Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.7009
Jin Huajian, Guoqiang Li, F. Sun
In this paper, a non-buckling steel plate shear wall with corrugated core panel was introduced, which keeps itself from premature buckling by fully taking advantage of extra-large flexural stiffness of corrugated core panel and enables to yield before buckling. Most importantly, the optimal corrugation configuration of corrugated core panel was obtained by parametric investigation into detailed dimensions of single wave such as thickness, depth of corrugation, angle of corrugation and so on, which was hereafter validated by numerical simulation. Non-dimensional parameters such as height-to-thickness ratio, width-to-thickness ratio and aspect ratio have also been taken into consideration, all of which turn out to be the most decisive factors of guaranteeing the “non-buckling”. The parametric analysis proves that as long as the former two factors are below the critical values recommended in this paper, unexpected buckling is not going to happen. On the other hand, theoretical approaches to calculate the yielding strength and initial stiffness were derived, as well as a theoretical design method for boundary elements. Meanwhile, a simplified model was concluded. Formulas to determine the cross-section of cross braces and boundary elements were given based on the principle of equivalent yielding strength and initial stiffness. Finally, four specimens were resorted to testify above theory and parametric study. Two specimens with larger height-to-thickness ratio that exceeds the recommended limit exhibit inevitable buckling, while the others with smaller height-to-thickness ratio show ideal energy-absorbing capability and no evident buckling is observed even under an inter-story drift of 2%.
{"title":"Study on non-buckling steel plate shear walls with corrugated core panel","authors":"Jin Huajian, Guoqiang Li, F. Sun","doi":"10.4995/ASCCS2018.2018.7009","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.7009","url":null,"abstract":"In this paper, a non-buckling steel plate shear wall with corrugated core panel was introduced, which keeps itself from premature buckling by fully taking advantage of extra-large flexural stiffness of corrugated core panel and enables to yield before buckling. Most importantly, the optimal corrugation configuration of corrugated core panel was obtained by parametric investigation into detailed dimensions of single wave such as thickness, depth of corrugation, angle of corrugation and so on, which was hereafter validated by numerical simulation. Non-dimensional parameters such as height-to-thickness ratio, width-to-thickness ratio and aspect ratio have also been taken into consideration, all of which turn out to be the most decisive factors of guaranteeing the “non-buckling”. The parametric analysis proves that as long as the former two factors are below the critical values recommended in this paper, unexpected buckling is not going to happen. On the other hand, theoretical approaches to calculate the yielding strength and initial stiffness were derived, as well as a theoretical design method for boundary elements. Meanwhile, a simplified model was concluded. Formulas to determine the cross-section of cross braces and boundary elements were given based on the principle of equivalent yielding strength and initial stiffness. Finally, four specimens were resorted to testify above theory and parametric study. Two specimens with larger height-to-thickness ratio that exceeds the recommended limit exhibit inevitable buckling, while the others with smaller height-to-thickness ratio show ideal energy-absorbing capability and no evident buckling is observed even under an inter-story drift of 2%.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"176 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116501410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.7028
D. Dragan, A. Plumier, H. Degée
The current EN 1992 provides structured information related to the design of reinforced concrete columns or reinforced concrete column beam connections. On the other hand, EN 1994 gives enough information on the design of composite columns but none of the current codes provide details about a possible transfer zone in the case of usage of RC and composite column solution. The current study tends to fill the gap between these two norms. In the current experimental campaign, carried out in the frame of the European research program SmartCoCo, it is presented as a calibration method for a tentative design method which has been elaborated by one of the authors based on theoretical strut and tie reasoning. The objective of the current paper is to present the results of the experiments and aims to validate the theoretical approach for calculating the force transfer mechanism in the transfer zone. The experimental campaign comprises of 4 columns and 4 column-beam connections, all of them being composed by a RC part and a composite. The tests are performed on vertical column, simply supported with a width of 350mm, length of 380 mm and a height of 3850 mm with a regular concrete quality (C25/30). This contribution describes the test specimens, summarizes their design, presents a selection of the most relevant results from analog and digital measurements and a short interpretation of the obtain results. We concluded from this set of tests that the new design method is able to explain the force transfer mechanism with a good accuracy and can therefore be considered as a suitable solution for designing practical cases.
{"title":"Experimental study of the force transfer mechanism in transition zone between composite column and reinforced concrete column","authors":"D. Dragan, A. Plumier, H. Degée","doi":"10.4995/ASCCS2018.2018.7028","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.7028","url":null,"abstract":"The current EN 1992 provides structured information related to the design of reinforced concrete columns or reinforced concrete column beam connections. On the other hand, EN 1994 gives enough information on the design of composite columns but none of the current codes provide details about a possible transfer zone in the case of usage of RC and composite column solution. The current study tends to fill the gap between these two norms. In the current experimental campaign, carried out in the frame of the European research program SmartCoCo, it is presented as a calibration method for a tentative design method which has been elaborated by one of the authors based on theoretical strut and tie reasoning. The objective of the current paper is to present the results of the experiments and aims to validate the theoretical approach for calculating the force transfer mechanism in the transfer zone. The experimental campaign comprises of 4 columns and 4 column-beam connections, all of them being composed by a RC part and a composite. The tests are performed on vertical column, simply supported with a width of 350mm, length of 380 mm and a height of 3850 mm with a regular concrete quality (C25/30). This contribution describes the test specimens, summarizes their design, presents a selection of the most relevant results from analog and digital measurements and a short interpretation of the obtain results. We concluded from this set of tests that the new design method is able to explain the force transfer mechanism with a good accuracy and can therefore be considered as a suitable solution for designing practical cases.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134304391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.7066
C. D. Goode, T. Nash
In the 1980’s Manchester University carried out over 110 tests on cylinders with a composite wall (steel-concrete-steel) subjected to external pressure as already reported in the literature. This paper describes further tests on 9 cylinders with a composite wall and a dome end subjected to external pressure and reports the results and compares them with theory. The cylinders were 500 mm diameter and 1250 mm long and four of them had penetrations through the cylinder wall. These tests were carried out under contract for Tecnomare SpA of Italy and have not been previously reported because of confidentiality reasons. The agreement between test behaviour, failure load and the theory developed at Manchester University is good. The philosophy for the design of such vessels for seabed structures is discussed and a ‘depth margin’ method proposed as it is a more realistic way of applying safety. Examples of designs for different depths are given and compared with the predicted failure pressure.
{"title":"Cylinders with a steel-concrete-steel wall to resist external pressure","authors":"C. D. Goode, T. Nash","doi":"10.4995/ASCCS2018.2018.7066","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.7066","url":null,"abstract":"In the 1980’s Manchester University carried out over 110 tests on cylinders with a composite wall (steel-concrete-steel) subjected to external pressure as already reported in the literature. This paper describes further tests on 9 cylinders with a composite wall and a dome end subjected to external pressure and reports the results and compares them with theory. The cylinders were 500 mm diameter and 1250 mm long and four of them had penetrations through the cylinder wall. These tests were carried out under contract for Tecnomare SpA of Italy and have not been previously reported because of confidentiality reasons. The agreement between test behaviour, failure load and the theory developed at Manchester University is good. The philosophy for the design of such vessels for seabed structures is discussed and a ‘depth margin’ method proposed as it is a more realistic way of applying safety. Examples of designs for different depths are given and compared with the predicted failure pressure. ","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115231599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.7144
U. M. Sulthana, S. Jayachandran
Concrete-Filled Double-skinned Steel Tubular columns (CFDST) are proved to possess exceptional structural resistance in case of fire and multi-hazard situations. This superior quality of CFDST makes it preferable in long column applications. However, studies on the long column behaviour of CFDST is very few, and their results are not in line with the behaviour of CFST long columns. Whereas, several researches on stub column CFDST shows that, the axial compression behaviour of CFDST is similar to CFST. In this paper, selected results (4 numbers of circular CFDST specimens) from a large test data is presented. Axial compression behaviour of long column CFDST specimens is studied, with non-dimensional slenderness λ around 1.0, and hollowness ratio as the governing parameter for study. Test results namely, axial load carrying capacity, axial deformation and lateral deflection are presented in this paper. Numerical models are also developed and validated with the experimental results, to carry out more parametric studies. Further, the experimental axial capacity values are compared with modified capacity equations from EC4 and AISC. Results show that extended EC4 and AISC equations gives conservative predictions for CFDST column even in the long column range. Moreover, the initial imperfections in the specimen and their corresponding boundary conditions for load application, are found to be governing parameters in long column buckling study.
{"title":"Investigations on global buckling behaviour of concrete-filled double-skinned steel tubular columns","authors":"U. M. Sulthana, S. Jayachandran","doi":"10.4995/ASCCS2018.2018.7144","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.7144","url":null,"abstract":"Concrete-Filled Double-skinned Steel Tubular columns (CFDST) are proved to possess exceptional structural resistance in case of fire and multi-hazard situations. This superior quality of CFDST makes it preferable in long column applications. However, studies on the long column behaviour of CFDST is very few, and their results are not in line with the behaviour of CFST long columns. Whereas, several researches on stub column CFDST shows that, the axial compression behaviour of CFDST is similar to CFST. In this paper, selected results (4 numbers of circular CFDST specimens) from a large test data is presented. Axial compression behaviour of long column CFDST specimens is studied, with non-dimensional slenderness λ around 1.0, and hollowness ratio as the governing parameter for study. Test results namely, axial load carrying capacity, axial deformation and lateral deflection are presented in this paper. Numerical models are also developed and validated with the experimental results, to carry out more parametric studies. Further, the experimental axial capacity values are compared with modified capacity equations from EC4 and AISC. Results show that extended EC4 and AISC equations gives conservative predictions for CFDST column even in the long column range. Moreover, the initial imperfections in the specimen and their corresponding boundary conditions for load application, are found to be governing parameters in long column buckling study.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114202778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/asccs2018.2018.7199
A. Ciutină, C. Vulcu, Rafaela Don
The slim-floor building system is attractive to constructors and architects due to the integration of steel beam in the overall height of the floor, which leads to additional floor-to-floor space, used mostly in acquiring additional storeys. The concrete slab offers natural fire protection for steel beams, while the use of novel corrugated steel sheeting reduces the concrete volume, and replaces the secondary beams (for usual spans of steel structures). Currently the slim-floor solutions are applied in non-seismic regions, and there are few studies that consider continuous or semi-continuous fixing of slim-floor beams. The present study was performed with the aim to develop reliable end-plate bolted connections for slim-floor beams, capable of being applicable to buildings located in areas with seismic hazard. It is based on numerical finite element analysis, developed in two stages. In a first stage, a finite element numerical model was calibrated based on a four point bending test of a slim-floor beam. Further, a case study was analysed for the investigation of beam-to-column joints with moment resisting connections between slim-floor beams and columns. The response was investigated considering both sagging and hogging bending moment. The results are analysed in terms of moment-rotation curve characteristics and failure mechanism.
{"title":"Semi-continous beam-to-column joints for slim-floor systems in seismic zones","authors":"A. Ciutină, C. Vulcu, Rafaela Don","doi":"10.4995/asccs2018.2018.7199","DOIUrl":"https://doi.org/10.4995/asccs2018.2018.7199","url":null,"abstract":"The slim-floor building system is attractive to constructors and architects due to the integration of steel beam in the overall height of the floor, which leads to additional floor-to-floor space, used mostly in acquiring additional storeys. The concrete slab offers natural fire protection for steel beams, while the use of novel corrugated steel sheeting reduces the concrete volume, and replaces the secondary beams (for usual spans of steel structures). Currently the slim-floor solutions are applied in non-seismic regions, and there are few studies that consider continuous or semi-continuous fixing of slim-floor beams. The present study was performed with the aim to develop reliable end-plate bolted connections for slim-floor beams, capable of being applicable to buildings located in areas with seismic hazard. It is based on numerical finite element analysis, developed in two stages. In a first stage, a finite element numerical model was calibrated based on a four point bending test of a slim-floor beam. Further, a case study was analysed for the investigation of beam-to-column joints with moment resisting connections between slim-floor beams and columns. The response was investigated considering both sagging and hogging bending moment. The results are analysed in terms of moment-rotation curve characteristics and failure mechanism. ","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123926428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.8367
F. Fu, Dianzhong Liu, Fayu Wang
Forty-eight tests have been carried out to find of the failure mode of a new type of the foam concrete using C-Channels as embedements. Four groups of foam concrete specimens with various embedment depths of the steel in the concrete. The modes of failure of this new type of structure are summarized, which include the independent failure of the C-Channels with and without a concrete block inside the channel as well as the combined failure of the two channels, and the failure of the extrusion block. It is concluded that the failure involves independent slippage between two C-Channels, and the steel and the foam concrete blocks inside the C-Channels.
{"title":"Failure Mechanism of Foam Concrete with C-Channel Embedment","authors":"F. Fu, Dianzhong Liu, Fayu Wang","doi":"10.4995/ASCCS2018.2018.8367","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.8367","url":null,"abstract":"Forty-eight tests have been carried out to find of the failure mode of a new type of the foam concrete using C-Channels as embedements. Four groups of foam concrete specimens with various embedment depths of the steel in the concrete. The modes of failure of this new type of structure are summarized, which include the independent failure of the C-Channels with and without a concrete block inside the channel as well as the combined failure of the two channels, and the failure of the extrusion block. It is concluded that the failure involves independent slippage between two C-Channels, and the steel and the foam concrete blocks inside the C-Channels. ","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129816334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.7165
António Silva, Yadong Jiang, L. Macedo, J. Castro, R. Monteiro
The research reported in this paper focuses on the assessment of the seismic performance of conventional steel moment-resisting frames (MRFs) and steel-concrete composite moment-resisting frames employing circular Concrete-Filled Steel Tube (CFST) columns. Two comparable archetypes (i.e. one steel MRF, with steel columns and steel beams; and one composite MRF, with circular CFST columns and steel beams) are designed, and used as the basis for comparison between the seismic performance associated with each typology. Both structures are designed against earthquake loads following the recommendations of Eurocode 8. The comparison of the obtained design solutions allows concluding that the amount of steel associated with the main structural members is higher for the steel-only archetype, even though the composite MRF has the higher level of lateral stiffness. This aspect is particularly relevant when one considers that a minimum level of lateral stiffness (associated with the P-Δ inter-storey drift sensitivity coefficient, θ), is imposed by the European code, which may ultimately govern the design process. The two case-studies are then numerically modelled in OpenSees, and their seismic performance is assessed through fragility assessment for a number of relevant limit states, and, finally, earthquake-induced loss estimation. In general, the results obtained clearly indicate that the composite MRF with circular CFST columns exhibits better seismic performance than the equivalent steel-only archetype. This is noticeably shown in the comparison of the fragility curves associated with the collapse limit state, which tend to show substantially higher probabilities of exceedance, at similar levels of 1st-mode spectral acceleration, for the steel-only case. Furthermore, seismic losses at several seismic intensity levels of interest tend to be higher for the steel MRF.
{"title":"Seismic performance assessment of conventional steel and steel-concrete composite moment frames using CFST columns","authors":"António Silva, Yadong Jiang, L. Macedo, J. Castro, R. Monteiro","doi":"10.4995/ASCCS2018.2018.7165","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.7165","url":null,"abstract":"The research reported in this paper focuses on the assessment of the seismic performance of conventional steel moment-resisting frames (MRFs) and steel-concrete composite moment-resisting frames employing circular Concrete-Filled Steel Tube (CFST) columns. Two comparable archetypes (i.e. one steel MRF, with steel columns and steel beams; and one composite MRF, with circular CFST columns and steel beams) are designed, and used as the basis for comparison between the seismic performance associated with each typology. Both structures are designed against earthquake loads following the recommendations of Eurocode 8. The comparison of the obtained design solutions allows concluding that the amount of steel associated with the main structural members is higher for the steel-only archetype, even though the composite MRF has the higher level of lateral stiffness. This aspect is particularly relevant when one considers that a minimum level of lateral stiffness (associated with the P-Δ inter-storey drift sensitivity coefficient, θ), is imposed by the European code, which may ultimately govern the design process. The two case-studies are then numerically modelled in OpenSees, and their seismic performance is assessed through fragility assessment for a number of relevant limit states, and, finally, earthquake-induced loss estimation. In general, the results obtained clearly indicate that the composite MRF with circular CFST columns exhibits better seismic performance than the equivalent steel-only archetype. This is noticeably shown in the comparison of the fragility curves associated with the collapse limit state, which tend to show substantially higher probabilities of exceedance, at similar levels of 1st-mode spectral acceleration, for the steel-only case. Furthermore, seismic losses at several seismic intensity levels of interest tend to be higher for the steel MRF.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122486605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.6955
Y. S. Chua, J. Liew, S. Pang
Due to the safety awareness arisen from natural and human-caused disasters, robustness design of building is increasingly important to ensure the stability of the building and to prevent progressive collapse. For this reason, the robustness design of innovative construction technologies such as modular construction may be essential due to its relative novel structural form and numerous joints among modules. Particularly in Singapore, Prefabricated Prefinished Volumetric Construction (PPVC) has been highly promoted in residential and commercial buildings, hostels and hospitals to boost the construction productivity and quality as well as to reduce the reliance on foreign workforce. PPVC offers high quality and efficiency because most of the finishes and mechanical and electrical services are manufactured and installed together with the modules in factory, before sending for on-site assembly. To maximize the productivity of PPVC, modular design standardization and repetition can be improved by going for high-rise. Nonetheless, there are limited studies on the robustness of PPVC high-rise building and its behavior under progressive collapse remains uncertain. Therefore, this paper investigates the robustness of steel PPVC high-rise building under column removal scenarios by conducting non-linear numerical analysis. The effects of joint design and diaphragm action between modules are studied to ensure continuity of horizontal and vertical tying. This paper provides insight on the behaviour and alternative path for load transfer under column removal scenario for future design guideline of robustness PPVC building.
{"title":"Robustness of Prefabricated Prefinished Volumetric Construction (PPVC) High-rise Building","authors":"Y. S. Chua, J. Liew, S. Pang","doi":"10.4995/ASCCS2018.2018.6955","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.6955","url":null,"abstract":"Due to the safety awareness arisen from natural and human-caused disasters, robustness design of building is increasingly important to ensure the stability of the building and to prevent progressive collapse. For this reason, the robustness design of innovative construction technologies such as modular construction may be essential due to its relative novel structural form and numerous joints among modules. Particularly in Singapore, Prefabricated Prefinished Volumetric Construction (PPVC) has been highly promoted in residential and commercial buildings, hostels and hospitals to boost the construction productivity and quality as well as to reduce the reliance on foreign workforce. PPVC offers high quality and efficiency because most of the finishes and mechanical and electrical services are manufactured and installed together with the modules in factory, before sending for on-site assembly. To maximize the productivity of PPVC, modular design standardization and repetition can be improved by going for high-rise. Nonetheless, there are limited studies on the robustness of PPVC high-rise building and its behavior under progressive collapse remains uncertain. Therefore, this paper investigates the robustness of steel PPVC high-rise building under column removal scenarios by conducting non-linear numerical analysis. The effects of joint design and diaphragm action between modules are studied to ensure continuity of horizontal and vertical tying. This paper provides insight on the behaviour and alternative path for load transfer under column removal scenario for future design guideline of robustness PPVC building.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123805520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.7008
Xiao Liu, Jian-yong Xu, B. Wang
Abstract: To analysis the behavior of the mechanical properties of concrete-filled double skin steel tubular (CFDST) columns under eccentric loads after fire, the finite element analysis was used. The established FEA modeling was verified by the experimental results which has a good agreement. The FEA modeling was then used to perform the temperature field and the full-range load-deformation relations of the CFDST subject to eccentric compression after exposed to fire. The results indicate that: with the time of fire increasing, the eccentric distance increasing, the steel ratio decreasing, the yield strength decreasing and compressive strength decreasing, the bearing capacity of CFDST in circle section under eccentric loads is showing a decrease trend, and the stiffness of component decreases with the time of fire increasing, the eccentric distance increasing and the steel ratio decreasing. The ductility of CFDST became better with the time of fire increasing and the eccentric distance increasing.
{"title":"Behavior of concrete-filled double skin steel tubular columns under eccentric compression after fire","authors":"Xiao Liu, Jian-yong Xu, B. Wang","doi":"10.4995/ASCCS2018.2018.7008","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.7008","url":null,"abstract":"Abstract: To analysis the behavior of the mechanical properties of concrete-filled double skin steel tubular (CFDST) columns under eccentric loads after fire, the finite element analysis was used. The established FEA modeling was verified by the experimental results which has a good agreement. The FEA modeling was then used to perform the temperature field and the full-range load-deformation relations of the CFDST subject to eccentric compression after exposed to fire. The results indicate that: with the time of fire increasing, the eccentric distance increasing, the steel ratio decreasing, the yield strength decreasing and compressive strength decreasing, the bearing capacity of CFDST in circle section under eccentric loads is showing a decrease trend, and the stiffness of component decreases with the time of fire increasing, the eccentric distance increasing and the steel ratio decreasing. The ductility of CFDST became better with the time of fire increasing and the eccentric distance increasing.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"160 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132079650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-05DOI: 10.4995/ASCCS2018.2018.6959
Jie Yang, D. Lam, X. Dai, Therese Sheehan
This paper presents an experimental study on demountable shear connectors in profiled composite slabs. Overall, three groups of push-off tests were conducted to assess the shear capacity, stiffness and ductility of the shear connectors. In all the specimens, a pair of shear studs were used per trough and were bolted to each side of the flange of a loading beam. Different concrete strength, embedment height of the shear studs and reinforcement cage were considered. Particularly, a joint was made between the pair studs in two groups of specimens when casting and formed two completely separate slabs per half specimen, to evaluate the load transfer between the pair studs. The experimental results showed that the shear capacity and behavior of the demountable connectors in separate slabs and continuous slab were both similar to the welded connectors and could fulfill the 6mm minimum ductility requirement stated in Eurocode 4 if proper embedment height of connector was used. The shear capacities of the tested specimens were compared against the calculated results obtained from the equations used for welded shear connectors in Eurocode 4 and bolted connections in Eurocode 3. Generally, the Eurocodes prediction underestimated the shear capacities of the push-off specimens.
{"title":"Experimental study on demountable shear connectors in profiled composite slabs","authors":"Jie Yang, D. Lam, X. Dai, Therese Sheehan","doi":"10.4995/ASCCS2018.2018.6959","DOIUrl":"https://doi.org/10.4995/ASCCS2018.2018.6959","url":null,"abstract":"This paper presents an experimental study on demountable shear connectors in profiled composite slabs. Overall, three groups of push-off tests were conducted to assess the shear capacity, stiffness and ductility of the shear connectors. In all the specimens, a pair of shear studs were used per trough and were bolted to each side of the flange of a loading beam. Different concrete strength, embedment height of the shear studs and reinforcement cage were considered. Particularly, a joint was made between the pair studs in two groups of specimens when casting and formed two completely separate slabs per half specimen, to evaluate the load transfer between the pair studs. The experimental results showed that the shear capacity and behavior of the demountable connectors in separate slabs and continuous slab were both similar to the welded connectors and could fulfill the 6mm minimum ductility requirement stated in Eurocode 4 if proper embedment height of connector was used. The shear capacities of the tested specimens were compared against the calculated results obtained from the equations used for welded shear connectors in Eurocode 4 and bolted connections in Eurocode 3. Generally, the Eurocodes prediction underestimated the shear capacities of the push-off specimens.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122866448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}