Purpose: Multiparametric MRI contains rich and complementary anatomical and functional information, which is often utilized separately. This study aims to propose an adaptive multiparametric MRI (mpMRI) fusion method and examine its capability in improving tumor contrast and synthesizing novel tissue contrasts among liver cancer patients.
Methods: An adaptive mpMRI fusion method was developed with five components: image pre-processing, fusion algorithm, database, adaptation rules, and fused MRI. Linear-weighted summation algorithm was used for fusion. Weight-driven and feature-driven adaptations were designed for different applications. A clinical-friendly graphic-user-interface (GUI) was developed in Matlab and used for mpMRI fusion. Twelve liver cancer patients and a digital human phantom were included in the study. Synthesis of novel image contrast and enhancement of image signal and contrast were examined in patient cases. Tumor contrast-to-noise ratio (CNR) and liver signal-to-noise ratio (SNR) were evaluated and compared before and after mpMRI fusion.
Results: The fusion platform was applicable in both XCAT phantom and patient cases. Novel image contrasts, including enhancement of soft-tissue boundary, vertebral body, tumor, and composition of multiple image features in a single image were achieved. Tumor CNR improved from -1.70 ± 2.57 to 4.88 ± 2.28 (p < 0.0001) for T1-w, from 3.39 ± 1.89 to 7.87 ± 3.47 (p < 0.01) for T2-w, and from 1.42 ± 1.66 to 7.69 ± 3.54 (p < 0.001) for T2/T1-w MRI. Liver SNR improved from 2.92 ± 2.39 to 9.96 ± 8.60 (p < 0.05) for DWI. The coefficient of variation (CV) of tumor CNR lowered from 1.57, 0.56, and 1.17 to 0.47, 0.44, and 0.46 for T1-w, T2-w and T2/T1-w MRI, respectively.
Conclusion: A multiparametric MRI fusion method was proposed and a prototype was developed. The method showed potential in improving clinically relevant features such as tumor contrast and liver signal. Synthesis of novel image contrasts including the composition of multiple image features into single image set was achieved.
The original rationale for proton therapy was the highly conformal depth-dose distributions that protons are able to produce, compared to photons, which allow greater sparing of normal tissues and escalation of tumor doses, thus potentially improving outcomes. Additionally, recent research, which is still ongoing, has revealed previously unrecognized advantages of proton therapy. For instance, the higher relative biological effectiveness (RBE) near the end of the proton range can be exploited to increase the difference in biologically effective dose in tumors vs. normal tissues. Moreover, the smaller "dose bath", i.e., the compact nature of proton dose distributions has been found to reduce exposure of circulating lymphocytes and the immune organs at risk. There is emerging evidence that the resulting sparing of the immune system has the potential to improve outcomes. Protons, accelerated to therapeutic energies ranging from 70 to 250 MeV, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initially narrow beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanically for "passively-scattered proton therapy' (PSPT); or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique is used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton therapy modality, which is rapidly supplanting PSPT. Treatment planning and plan evaluation for proton therapy require different techniques compared to photon therapy due, in part, to the greater vulnerability of protons to uncertainties, especially those introduced by inter- and intra-fractional variations in anatomy. In addition to anatomic variations, other sources of uncertainty in the treatments delivered include the approximations and assumptions of models used for computing dose distributions and the current practice of proton therapy of assuming the RBE to have a constant value of 1.1. In reality, the RBE is variable and a complex function of proton energy, dose per fraction, tissue and cell type, end point, etc. Despite the high theoretical potential of proton therapy, the clinical evidence supporting its broad use has so far been mixed. The uncertainties and approximations mentioned above, and the technological limitations of proton therapy may have diminished its true clinical potential. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Promising results have been and continue to be reported for many other types of cancers as well; however, they are based on small studies. At the same time, there have been reports of unforeseen toxicities. Furthermore, because of the high cost of establishing and operating proton therapy cen