systems. This paper presents a summary of 31 research papers to determine what machine learning techniques or methods are the most promising for prevention, detection and recovery. The research stages in this paper consist of 6 stages, namely: formulating research questions, searching for articles, documenting search strategies, selecting studies, assessing article quality, and extracting data obtained from articles. Based on the results of the study, it was found that the K-means method was the most promising for prevention, while for detection, SVM could be used, and for security recovery, machine learning could be implemented using NLP-based features.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42234854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Seleksi Fitur dengan Artificial Bee Colony untuk Optimasi Klasifikasi Data Teh menggunakan Support Vector Machine
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.63902
Suhaila Suhaila, Danang Lelono, Yunita Sari Sari
Tea quality can be recognized through the aroma it produces. Tea classification using e-nose generally only detects aroma using a general gas sensor. However, redundancy of sensor features can cause a decreasing in the system performance. Therefore we need a system that can select features so the classification performance becomes optimal. A software system of feature selection was built to optimize classification performance. Input data for the system is e-nose sensor response to 3 black tea qualities. The features are sensors on the e-nose instrument. Feature selection is implemented using wrapper approach, ABC algorithm is used for feature selection, then the selected features are evaluated by SVM classification. The results of the ABC-SVM system are then compared with the SVM only system. The results showed that from 12 e-nose sensors, sensors that most characterized black tea quality were TGS 2600, TGS 813, TGS 825, TGS 2602, TGS 2611, TGS 832, TGS 2612, TGS 2620 and TGS 822. Meanwhile, MQ-7, TGS 826 and TGS 2610 sensors are redundant in the system because the gas detected by the 3 sensors can be represented by other sensors. With the reduction in features to 9, the classification accuracy performance increased by 16.7%.
茶的品质可以通过它所产生的香气来识别。使用电子鼻的茶分类通常只使用通用气体传感器检测香气。然而,传感器特征的冗余可能会导致系统性能下降。因此,我们需要一个能够选择特征的系统,以便分类性能达到最佳。为了优化分类性能,建立了一个特征选择软件系统。该系统的输入数据是电子鼻传感器对3种红茶品质的响应。这些功能是电子鼻仪器上的传感器。特征选择采用包装器方法,采用ABC算法进行特征选择,然后通过SVM分类对所选特征进行评价。然后将ABC-SVM系统的结果与仅SVM系统的结果进行比较。结果表明,在12个电子鼻传感器中,最能表征红茶品质的传感器是TGS 2600、TGS 813、TGS 825、TGS 2602、TGS 2611、TGS 832、TG斯2612、TGS 2620和TGS 822。同时,MQ-7、TGS 826和TGS 2610传感器在系统中是冗余的,因为这三个传感器检测到的气体可以由其他传感器表示。随着特征减少到9个,分类准确率性能提高了16.7%。
{"title":"Seleksi Fitur dengan Artificial Bee Colony untuk Optimasi Klasifikasi Data Teh menggunakan Support Vector Machine","authors":"Suhaila Suhaila, Danang Lelono, Yunita Sari Sari","doi":"10.22146/ijeis.63902","DOIUrl":"https://doi.org/10.22146/ijeis.63902","url":null,"abstract":"Tea quality can be recognized through the aroma it produces. Tea classification using e-nose generally only detects aroma using a general gas sensor. However, redundancy of sensor features can cause a decreasing in the system performance. Therefore we need a system that can select features so the classification performance becomes optimal. A software system of feature selection was built to optimize classification performance. Input data for the system is e-nose sensor response to 3 black tea qualities. The features are sensors on the e-nose instrument. Feature selection is implemented using wrapper approach, ABC algorithm is used for feature selection, then the selected features are evaluated by SVM classification. The results of the ABC-SVM system are then compared with the SVM only system. The results showed that from 12 e-nose sensors, sensors that most characterized black tea quality were TGS 2600, TGS 813, TGS 825, TGS 2602, TGS 2611, TGS 832, TGS 2612, TGS 2620 and TGS 822. Meanwhile, MQ-7, TGS 826 and TGS 2610 sensors are redundant in the system because the gas detected by the 3 sensors can be represented by other sensors. With the reduction in features to 9, the classification accuracy performance increased by 16.7%.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42468597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pemodelan Harmonik untuk Pelafalan Makhraj Huruf Hijaiah Hijaiah拼写检查的谐波建模
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.71664
Muhammad Fadhlullah, Catur Atmaji
Learning to pronounce hijaiah letters needs to be assessed objectively, so it is necessary to form digital audio resulting from the synthesis of Harmonic Plus Residual (HPR) modeling, which conducted with two pronunciation methods, taskin and tasydid. The experiment consists data acquisition, signal cutting, framing and windowing, detection of fundamental and harmonic frequencies, synthesis of HPR, to produce synthetic signals. The results of the synthetic signals then analyzed qualitatively by signal spectrogram analysis and scoring.From the experimental results, it can be concluded that this study was ultimately unable to determine the best HPR parameters, but concluded that the tasydid method was the best method for learning pronunciation and for the HPR model synthesis. This is because the tasydid method with different parameters but all of them can produce good synthetic signal, both in terms of comparative analysis of similar signal spectrograms and from the results of scoring with an average value of 10. On the other hand, the taskin method harf shows unsatisfactory results, where the synthetic sound is mostly just noise, so the scoring results is under 9, and is reinforced by the results of the spectrogram comparison between the original and synthetic signals which visually different.
学习发音hijaiah字母需要客观评估,因此有必要通过合成谐波加残差(HPR)模型来形成数字音频,该模型使用taskin和tasydid两种发音方法进行。实验包括数据采集、信号切割、成帧和开窗、基频和谐波频率的检测、HPR的合成,以产生合成信号。然后通过信号谱图分析和评分对合成信号的结果进行定性分析。从实验结果可以得出结论,本研究最终无法确定最佳的HPR参数,但得出结论,tasydid方法是学习发音和HPR模型合成的最佳方法。这是因为具有不同参数但所有参数的tasydid方法都可以产生良好的合成信号,无论是从相似信号频谱图的比较分析还是从平均值为10的评分结果来看。另一方面,taskin方法harf显示出不令人满意的结果,其中合成声音大多只是噪声,因此评分结果低于9,并且原始信号和合成信号之间的频谱图比较结果在视觉上有所不同,从而增强了评分结果。
{"title":"Pemodelan Harmonik untuk Pelafalan Makhraj Huruf Hijaiah","authors":"Muhammad Fadhlullah, Catur Atmaji","doi":"10.22146/ijeis.71664","DOIUrl":"https://doi.org/10.22146/ijeis.71664","url":null,"abstract":"Learning to pronounce hijaiah letters needs to be assessed objectively, so it is necessary to form digital audio resulting from the synthesis of Harmonic Plus Residual (HPR) modeling, which conducted with two pronunciation methods, taskin and tasydid. The experiment consists data acquisition, signal cutting, framing and windowing, detection of fundamental and harmonic frequencies, synthesis of HPR, to produce synthetic signals. The results of the synthetic signals then analyzed qualitatively by signal spectrogram analysis and scoring.From the experimental results, it can be concluded that this study was ultimately unable to determine the best HPR parameters, but concluded that the tasydid method was the best method for learning pronunciation and for the HPR model synthesis. This is because the tasydid method with different parameters but all of them can produce good synthetic signal, both in terms of comparative analysis of similar signal spectrograms and from the results of scoring with an average value of 10. On the other hand, the taskin method harf shows unsatisfactory results, where the synthetic sound is mostly just noise, so the scoring results is under 9, and is reinforced by the results of the spectrogram comparison between the original and synthetic signals which visually different.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49259217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sistem Pengawasan Physical Distancing di Tempat Umum Menggunakan Kamera Berbasis Deep Learning 基于深度学习相机的全球远程物理监测系统
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.70886
Rizqy Arya Dinata, Ika Candradewi, B. Prastowo
Pembatasan jarak fisik merupakan salah satu cara yang diterapkan untuk mencegah penyebaran virus pada tempat umum. Pelaksanaan pembatasan jarak fisik tersebut memerlukan pengawasan agar berhasil sesuai harapan. Pengawasan yang dilakukan secara manual terutama pada tempat dengan tingkat keramaian tinggi kurang efektif karena memerlukan banyak petugas di lokasi yang justru akan menambah keramaian.Pada penelitian ini dikembangkan purwarupa sistem pengawasan pembatasan jarak fisik dengan memanfaatkan kamera CCTV dengan pemrosesan citra digital berbasis computer vision dan deep learning. Metode yang digunakan adalah kombinasi pendeteksian dan pelacakan pedestrian dengan YOLOv4 dan DeepSORT. Metode trigonometri digunakan dalam proses estimasi jarak untuk mendeteksi pelanggaran pembatasan jarak oleh pedestrian. Pada penelitian ini didapatkan hasil pengujian dengan nilai terbaik recall 0,86; precision 0,69 dan mean average precision (mAP) sebesar 0,83 dengan metode pelatihan transfer learning model YOLOv4 dengan maksimum batch 6000 menggunakan 473 data latih dan 119 data validasi. Keseluruhan sistem mencapai kecepatan rata-rata proses real-time yakni pada 24 sampai 26 FPS.
物理距离限制是通常用于防止病毒传播的方法之一。物理距离限制的实施需要监控如预期的那样取得成功。手动监测,特别是在频率高的地方,由于需要在确切的位置部署许多官员,因此是无效的,这将增加频率。在这项研究中,使用CCTV摄像机开发了一个物理距离监控系统的原型,该系统具有基于计算机视觉和深度学习的数字图像处理功能。所使用的方法是将行人检测和跟踪与YOLOv4和DeepSORT相结合。在估计距离的过程中使用三角法来检测行人违反距离限制的情况。本研究获得的测试结果的最佳召回值为0.86;使用YOLOv4迁移学习模型训练方法,使用473个训练数据和119个验证数据,最大批量为6000,精度为0.69,平均精度(mAP)为0.83。整个系统达到24到26FPS的平均实时处理速度。
{"title":"Sistem Pengawasan Physical Distancing di Tempat Umum Menggunakan Kamera Berbasis Deep Learning","authors":"Rizqy Arya Dinata, Ika Candradewi, B. Prastowo","doi":"10.22146/ijeis.70886","DOIUrl":"https://doi.org/10.22146/ijeis.70886","url":null,"abstract":"Pembatasan jarak fisik merupakan salah satu cara yang diterapkan untuk mencegah penyebaran virus pada tempat umum. Pelaksanaan pembatasan jarak fisik tersebut memerlukan pengawasan agar berhasil sesuai harapan. Pengawasan yang dilakukan secara manual terutama pada tempat dengan tingkat keramaian tinggi kurang efektif karena memerlukan banyak petugas di lokasi yang justru akan menambah keramaian.Pada penelitian ini dikembangkan purwarupa sistem pengawasan pembatasan jarak fisik dengan memanfaatkan kamera CCTV dengan pemrosesan citra digital berbasis computer vision dan deep learning. Metode yang digunakan adalah kombinasi pendeteksian dan pelacakan pedestrian dengan YOLOv4 dan DeepSORT. Metode trigonometri digunakan dalam proses estimasi jarak untuk mendeteksi pelanggaran pembatasan jarak oleh pedestrian. Pada penelitian ini didapatkan hasil pengujian dengan nilai terbaik recall 0,86; precision 0,69 dan mean average precision (mAP) sebesar 0,83 dengan metode pelatihan transfer learning model YOLOv4 dengan maksimum batch 6000 menggunakan 473 data latih dan 119 data validasi. Keseluruhan sistem mencapai kecepatan rata-rata proses real-time yakni pada 24 sampai 26 FPS.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49035828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Klasifikasi Suara Paru-Paru Berdasarkan Ciri MFCC 肺声音分类基于MFCC特征
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.70813
Dody Rafiqo, Yohanes Suyanto, Catur Atmaji
The lungs are an important organ in the human respiratory system, which functions to exchange carbon dioxide from the blood with oxygen in the air. Detection of respiratory disorders and lung disorders can be done in various ways; view medical records, physical examination, detection by x-ray and also auscultation of breathing. Digital signal processing can be used as a method to detect lung disorders based on the sound produced. In this study, lung sounds were classified into normal, crackle, wheeze, and crackle-wheeze classes using the Mel Frequency Cepstral Coefficient (MFCC) and Convolutional Neural Network (CNN) methods.Observations were made by varying the MFCC feature extraction using MFCC 8 and 13 coefficients, the number of frames are 50 and 60, and the width of the frames used was 0,1, 0,15 and 0,2 seconds. The result of feature extraction is then applied to the CNN classification system, and the confusion matrix is used to get the accuracy and precision values. The highest accuracy and precision values were obtained at 71,85% and 65,70% on the MFCC 13 coefficient with an average of 71,18%. Based on these results, the system that has been created can classify normal lung sounds, crackle, wheeze and crackle-wheeze quite well.
肺是人类呼吸系统中的一个重要器官,其功能是将血液中的二氧化碳与空气中的氧气交换。呼吸系统疾病和肺部疾病的检测可以通过各种方式进行;查看病历、体格检查、x线检查以及呼吸听诊。数字信号处理可以用作基于所产生的声音来检测肺部疾病的方法。在本研究中,使用梅尔频率倒谱系数(MFCC)和卷积神经网络(CNN)方法将肺部声音分为正常、爆裂、喘息和爆裂喘息。通过使用MFCC 8和13系数改变MFCC特征提取进行观察,帧数分别为50和60,所用帧的宽度分别为0,15,0,15,0,2秒。然后将特征提取的结果应用于CNN分类系统,并使用混淆矩阵来获得准确度和精度值。MFCC 13系数的最高准确度和精密度分别为71,85%和65,70%,平均值为71,18%。基于这些结果,所建立的系统可以很好地对正常肺部声音、爆裂声、喘息声和爆裂声进行分类。
{"title":"Klasifikasi Suara Paru-Paru Berdasarkan Ciri MFCC","authors":"Dody Rafiqo, Yohanes Suyanto, Catur Atmaji","doi":"10.22146/ijeis.70813","DOIUrl":"https://doi.org/10.22146/ijeis.70813","url":null,"abstract":"The lungs are an important organ in the human respiratory system, which functions to exchange carbon dioxide from the blood with oxygen in the air. Detection of respiratory disorders and lung disorders can be done in various ways; view medical records, physical examination, detection by x-ray and also auscultation of breathing. Digital signal processing can be used as a method to detect lung disorders based on the sound produced. In this study, lung sounds were classified into normal, crackle, wheeze, and crackle-wheeze classes using the Mel Frequency Cepstral Coefficient (MFCC) and Convolutional Neural Network (CNN) methods.Observations were made by varying the MFCC feature extraction using MFCC 8 and 13 coefficients, the number of frames are 50 and 60, and the width of the frames used was 0,1, 0,15 and 0,2 seconds. The result of feature extraction is then applied to the CNN classification system, and the confusion matrix is used to get the accuracy and precision values. The highest accuracy and precision values were obtained at 71,85% and 65,70% on the MFCC 13 coefficient with an average of 71,18%. Based on these results, the system that has been created can classify normal lung sounds, crackle, wheeze and crackle-wheeze quite well.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49225469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analisis Gap Evaluasi Kualitas Sistem E-Learning di Universitas Ibn Khaldun Bogor 伊本·赫顿·茂尔大学E-Learning系统质量评估评估分析
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.72631
R. Ritzkal, R. Rachmawati
A GAP analysis has been conducted on the evaluation of E-Learning systems of LMS UIKA Bogor. Five (5) subjects of discussion in this study, namely include Structured Learning Methods, Unstructured Learning Methods, Population and Samples, E-learning User Activity Record, Evaluation of Results. Process of evaluating the results of a calculation of the System Usability Scale (SUS). Judging from usability or usefulness the e-learning system is feasible. With the following details: a. Based on acceptability ranges, the e-learning falls into the accepted category, b. Based on the grade scale, included in grade C where the SUS score produced is 79, c. Based on adjective ratings, the value is between a score of 70-80 which means it falls into the range of good categories. The results of the usability evaluation of LMS UIKA Bogor products stated that overall, were acceptable or feasible.
对ika茂物LMS电子学习系统的评价进行了GAP分析。本研究讨论了五(5)个主题,即结构化学习方法、非结构化学习方法、人口与样本、E-learning用户活动记录、结果评价。评估系统可用性量表(SUS)计算结果的过程。从可用性或有用性来看,电子学习系统是可行的。具体如下:a.根据可接受范围,电子学习属于可接受类别,b.根据等级量表,包括C级,其中SUS得分为79,C .根据形容词评分,该值在70-80之间,这意味着它属于良好类别的范围。LMS UIKA茂物产品的可用性评估结果表明,总体而言,是可接受的或可行的。
{"title":"Analisis Gap Evaluasi Kualitas Sistem E-Learning di Universitas Ibn Khaldun Bogor","authors":"R. Ritzkal, R. Rachmawati","doi":"10.22146/ijeis.72631","DOIUrl":"https://doi.org/10.22146/ijeis.72631","url":null,"abstract":"A GAP analysis has been conducted on the evaluation of E-Learning systems of LMS UIKA Bogor. Five (5) subjects of discussion in this study, namely include Structured Learning Methods, Unstructured Learning Methods, Population and Samples, E-learning User Activity Record, Evaluation of Results. Process of evaluating the results of a calculation of the System Usability Scale (SUS). Judging from usability or usefulness the e-learning system is feasible. With the following details: a. Based on acceptability ranges, the e-learning falls into the accepted category, b. Based on the grade scale, included in grade C where the SUS score produced is 79, c. Based on adjective ratings, the value is between a score of 70-80 which means it falls into the range of good categories. The results of the usability evaluation of LMS UIKA Bogor products stated that overall, were acceptable or feasible.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43710318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Penempatan Posisi Transduser Ultrasonik Pada Penampang Pipa untuk Pengukuran Laju Aliran Fluida 用于流体流量测量的超声波传感器在延伸管上的位置延伸
Pub Date : 2022-04-30 DOI: 10.22146/ijeis.74151
L. F. Wiranata, I. W. Ardana
Fluid flow rate measurement is important in industries, especially determining fluid flow rate. This process requires a good level of precision and accuracy because it refers to each volumetric's price or custody transfer processor. Many devices are used to measure flow rates, but from some devices, ultrasonic flowmeters are considered, which have more advantages than others. Ultrasonic flowmeters also have some problems, especially in installation, so this research aims to simulate the position of path configuration. The method refers to the weighting process of multi-path configuration and the simulation of track performance, which includes three-factor, hydrodynamic (H), orientation sensitivity (S) and orientation range (T). Each trajectory pattern is rotated 1ᴼ at each angle. In addition, there are also parameter functions that are used to image the profile. The test uses 7 path configurations, so an ideal form is obtained to be implemented. After multiplying weighting factors, the obtained value of hydrodynamic (H) for Area weighting method (1.002), the best value 1. Orientation sensitivity (S), with Area weighting method (0.019), the best result is 0. Meanwhile, with orientation range (T) 1%, with Area weighting method (163,2), the best value is 180.
流体流速测量在工业中非常重要,尤其是确定流体流速。这一过程需要良好的精度和准确性,因为它涉及到每个体积的价格或托管转移处理器。许多设备用于测量流速,但从一些设备来看,考虑使用超声波流量计,这比其他设备更有优势。超声波流量计也存在一些问题,特别是在安装方面,因此本研究旨在模拟路径配置的位置。该方法是指多径配置的加权过程和轨道性能的模拟,包括三个因素,即水动力(H)、方位灵敏度(S)和方位范围(T)。每个轨迹图案旋转1ᴼ 在每个角度。此外,还有用于对配置文件进行成像的参数函数。该测试使用了7种路径配置,因此获得了一种理想的形式来实现。将加权因子相乘后,得到的水动力(H)值为面积加权法(1.002),最佳值为1。方位灵敏度(S),采用面积加权法(0.019),最佳结果为0。同时,在方位范围(T)为1%的情况下,采用面积加权法(163,2),最佳值为180。
{"title":"Penempatan Posisi Transduser Ultrasonik Pada Penampang Pipa untuk Pengukuran Laju Aliran Fluida","authors":"L. F. Wiranata, I. W. Ardana","doi":"10.22146/ijeis.74151","DOIUrl":"https://doi.org/10.22146/ijeis.74151","url":null,"abstract":"Fluid flow rate measurement is important in industries, especially determining fluid flow rate. This process requires a good level of precision and accuracy because it refers to each volumetric's price or custody transfer processor. Many devices are used to measure flow rates, but from some devices, ultrasonic flowmeters are considered, which have more advantages than others. Ultrasonic flowmeters also have some problems, especially in installation, so this research aims to simulate the position of path configuration. The method refers to the weighting process of multi-path configuration and the simulation of track performance, which includes three-factor, hydrodynamic (H), orientation sensitivity (S) and orientation range (T). Each trajectory pattern is rotated 1ᴼ at each angle. In addition, there are also parameter functions that are used to image the profile. The test uses 7 path configurations, so an ideal form is obtained to be implemented. After multiplying weighting factors, the obtained value of hydrodynamic (H) for Area weighting method (1.002), the best value 1. Orientation sensitivity (S), with Area weighting method (0.019), the best result is 0. Meanwhile, with orientation range (T) 1%, with Area weighting method (163,2), the best value is 180.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44370056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IJEIS Indonesian Journal of Electronics and Instrumentation Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1