首页 > 最新文献

IJCCS Indonesian Journal of Computing and Cybernetics Systems最新文献

英文 中文
Error Action Recognition on Playing The Erhu Musical Instrument Using Hybrid Classification Method with 3D-CNN and LSTM 基于3D-CNN和LSTM混合分类方法的二胡演奏错误动作识别
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.76555
Aditya Permana, Timothy K. Shih, Aina Musdholifah, Anny Kartika Sari
Erhu is a stringed instrument originating from China. In playing this instrument, there are rules on how to position the player's body and hold the instrument correctly. Therefore, a system is needed that can detect every movement of the Erhu player. This study will discuss action recognition on video using the 3DCNN and LSTM methods. The 3D Convolutional Neural Network method is a method that has a CNN base. To improve the ability to capture every information stored in every movement, combining an LSTM layer in the 3D-CNN model is necessary. LSTM is capable of handling the vanishing gradient problem faced by RNN. This research uses RGB video as a dataset, and there are three main parts in preprocessing and feature extraction. The three main parts are the body, erhu pole, and bow. To perform preprocessing and feature extraction, this study uses a body landmark to perform preprocessing and feature extraction on the body segment. In contrast, the erhu and bow segments use the Hough Lines algorithm. Furthermore, for the classification process, we propose two algorithms, namely, traditional algorithm and deep learning algorithm. These two-classification algorithms will produce an error message output from every movement of the erhu player.
二胡是一种起源于中国的弦乐器。在演奏这种乐器时,有关于如何正确地定位演奏者的身体和握住乐器的规则。因此,需要一个能够检测二胡演奏者每一个动作的系统。本研究将讨论使用3DCNN和LSTM方法对视频进行动作识别。3D卷积神经网络方法是一种具有CNN基础的方法。为了提高捕获每个运动中存储的每个信息的能力,在3D-CNN模型中结合LSTM层是必要的。LSTM能够处理RNN面临的梯度消失问题。本研究以RGB视频为数据集,主要分为预处理和特征提取三个部分。二胡的三个主要部分是琴身、二胡杆和琴弓。为了进行预处理和特征提取,本研究使用身体地标对身体片段进行预处理和特征提取。相比之下,二胡和弓段使用霍夫线算法。此外,对于分类过程,我们提出了两种算法,即传统算法和深度学习算法。这两种分类算法将从二胡演奏者的每一个动作中产生一个错误信息输出。
{"title":"Error Action Recognition on Playing The Erhu Musical Instrument Using Hybrid Classification Method with 3D-CNN and LSTM","authors":"Aditya Permana, Timothy K. Shih, Aina Musdholifah, Anny Kartika Sari","doi":"10.22146/ijccs.76555","DOIUrl":"https://doi.org/10.22146/ijccs.76555","url":null,"abstract":"Erhu is a stringed instrument originating from China. In playing this instrument, there are rules on how to position the player's body and hold the instrument correctly. Therefore, a system is needed that can detect every movement of the Erhu player. This study will discuss action recognition on video using the 3DCNN and LSTM methods. The 3D Convolutional Neural Network method is a method that has a CNN base. To improve the ability to capture every information stored in every movement, combining an LSTM layer in the 3D-CNN model is necessary. LSTM is capable of handling the vanishing gradient problem faced by RNN. This research uses RGB video as a dataset, and there are three main parts in preprocessing and feature extraction. The three main parts are the body, erhu pole, and bow. To perform preprocessing and feature extraction, this study uses a body landmark to perform preprocessing and feature extraction on the body segment. In contrast, the erhu and bow segments use the Hough Lines algorithm. Furthermore, for the classification process, we propose two algorithms, namely, traditional algorithm and deep learning algorithm. These two-classification algorithms will produce an error message output from every movement of the erhu player.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flower Pollination Inspired Algorithm on Exchange Rates Prediction Case 基于花授粉的汇率预测算法
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.84223
I Nyoman Prayana Trisna, Afiahayati Afiahayati, Muhammad Auzan
Flower pollination algorithm is a bio-inspired system that adapts a similar process to genetic algorithm, that aims for optimization problems. In this research, we examine the utilization of the flower pollination algorithm in linear regression for currency exchange cases. The solutions are represented as a set that contains regression coefficients. Population size for the candidate solutions and the switch probability between global pollination and local pollination have been experimented with in this research. Our result shows that the final solution is better when a higher size population and higher switch probability are employed. Furthermore, our result shows the higher size of the population leads to considerable running time, where the leaning probability of global pollination slightly increases the running time.
传粉算法是一种生物启发系统,它采用了与遗传算法相似的过程,旨在解决优化问题。在这项研究中,我们研究了花授粉算法在货币兑换案例线性回归中的应用。解被表示为包含回归系数的集合。本研究对候选解的种群大小和全局传粉与局部传粉的切换概率进行了实验。我们的结果表明,当使用较大的人口规模和较高的开关概率时,最终解是更好的。此外,我们的结果表明,较高的种群规模导致相当长的运行时间,其中全局授粉的学习概率略微增加了运行时间。
{"title":"Flower Pollination Inspired Algorithm on Exchange Rates Prediction Case","authors":"I Nyoman Prayana Trisna, Afiahayati Afiahayati, Muhammad Auzan","doi":"10.22146/ijccs.84223","DOIUrl":"https://doi.org/10.22146/ijccs.84223","url":null,"abstract":"Flower pollination algorithm is a bio-inspired system that adapts a similar process to genetic algorithm, that aims for optimization problems. In this research, we examine the utilization of the flower pollination algorithm in linear regression for currency exchange cases. The solutions are represented as a set that contains regression coefficients. Population size for the candidate solutions and the switch probability between global pollination and local pollination have been experimented with in this research. Our result shows that the final solution is better when a higher size population and higher switch probability are employed. Furthermore, our result shows the higher size of the population leads to considerable running time, where the leaning probability of global pollination slightly increases the running time.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Data Augmentation in Deep Learning with Drone Object Detection 无人机目标检测中数据增强在深度学习中的作用
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.84785
Ariel Yonatan Alin, Kusrini Kusrini, Kumara Ari Yuana
Drone object detection is one of the main applications of image processing technology and pattern recognition using deep learning. However, the limited drone image data that can be accessed for training detection algorithms is a challenge in the development of drone object detection technology. Therefore, many studies have been conducted to increase the amount of drone image data using data augmentation techniques. This study aims to evaluate the effect of data augmentation on deep learning accuracy in drone object detection using the YOLOv5 algorithm. The methods used in this research include collecting drone image data, augmenting data with rotate, crop and cutout, training the YOLOv5 algorithm with and without data augmentation, as well as testing and analyzing training results.The results of the study show that data augmentation can't improve the accuracy of the YOLOv5 algorithm in drone object detection. Evidenced by the decreasing value of precision and mAP@0.5 and the relatively constant value of recall and F-1 score. This is caused by too much augmentation can cause loss of important information in the data and improper augmentation can cause noise or distortion in the data.
无人机目标检测是图像处理技术和基于深度学习的模式识别的主要应用之一。然而,可用于训练检测算法的无人机图像数据有限是无人机目标检测技术发展的一个挑战。因此,人们进行了许多研究,利用数据增强技术来增加无人机图像数据的数量。本研究旨在利用YOLOv5算法评估数据增强对无人机目标检测中深度学习精度的影响。本研究采用的方法包括采集无人机图像数据,对数据进行旋转、裁剪和剪切增强,对数据增强和不增强的YOLOv5算法进行训练,并对训练结果进行测试和分析。研究结果表明,数据增强并不能提高YOLOv5算法在无人机目标检测中的精度。精密度和mAP@0.5值呈下降趋势,召回率和F-1分数相对稳定。这是因为过多的增强会导致数据中重要信息的丢失,而不当的增强会导致数据中的噪声或失真。
{"title":"The Effect of Data Augmentation in Deep Learning with Drone Object Detection","authors":"Ariel Yonatan Alin, Kusrini Kusrini, Kumara Ari Yuana","doi":"10.22146/ijccs.84785","DOIUrl":"https://doi.org/10.22146/ijccs.84785","url":null,"abstract":"Drone object detection is one of the main applications of image processing technology and pattern recognition using deep learning. However, the limited drone image data that can be accessed for training detection algorithms is a challenge in the development of drone object detection technology. Therefore, many studies have been conducted to increase the amount of drone image data using data augmentation techniques. This study aims to evaluate the effect of data augmentation on deep learning accuracy in drone object detection using the YOLOv5 algorithm. The methods used in this research include collecting drone image data, augmenting data with rotate, crop and cutout, training the YOLOv5 algorithm with and without data augmentation, as well as testing and analyzing training results.The results of the study show that data augmentation can't improve the accuracy of the YOLOv5 algorithm in drone object detection. Evidenced by the decreasing value of precision and mAP@0.5 and the relatively constant value of recall and F-1 score. This is caused by too much augmentation can cause loss of important information in the data and improper augmentation can cause noise or distortion in the data.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C Source code Obfuscation using Hash Function and Encryption Algorithm 使用哈希函数和加密算法的C源代码混淆
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.86118
Sarah Rosdiana Tambunan, Nur Rokhman
Obfuscation is a technique for transforming program code into a different form that is more difficult to understand. Several obfuscation methods are used to obfuscate source code, including dead code insertion, code transposition, and string encryption. In this research, the development of an obfuscator that can work on C language source code uses the code transposition method, namely randomizing the arrangement of lines of code with a hash function and then using the DES encryption algorithm to hide the parameters of the hash function so that it is increasingly difficult to find the original format. This obfuscator is specifically used to maintain the security of source code in C language from plagiarism and piracy. In order to evaluate this obfuscator, nine respondents who understand the C programming language were asked to deobfuscate the obfuscated source code manually. Then the percentage of correctness and the average time needed to perform the manual deobfuscation are observed. The evaluation results show that the obfuscator effectively maintains security and complicates the source code analysis.
混淆是一种将程序代码转换为更难以理解的不同形式的技术。有几种混淆方法用于混淆源代码,包括死码插入、代码换位和字符串加密。在本研究中,开发了一个可以在C语言源代码上工作的混淆器,使用代码转置方法,即用哈希函数随机排列代码行,然后使用DES加密算法隐藏哈希函数的参数,使得原始格式越来越难以找到。这个混淆器是专门用于维护C语言源代码的安全性,防止抄袭和盗版。为了评估这个混淆器,九名理解C编程语言的受访者被要求手动去混淆被混淆的源代码。然后观察正确的百分比和执行手动去混淆所需的平均时间。评估结果表明,该混淆器有效地维护了安全性,并使源代码分析复杂化。
{"title":"C Source code Obfuscation using Hash Function and Encryption Algorithm","authors":"Sarah Rosdiana Tambunan, Nur Rokhman","doi":"10.22146/ijccs.86118","DOIUrl":"https://doi.org/10.22146/ijccs.86118","url":null,"abstract":"Obfuscation is a technique for transforming program code into a different form that is more difficult to understand. Several obfuscation methods are used to obfuscate source code, including dead code insertion, code transposition, and string encryption. In this research, the development of an obfuscator that can work on C language source code uses the code transposition method, namely randomizing the arrangement of lines of code with a hash function and then using the DES encryption algorithm to hide the parameters of the hash function so that it is increasingly difficult to find the original format. This obfuscator is specifically used to maintain the security of source code in C language from plagiarism and piracy. In order to evaluate this obfuscator, nine respondents who understand the C programming language were asked to deobfuscate the obfuscated source code manually. Then the percentage of correctness and the average time needed to perform the manual deobfuscation are observed. The evaluation results show that the obfuscator effectively maintains security and complicates the source code analysis.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"113 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autism Spectrum Disorder (ASD) Identification Using Feature-Based Machine Learning Classification Model 基于特征的机器学习分类模型的自闭症谱系障碍(ASD)识别
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.83585
Anton Novianto, Mila Desi Anasanti
Autism Spectrum Disorder (ASD) is a developmental disorder that impairs the development of behaviors, communication, and learning abilities. Early detection of ASD helps patients to get beter training to communicate and interact with others. In this study, we identified ASD and non-ASD individuals using machine learning (ML) approaches. We used Gaussian naive Bayes (NB), k-nearest neighbors (KNN), random forest (RF), logistic regression (LR), Gaussian naive Bayes (NB), support vector machine (SVM) with linear basis function and decision tree (DT). We preprocessed the data using the imputation methods, namely linear regression, Mice forest, and Missforest. We selected the important features using the Simultaneous perturbation feature selection and ranking (SpFSR) technique from all 21 ASD features of three datasets combined (N=1,100 individuals) from University California Irvine (UCI) repository. We evaluated the performance of the method's discrimination, calibration, and clinical utility using a stratified 10-fold cross-validation method. We achieved the highest accuracy possible by using SVM with selected the most important 10 features. We observed the integration of imputation using linear regression, SpFSR and SVM as the most effective models, with an accuracy rate of 100% outperformed the previous studies in ASD prediciton
自闭症谱系障碍(ASD)是一种发育障碍,会损害行为、沟通和学习能力的发展。ASD的早期发现有助于患者获得更好的与他人沟通和互动的训练。在这项研究中,我们使用机器学习(ML)方法识别ASD和非ASD个体。我们使用高斯朴素贝叶斯(NB)、k近邻(KNN)、随机森林(RF)、逻辑回归(LR)、高斯朴素贝叶斯(NB)、线性基函数支持向量机(SVM)和决策树(DT)。采用线性回归、Mice forest和Missforest等方法对数据进行预处理。我们使用同步扰动特征选择和排序(Simultaneous perturbation feature selection and ranking,简称SpFSR)技术,从加州大学欧文分校(UCI)数据库中三个数据集(N= 1100个个体)的所有21个ASD特征中选择出重要特征。我们使用分层的10倍交叉验证方法评估了该方法的鉴别、校准和临床应用的性能。我们通过选择最重要的10个特征使用支持向量机实现了最高的准确率。我们观察到以线性回归、SpFSR和SVM作为最有效的模型进行整合,在ASD预测中准确率达到100%,优于以往的研究
{"title":"Autism Spectrum Disorder (ASD) Identification Using Feature-Based Machine Learning Classification Model","authors":"Anton Novianto, Mila Desi Anasanti","doi":"10.22146/ijccs.83585","DOIUrl":"https://doi.org/10.22146/ijccs.83585","url":null,"abstract":"Autism Spectrum Disorder (ASD) is a developmental disorder that impairs the development of behaviors, communication, and learning abilities. Early detection of ASD helps patients to get beter training to communicate and interact with others. In this study, we identified ASD and non-ASD individuals using machine learning (ML) approaches. We used Gaussian naive Bayes (NB), k-nearest neighbors (KNN), random forest (RF), logistic regression (LR), Gaussian naive Bayes (NB), support vector machine (SVM) with linear basis function and decision tree (DT). We preprocessed the data using the imputation methods, namely linear regression, Mice forest, and Missforest. We selected the important features using the Simultaneous perturbation feature selection and ranking (SpFSR) technique from all 21 ASD features of three datasets combined (N=1,100 individuals) from University California Irvine (UCI) repository. We evaluated the performance of the method's discrimination, calibration, and clinical utility using a stratified 10-fold cross-validation method. We achieved the highest accuracy possible by using SVM with selected the most important 10 features. We observed the integration of imputation using linear regression, SpFSR and SVM as the most effective models, with an accuracy rate of 100% outperformed the previous studies in ASD prediciton","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Audio-Visual CNN using Transfer Learning for TV Commercial Break Detection 视听CNN利用迁移学习进行电视广告插播检测
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.76058
Muhammad Zha'farudin Pudya Wardana, Moh. Edi Wibowo
The TV commercial detection problem is a hard challenge due to the variety of programs and TV channels. The usage of deep learning methods to solve this problem has shown good results. However, it takes a long time with many training epochs to get high accuracy. This research uses transfer learning techniques to reduce training time and limits the number of training epochs to 20. From video data, the audio feature is extracted with Mel-spectrogram representation, and the visual features are picked from a video frame. The datasets were gathered by recording programs from various TV channels in Indonesia. Pre-trained CNN models such as MobileNetV2, InceptionV3, and DenseNet169 are re-trained and are used to detect commercials at the shot level. We do post-processing to cluster the shots into segments of commercials and non-commercials. The best result is shown by Audio-Visual CNN using transfer learning with an accuracy of 93.26% with only 20 training epochs. It is faster and better than the CNN model without using transfer learning with an accuracy of 88.17% and 77 training epochs. The result by adding post-processing increases the accuracy of Audio-Visual CNN using transfer learning to 96.42%.
由于节目和频道的多样性,电视广告的检测问题是一个严峻的挑战。使用深度学习方法来解决这个问题已经显示出良好的效果。然而,该方法需要长时间、多次训练才能达到较高的准确率。本研究使用迁移学习技术来减少训练时间,并将训练次数限制在20次以内。从视频数据中,用梅尔谱图表示提取音频特征,并从视频帧中提取视觉特征。这些数据集是通过录制印度尼西亚各个电视频道的节目收集的。预先训练的CNN模型,如MobileNetV2, InceptionV3和DenseNet169被重新训练,并用于在镜头级别检测商业广告。我们做后期处理,把镜头分成商业和非商业的片段。使用迁移学习的视听CNN效果最好,只需要20个训练epoch,准确率达到93.26%。它比未使用迁移学习的CNN模型更快更好,准确率为88.17%,训练周期为77个。加入后处理后,视听CNN迁移学习的准确率提高到96.42%。
{"title":"Audio-Visual CNN using Transfer Learning for TV Commercial Break Detection","authors":"Muhammad Zha'farudin Pudya Wardana, Moh. Edi Wibowo","doi":"10.22146/ijccs.76058","DOIUrl":"https://doi.org/10.22146/ijccs.76058","url":null,"abstract":"The TV commercial detection problem is a hard challenge due to the variety of programs and TV channels. The usage of deep learning methods to solve this problem has shown good results. However, it takes a long time with many training epochs to get high accuracy. This research uses transfer learning techniques to reduce training time and limits the number of training epochs to 20. From video data, the audio feature is extracted with Mel-spectrogram representation, and the visual features are picked from a video frame. The datasets were gathered by recording programs from various TV channels in Indonesia. Pre-trained CNN models such as MobileNetV2, InceptionV3, and DenseNet169 are re-trained and are used to detect commercials at the shot level. We do post-processing to cluster the shots into segments of commercials and non-commercials. The best result is shown by Audio-Visual CNN using transfer learning with an accuracy of 93.26% with only 20 training epochs. It is faster and better than the CNN model without using transfer learning with an accuracy of 88.17% and 77 training epochs. The result by adding post-processing increases the accuracy of Audio-Visual CNN using transfer learning to 96.42%.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart GreenGrocer: Automatic Vegetable Type Classification Using the CNN Algorithm 智能蔬菜商:使用CNN算法的自动蔬菜类型分类
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.82377
Raden Bagus Muhammad AdryanPutra Adhy Wijaya, Delfia Nur Anrianti Putri, Dzikri Rahadian Fudholi
In the food industry, separating vegetables is done by visually trained professionals. However, because it takes plenty of time to sort a large number of different types of vegetables, human errors might arise at any time, and using human resources is not always effective. Thus, automation is needed to minimize process time and errors. Computer vision helps reduce the need for human resources by automatizing the classification. Vegetables come in various colors and shapes; thus, vegetable classification becomes a challenging multiclass classification due to intraspecies variety and interspecies similarity of these main distinguishing characteristics. Consequently, much research is made to automatically discover effective methods to group each type of vegetable using computers. To answer this challenge, we proposed a solution utilizing deep learning with a Convolutional Neural Network (CNN) to perform multi-label classification on some types of vegetables. We experimented with the modification of batch size and optimizer type. In the training process, the learning rate is 0.01, and it adapts on arrival in the local minimum for result optimization. This classification is performed on 15 types of vegetables and produces 98.1% accuracy on testing data with 25 minutes and 45 seconds of training time.
在食品行业,分离蔬菜是由受过视觉训练的专业人员完成的。然而,由于对大量不同种类的蔬菜进行分拣需要花费大量时间,因此随时可能出现人为错误,使用人力资源并不总是有效的。因此,需要自动化来最小化处理时间和错误。计算机视觉通过自动化分类,减少了对人力资源的需求。蔬菜有各种各样的颜色和形状;因此,由于种内的多样性和种间的相似性,蔬菜分类成为一个具有挑战性的多纲分类。因此,人们进行了大量的研究,以利用计算机自动发现有效的方法来对每种蔬菜进行分组。为了应对这一挑战,我们提出了一种利用深度学习和卷积神经网络(CNN)对某些类型的蔬菜进行多标签分类的解决方案。我们对批量大小和优化器类型的修改进行了实验。在训练过程中,学习率为0.01,并在到达局部最小值时自适应进行结果优化。该分类对15种蔬菜进行了分类,在25分45秒的训练时间内,测试数据的准确率达到98.1%。
{"title":"Smart GreenGrocer: Automatic Vegetable Type Classification Using the CNN Algorithm","authors":"Raden Bagus Muhammad AdryanPutra Adhy Wijaya, Delfia Nur Anrianti Putri, Dzikri Rahadian Fudholi","doi":"10.22146/ijccs.82377","DOIUrl":"https://doi.org/10.22146/ijccs.82377","url":null,"abstract":"In the food industry, separating vegetables is done by visually trained professionals. However, because it takes plenty of time to sort a large number of different types of vegetables, human errors might arise at any time, and using human resources is not always effective. Thus, automation is needed to minimize process time and errors. Computer vision helps reduce the need for human resources by automatizing the classification. Vegetables come in various colors and shapes; thus, vegetable classification becomes a challenging multiclass classification due to intraspecies variety and interspecies similarity of these main distinguishing characteristics. Consequently, much research is made to automatically discover effective methods to group each type of vegetable using computers. To answer this challenge, we proposed a solution utilizing deep learning with a Convolutional Neural Network (CNN) to perform multi-label classification on some types of vegetables. We experimented with the modification of batch size and optimizer type. In the training process, the learning rate is 0.01, and it adapts on arrival in the local minimum for result optimization. This classification is performed on 15 types of vegetables and produces 98.1% accuracy on testing data with 25 minutes and 45 seconds of training time.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"238 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Approaches for Nusantara Scripts Optical Character Recognition 努沙塔拉文字光学字符识别的深度学习方法
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.86302
Agi Prasetiadi, Julian Saputra, Iqsyahiro Kresna, Imada Ramadhanti
The number of speakers of regional languages who are able to read and to write traditional scripts in Indonesia is decreasing. If left unaddressed, this will lead to the extinction of Nusantara scripts and it is not impossible that their reading methods will be forgotten in the future. To anticipate this, this study aims to preserve the knowledge of reading ancient scripts by developing a Deep Learning model that can read document images written using one of the 10 Nusantara scripts we have collected: Bali, Batak, Bugis, Javanese, Kawi, Kerinci, Lampung, Pallava, Rejang, and Sundanese. While previous studies have made efforts to read traditional Nusantara scripts using various Machine Learning and Convolutional Neural Network algorithms, they have primarily focused on specific scripts and lacked an integrated approach from script type recognition to character recognition. This study is the first to comprehensively address the entire range of Nusantara scripts, encompassing script type detection and character recognition. Convolutional Neural Network, ConvMixer, and Visual Transformer models were utilized and their respective performances were compared. The results demonstrate that our models achieved 96% accuracy in classifying Nusantara script types, with character recognition accuracy ranging from 93% to approximately 100% across the ten scripts.
在印度尼西亚,能够阅读和书写传统文字的区域语言使用者的数量正在减少。如果不加以解决,这将导致努沙塔拉文字的灭绝,他们的阅读方法在未来也不是不可能被遗忘。为了预测这一点,本研究旨在通过开发一个深度学习模型来保存阅读古代文字的知识,该模型可以阅读使用我们收集的10种努沙塔拉文字之一书写的文档图像:巴厘岛、巴塔克语、武吉语、爪哇语、卡威语、克里西语、楠蓬语、帕拉瓦语、雷羌语和巽他语。虽然以前的研究已经努力使用各种机器学习和卷积神经网络算法来读取传统的努沙塔拉脚本,但它们主要集中在特定的脚本上,缺乏从脚本类型识别到字符识别的集成方法。这项研究是第一个全面解决nuusantara文字的整个范围,包括文字类型检测和字符识别。采用了卷积神经网络、ConvMixer和Visual Transformer模型,并对其性能进行了比较。结果表明,我们的模型在Nusantara文字类型分类中达到了96%的准确率,10种文字的字符识别准确率在93%到大约100%之间。
{"title":"Deep Learning Approaches for Nusantara Scripts Optical Character Recognition","authors":"Agi Prasetiadi, Julian Saputra, Iqsyahiro Kresna, Imada Ramadhanti","doi":"10.22146/ijccs.86302","DOIUrl":"https://doi.org/10.22146/ijccs.86302","url":null,"abstract":"The number of speakers of regional languages who are able to read and to write traditional scripts in Indonesia is decreasing. If left unaddressed, this will lead to the extinction of Nusantara scripts and it is not impossible that their reading methods will be forgotten in the future. To anticipate this, this study aims to preserve the knowledge of reading ancient scripts by developing a Deep Learning model that can read document images written using one of the 10 Nusantara scripts we have collected: Bali, Batak, Bugis, Javanese, Kawi, Kerinci, Lampung, Pallava, Rejang, and Sundanese. While previous studies have made efforts to read traditional Nusantara scripts using various Machine Learning and Convolutional Neural Network algorithms, they have primarily focused on specific scripts and lacked an integrated approach from script type recognition to character recognition. This study is the first to comprehensively address the entire range of Nusantara scripts, encompassing script type detection and character recognition. Convolutional Neural Network, ConvMixer, and Visual Transformer models were utilized and their respective performances were compared. The results demonstrate that our models achieved 96% accuracy in classifying Nusantara script types, with character recognition accuracy ranging from 93% to approximately 100% across the ten scripts.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive Analysis of Rice Pest Distribution in Bali Province Using Backpropagation Neural Network 利用反向传播神经网络预测巴厘省水稻害虫分布
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.85584
I Kadek Agus Dwipayana, Putu Sugiartawan
The distribution of pests in rice plants results in significant losses in production and damage to rice plants for farmers, seen from data on the area of rice borer attacks in the province of Bali in Tabanan district. Therefore, by predicting the distribution of rice pests, we can know the pattern of pest attacks so that we can anticipate them because predicting can provide accuracy and error values through the test results. One of the prediction models is BPNN, where BPNN's advantages for solving complex problems are very suitable for use where large amounts of data are involved and many input/output variables, BPNN is also capable of modeling nonlinear relationships between input and output variables, which may be difficult to capture by this type of predictive model. other. Backpropagation includes supervised learning, which means it can learn from labeled examples and can make accurate predictions on new, unlabeled data. Split data using K-fold cross-validation serves to assess the process performance of an algorithmic method by dividing random data samples and grouping the data as many as K k-fold values.
从塔巴南巴厘省稻螟虫袭击地区的数据可以看出,害虫在水稻植株中的分布给农民造成了重大的生产损失和水稻植株损害。因此,通过对水稻害虫的分布进行预测,可以了解害虫发生的规律,从而通过试验结果提供预测的准确性和误差值,从而对害虫的发生进行预测。其中一种预测模型是BPNN,其中BPNN在解决复杂问题方面的优势非常适合用于涉及大量数据和许多输入/输出变量的情况,BPNN还能够建模输入和输出变量之间的非线性关系,这可能是这种类型的预测模型难以捕获的。其他。反向传播包括监督学习,这意味着它可以从标记的例子中学习,并可以对新的、未标记的数据做出准确的预测。使用K-fold交叉验证的分割数据用于通过划分随机数据样本并将数据分组为K-fold值来评估算法方法的处理性能。
{"title":"Predictive Analysis of Rice Pest Distribution in Bali Province Using Backpropagation Neural Network","authors":"I Kadek Agus Dwipayana, Putu Sugiartawan","doi":"10.22146/ijccs.85584","DOIUrl":"https://doi.org/10.22146/ijccs.85584","url":null,"abstract":"The distribution of pests in rice plants results in significant losses in production and damage to rice plants for farmers, seen from data on the area of rice borer attacks in the province of Bali in Tabanan district. Therefore, by predicting the distribution of rice pests, we can know the pattern of pest attacks so that we can anticipate them because predicting can provide accuracy and error values through the test results. One of the prediction models is BPNN, where BPNN's advantages for solving complex problems are very suitable for use where large amounts of data are involved and many input/output variables, BPNN is also capable of modeling nonlinear relationships between input and output variables, which may be difficult to capture by this type of predictive model. other. Backpropagation includes supervised learning, which means it can learn from labeled examples and can make accurate predictions on new, unlabeled data. Split data using K-fold cross-validation serves to assess the process performance of an algorithmic method by dividing random data samples and grouping the data as many as K k-fold values.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Extreme Learning Machine Method With Particle Swarm Optimization to Classify of Heart Disease 基于粒子群优化的极限学习机方法在心脏病分类中的应用
Pub Date : 2023-07-31 DOI: 10.22146/ijccs.86291
Adela Putri Ariyanti, Muhammad Itqan Mazdadi, Andi - Farmadi, Muliadi Muliadi, Rudy Herteno
Penyakit jantung koroner adalah tersumbatnya suplai darah jantung. Penyakit jantung adalah penyebab utama kematian di seluruh dunia. Berbagai faktor risiko berkontribusi terhadap penyakit jantung, termasuk merokok, gaya hidup tidak sehat, kolesterol tinggi, dan hipertensi. Dengan demikian, prediksi penyakit dapat dilakukan untuk mengidentifikasi individu yang berisiko guna mencegah peningkatan kematian akibat penyakit jantung. Penambangan data, khususnya metode Extreme Machine Learning (ELM), biasanya digunakan untuk tujuan ini. ELM adalah metode jaringan saraf dalam kecepatan pelatihan dan tidak memerlukan propagasi balik, dan menentukan jumlah node tersembunyi yang optimal dan mencapai hasil yang akurat tetap menjadi tantangan. Pada penelitian ini, ELM dengan Particle Swarm Optimization (PSO) diusulkan untuk mengoptimalkan klasifikasi penyakit jantung, yang bertujuan untuk mencapai hasil optimal dengan pembelajaran cepat. Penelitian ini mengikuti proses yang sistematis, termasuk pengumpulan data, preprocessing, pemodelan, dan evaluasi menggunakan analisis matriks konfusi. Hasil dan pembahasan menyajikan efektivitas metode yang diusulkan dengan mengevaluasi akurasi klasifikasi berdasarkan berbagai parameter, seperti ukuran populasi, jumlah node tersembunyi, dan iterasi. Temuan menunjukkan bahwa ELM dengan optimasi PSO dapat memberikan hasil klasifikasi yang akurat untuk diagnosis penyakit jantung, dengan tingkat akurasi yang menjanjikan.
冠心病和心脏血液供应中断。心脏病是世界各地死亡的主要原因。各种风险因素会导致心脏病,包括吸烟、不健康的生活方式、高胆固醇和高血压。因此,可以对疾病进行预测,以确定危险的个人,以防止心脏病死亡的增加。数据挖掘,特别是极端机器学习方法,通常用于此目的。榆树是一种训练速度的神经网络方法,不需要进行复制,确定最佳的隐藏节点数量并达到准确结果仍然是一个挑战。在这项研究中,PSO的粒子优化(PSO)建议优化心脏病分类,旨在通过快速学习获得最佳结果。这项研究遵循一个系统的过程,包括数据收集、预处理、建模和使用一致性矩阵分析进行评估。结果和讨论通过根据各种参数,如人口规模、隐藏节点数量和重复,对建议方法的分类准确性进行评估,从而提供了建议方法的有效性。研究结果表明,PSO优化研究可以在一定程度上准确地为心脏病诊断提供准确的分类结果。
{"title":"Application of Extreme Learning Machine Method With Particle Swarm Optimization to Classify of Heart Disease","authors":"Adela Putri Ariyanti, Muhammad Itqan Mazdadi, Andi - Farmadi, Muliadi Muliadi, Rudy Herteno","doi":"10.22146/ijccs.86291","DOIUrl":"https://doi.org/10.22146/ijccs.86291","url":null,"abstract":"Penyakit jantung koroner adalah tersumbatnya suplai darah jantung. Penyakit jantung adalah penyebab utama kematian di seluruh dunia. Berbagai faktor risiko berkontribusi terhadap penyakit jantung, termasuk merokok, gaya hidup tidak sehat, kolesterol tinggi, dan hipertensi. Dengan demikian, prediksi penyakit dapat dilakukan untuk mengidentifikasi individu yang berisiko guna mencegah peningkatan kematian akibat penyakit jantung. Penambangan data, khususnya metode Extreme Machine Learning (ELM), biasanya digunakan untuk tujuan ini. ELM adalah metode jaringan saraf dalam kecepatan pelatihan dan tidak memerlukan propagasi balik, dan menentukan jumlah node tersembunyi yang optimal dan mencapai hasil yang akurat tetap menjadi tantangan. Pada penelitian ini, ELM dengan Particle Swarm Optimization (PSO) diusulkan untuk mengoptimalkan klasifikasi penyakit jantung, yang bertujuan untuk mencapai hasil optimal dengan pembelajaran cepat. Penelitian ini mengikuti proses yang sistematis, termasuk pengumpulan data, preprocessing, pemodelan, dan evaluasi menggunakan analisis matriks konfusi. Hasil dan pembahasan menyajikan efektivitas metode yang diusulkan dengan mengevaluasi akurasi klasifikasi berdasarkan berbagai parameter, seperti ukuran populasi, jumlah node tersembunyi, dan iterasi. Temuan menunjukkan bahwa ELM dengan optimasi PSO dapat memberikan hasil klasifikasi yang akurat untuk diagnosis penyakit jantung, dengan tingkat akurasi yang menjanjikan.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135313745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IJCCS Indonesian Journal of Computing and Cybernetics Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1