A. M. Vijesh, P. C. Shyma, V. Prakash, B. Garudachari
Nanofiltration membranes are gaining more importance in the field of water treatment especially in desalination plants. Hollow fibre membranes have been preferred over other membrane configurations due to their high membrane surface area to module volume, mechanical property and easy handling. In the present work, we prepared new type of polysulfone (PSf) composite hollow fibre membranes by blending PSf with polyvinylpyrrolidinone-nitrobenzene (PVPD) in different compositions. New membranes were fabricated using wet-jet phase inversion technique. The resultant composite membranes were characterized by various analytical techniques such as water contact angle, SEM, DSC, TG. Pure water flux of the membranes was measured using cross-flow filtration techniques. The study revealed that increased composition of PVPD in casting solution resulted in a highly porous membrane structure and the pure water flux of the membranes increases in the same order.
{"title":"Preparation and Characterization of Polysulfone Based Hollow Fibre Composite Membranes for Water Purification","authors":"A. M. Vijesh, P. C. Shyma, V. Prakash, B. Garudachari","doi":"10.11113/amst.v22n2.130","DOIUrl":"https://doi.org/10.11113/amst.v22n2.130","url":null,"abstract":"Nanofiltration membranes are gaining more importance in the field of water treatment especially in desalination plants. Hollow fibre membranes have been preferred over other membrane configurations due to their high membrane surface area to module volume, mechanical property and easy handling. In the present work, we prepared new type of polysulfone (PSf) composite hollow fibre membranes by blending PSf with polyvinylpyrrolidinone-nitrobenzene (PVPD) in different compositions. New membranes were fabricated using wet-jet phase inversion technique. The resultant composite membranes were characterized by various analytical techniques such as water contact angle, SEM, DSC, TG. Pure water flux of the membranes was measured using cross-flow filtration techniques. The study revealed that increased composition of PVPD in casting solution resulted in a highly porous membrane structure and the pure water flux of the membranes increases in the same order.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132637421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
U. A. M. I. Lutfi, S. M. Hizam, K. S. Lau, N. Nordin, M. Bilad, Z. Putra, M. D. H. Wirzal
The aim of this paper is to cover on the feasibility of using algae as an alternative to capture CO2. As such, comparison between a membrane diffuser and a bubble diffuser in terms of its performance in the cultivation of algae has been made. This work utilized PVDF flat sheet membrane with only air and pure CO2 as the feed gas and the diffusion method used was compared between membrane diffuser and a bubble diffuser. In the experiment, the feed gas flows through the membrane diffuser in which the algae suspension utilized the CO2 for its growth. The biomass contents of four different samples have been determined using the dry weight of the algae suspension samples, which is obtained by drying the samples in an oven overnight at 105˚C. The algae suspension with the membrane diffuser was able to remove CO2 feasibly while showing better performance with respect to algae cultivation in comparison to the bubble diffuser. Results showed the maximum average biomass content of the samples that used membrane diffuser had higher value of 0.325 g/L when a 1:1 ratio of air and CO2 was used in the feed stream and 0.275 g/L when using pure air as the feed stream. Thus, it has been shown that membrane diffuser is better than a bubble diffuser owing to its larger effective surface area.
{"title":"Microfiltration Membrane Assisted CO2 Diffuser for Algae Cultivation","authors":"U. A. M. I. Lutfi, S. M. Hizam, K. S. Lau, N. Nordin, M. Bilad, Z. Putra, M. D. H. Wirzal","doi":"10.11113/AMST.V22N1.115","DOIUrl":"https://doi.org/10.11113/AMST.V22N1.115","url":null,"abstract":"The aim of this paper is to cover on the feasibility of using algae as an alternative to capture CO2. As such, comparison between a membrane diffuser and a bubble diffuser in terms of its performance in the cultivation of algae has been made. This work utilized PVDF flat sheet membrane with only air and pure CO2 as the feed gas and the diffusion method used was compared between membrane diffuser and a bubble diffuser. In the experiment, the feed gas flows through the membrane diffuser in which the algae suspension utilized the CO2 for its growth. The biomass contents of four different samples have been determined using the dry weight of the algae suspension samples, which is obtained by drying the samples in an oven overnight at 105˚C. The algae suspension with the membrane diffuser was able to remove CO2 feasibly while showing better performance with respect to algae cultivation in comparison to the bubble diffuser. Results showed the maximum average biomass content of the samples that used membrane diffuser had higher value of 0.325 g/L when a 1:1 ratio of air and CO2 was used in the feed stream and 0.275 g/L when using pure air as the feed stream. Thus, it has been shown that membrane diffuser is better than a bubble diffuser owing to its larger effective surface area.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129936929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruhilin Nasser, S. Hubadillah, M. Othman, A. Hassan
The urge to find alternative sources of energy is crucial as the source of fossil fuel shows a high number of depletion over the year. Compared to other alternatives sources, fuel cell is high at rank as it generates no harmful gases to the surrounding and high in efficiency. The performance of this fuel cell is affected by several factors and one of it is the permeability of proton exchange membrane (PEM). Nafion® is known to be used as the PEM in fuel cells, however due to its high price, polyvinyl alcohol membrane was selected in this study to substitute the Nafion® as it was low in price and excellent in chemical and mechanical strength. Poly (vinyl alcohol) composite membrane was prepared and crosslinked with sulfosuccinic acid (SSA). To further increase the proton conductivity of the membrane, graphene oxide (GO) with 1, 2 and 3 weight percentage was incorporated into the polymer membrane. All the membranes were characterized by using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), water uptake measurement, contact angle, ion exchange capacity and proton conductivity respectively. Synthesized membranes show low water uptake and contact angle as GO loading was increased. IEC value and water swelling were found to be increased with increasing of GO loading. The proton conductivity of the membrane increases as more GO was incorporated into PVA-SSA and achieved its highest conductivity at 0.020746 S cm-1 with 2 wt. % of GO incorporation.
寻找替代能源的迫切需求是至关重要的,因为化石燃料的来源在一年中显示出大量的枯竭。与其他替代能源相比,燃料电池不产生对周围环境有害的气体,效率高,排名高。影响燃料电池性能的因素有很多,其中一个因素就是质子交换膜(PEM)的渗透性。Nafion®通常被用作燃料电池中的PEM,但由于其价格昂贵,本研究选择聚乙烯醇膜来替代Nafion®,因为它价格低廉,化学和机械强度优异。制备了聚乙烯醇复合膜,并与磺基琥珀酸(SSA)交联。为了进一步提高膜的质子导电性,将重量百分比分别为1、2和3的氧化石墨烯(GO)掺入聚合物膜中。采用傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、吸水率、接触角、离子交换容量和质子电导率对膜进行了表征。随着氧化石墨烯负载的增加,合成膜的吸水性和接触角降低。随着氧化石墨烯负荷量的增加,氧化石墨烯的IEC值和水膨胀率均有所增加。随着更多的氧化石墨烯掺入到PVA-SSA中,膜的质子电导率增加,当氧化石墨烯掺入量为2 wt. %时,膜的电导率达到最高,为0.020746 S cm-1。
{"title":"Fabrication and Characterization of Low-Cost Poly(Vinyl Alcohol) Composite Membrane for Low Temperature Fuel Cell Application","authors":"Ruhilin Nasser, S. Hubadillah, M. Othman, A. Hassan","doi":"10.11113/AMST.V22N1.128","DOIUrl":"https://doi.org/10.11113/AMST.V22N1.128","url":null,"abstract":"The urge to find alternative sources of energy is crucial as the source of fossil fuel shows a high number of depletion over the year. Compared to other alternatives sources, fuel cell is high at rank as it generates no harmful gases to the surrounding and high in efficiency. The performance of this fuel cell is affected by several factors and one of it is the permeability of proton exchange membrane (PEM). Nafion® is known to be used as the PEM in fuel cells, however due to its high price, polyvinyl alcohol membrane was selected in this study to substitute the Nafion® as it was low in price and excellent in chemical and mechanical strength. Poly (vinyl alcohol) composite membrane was prepared and crosslinked with sulfosuccinic acid (SSA). To further increase the proton conductivity of the membrane, graphene oxide (GO) with 1, 2 and 3 weight percentage was incorporated into the polymer membrane. All the membranes were characterized by using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), water uptake measurement, contact angle, ion exchange capacity and proton conductivity respectively. Synthesized membranes show low water uptake and contact angle as GO loading was increased. IEC value and water swelling were found to be increased with increasing of GO loading. The proton conductivity of the membrane increases as more GO was incorporated into PVA-SSA and achieved its highest conductivity at 0.020746 S cm-1 with 2 wt. % of GO incorporation.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129783834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. W. Cheah, N. Ramlee, A. L. Desa, N. Misdan, N. Hairom
Almost every manufacturing process is the major origin of wastewater with certain characteristic. Printing facility provides a wide range of waste component that is harmful to the environment and people. Those harmful waste component contains high concentration of heavy metals and dye. This paper presents one of the most promising methods to remove the heavy metals and dyes from a printing wastewater before discharging to the environment. The feasibility of commercially available NF270 membrane to treat both heavy metals and dye was thoroughly investigated. The study was carried out using a cross-flow nanofiltration membrane system at operating pressure and temperature set at 5 bar and 24 ˚C, respectively. Experimental results showed that the permeate flux of NF270 is decreased from 6.2 to 5.0 L/m2.h after 1-h operation. Whilst, the rejection of both iron and zinc ions could be obtained up to 96.9% and 97.8%, respectively. Additionally, almost complete elimination of colour (99.6%) could be achieved using NF270 membrane. Thus, it can be concluded that the commercial NF270 membrane is promising in removing both heavy metal ions and dye from printing wastewater.
{"title":"Performance of Nanofiltration Membrane for Printing Wastewater Treatment","authors":"D. W. Cheah, N. Ramlee, A. L. Desa, N. Misdan, N. Hairom","doi":"10.11113/AMST.V22N1.127","DOIUrl":"https://doi.org/10.11113/AMST.V22N1.127","url":null,"abstract":"Almost every manufacturing process is the major origin of wastewater with certain characteristic. Printing facility provides a wide range of waste component that is harmful to the environment and people. Those harmful waste component contains high concentration of heavy metals and dye. This paper presents one of the most promising methods to remove the heavy metals and dyes from a printing wastewater before discharging to the environment. The feasibility of commercially available NF270 membrane to treat both heavy metals and dye was thoroughly investigated. The study was carried out using a cross-flow nanofiltration membrane system at operating pressure and temperature set at 5 bar and 24 ˚C, respectively. Experimental results showed that the permeate flux of NF270 is decreased from 6.2 to 5.0 L/m2.h after 1-h operation. Whilst, the rejection of both iron and zinc ions could be obtained up to 96.9% and 97.8%, respectively. Additionally, almost complete elimination of colour (99.6%) could be achieved using NF270 membrane. Thus, it can be concluded that the commercial NF270 membrane is promising in removing both heavy metal ions and dye from printing wastewater.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126474181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the effect of drying time on the performance of tubular carbon membrane was investigated. P84 co-polyimide blends with Nanocrystalline cellulose (NCC)-based carbon membrane supported on ceramic tube was fabricated through the dip-coating technique. This study aims to investigate the effect of various drying times (12 hours, 24 hours, 3 days and 7 days) on the carbon dioxide separation properties. The gas permeation test of the resultant tubular carbon membrane was determined by using pure gas of CO2 and N2. In order to enhance the membrane performance, final carbonization temperature was executed at 800oC in Argon environment with flow rate of 200 mL/min. From the results, it was found that the best drying times was within 24 hours and such membrane showed the highest CO2/N2 selectivity (66.32±2.18).
{"title":"P84 Co-polyimide/Nanocrystalline Cellulose (NCC)-based Tubular Carbon Membrane: Effect of Drying Times for Carbon Dioxide Separation at Elevated Carbonization Temperature","authors":"N. Sazali, W. Salleh, K. Kadirgama","doi":"10.11113/AMST.V22N1.117","DOIUrl":"https://doi.org/10.11113/AMST.V22N1.117","url":null,"abstract":"In this study, the effect of drying time on the performance of tubular carbon membrane was investigated. P84 co-polyimide blends with Nanocrystalline cellulose (NCC)-based carbon membrane supported on ceramic tube was fabricated through the dip-coating technique. This study aims to investigate the effect of various drying times (12 hours, 24 hours, 3 days and 7 days) on the carbon dioxide separation properties. The gas permeation test of the resultant tubular carbon membrane was determined by using pure gas of CO2 and N2. In order to enhance the membrane performance, final carbonization temperature was executed at 800oC in Argon environment with flow rate of 200 mL/min. From the results, it was found that the best drying times was within 24 hours and such membrane showed the highest CO2/N2 selectivity (66.32±2.18).","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127369487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd ‘Azizir Rahim Mukri, M. Elias, M. Aziz, M. Tanemura, M. Z. Mohd Yusop
A single graphene layer is superior many ways preferably in electronic devices application. However, mild modification of the graphene network could open a new potential to the ultrathin graphene membrane. Moreover, recent studies demonstrated that a few simple techniques could generate and control the nanopores size on single layer graphene sheet simultaneously. This review paper will discuss all potential techniques that are capable to generate nanopores structure on the pristine single layer graphene network.
{"title":"Structural Modification of Pristine Graphene Network Towards Nanoporous Graphene Membrane: A Review","authors":"Mohd ‘Azizir Rahim Mukri, M. Elias, M. Aziz, M. Tanemura, M. Z. Mohd Yusop","doi":"10.11113/AMST.V22N1.120","DOIUrl":"https://doi.org/10.11113/AMST.V22N1.120","url":null,"abstract":"A single graphene layer is superior many ways preferably in electronic devices application. However, mild modification of the graphene network could open a new potential to the ultrathin graphene membrane. Moreover, recent studies demonstrated that a few simple techniques could generate and control the nanopores size on single layer graphene sheet simultaneously. This review paper will discuss all potential techniques that are capable to generate nanopores structure on the pristine single layer graphene network.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123683845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Jamian, Muhammad Hanis Tajuddin, N. Yusof, F. Othman
This study was performed primarily to investigate the effect of activated carbon nanofiber (ACNF) on carbon dioxide and methane separation performance of mixed matrix membrane (MMM). In this study, polysulfone (PSf)/ACNF mixed matrix membranes was fabricated using dry/wet inversion technique. The effect of PSf concentration and ACNF loading on the performance of mixed matrix membrane in terms of permeability and selectivity of CO2/CH4 gas separation was observed. The fabricated flat sheet mixed matrix membranes were characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis. From the SEM observations, it shows that sponge like structures images were observed upon the addition of ACNFs in the PSf/ACNF membranes was slowly decreased due to increasing weight percentage of ACNF. FT-IR result indicating the presence of carboxyl group in MMM at wavelength 1750 cm-1. Meanwhile, the MMMs were further tested to pure permeation test using pure CO2 and CH4 gas, the CO2 permeance improved and the selectivity of CO2/CH4 increased after the addition of ACNFs.
{"title":"Development of Polysulfone/Activated Carbon Nanofibers Mixed Matrix Membrane for CO2/CH4 Separation","authors":"Z. Jamian, Muhammad Hanis Tajuddin, N. Yusof, F. Othman","doi":"10.11113/AMST.V22N1.114","DOIUrl":"https://doi.org/10.11113/AMST.V22N1.114","url":null,"abstract":"This study was performed primarily to investigate the effect of activated carbon nanofiber (ACNF) on carbon dioxide and methane separation performance of mixed matrix membrane (MMM). In this study, polysulfone (PSf)/ACNF mixed matrix membranes was fabricated using dry/wet inversion technique. The effect of PSf concentration and ACNF loading on the performance of mixed matrix membrane in terms of permeability and selectivity of CO2/CH4 gas separation was observed. The fabricated flat sheet mixed matrix membranes were characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analysis. From the SEM observations, it shows that sponge like structures images were observed upon the addition of ACNFs in the PSf/ACNF membranes was slowly decreased due to increasing weight percentage of ACNF. FT-IR result indicating the presence of carboxyl group in MMM at wavelength 1750 cm-1. Meanwhile, the MMMs were further tested to pure permeation test using pure CO2 and CH4 gas, the CO2 permeance improved and the selectivity of CO2/CH4 increased after the addition of ACNFs. ","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133776509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Forward Osmosis (FO) is a technique that requires less power consumption compared to other membrane techniques. FO is significant for its fouling resistance rate, energy consumption, high recovery rate, water flux and scourable. The FO membrane is fabricated by successive steps namely phase inversion via immersion precipitation followed by interfacial polymerization under suitable parameters. The application of FO in various fields can be enhanced by overcoming the limitations. This study shows the approaches of membrane fabrication for FO technique, applications, advancement in the current industries with limitations and overcoming solutions.
{"title":"Gateway and Barriers of Forward Osmosis – A Mini Review","authors":"A. Pravinkumar., S. Ashok Kumar, G. Srinivasan","doi":"10.11113/amst.v25n2.212","DOIUrl":"https://doi.org/10.11113/amst.v25n2.212","url":null,"abstract":"\u0000Forward Osmosis (FO) is a technique that requires less power consumption compared to other membrane techniques. FO is significant for its fouling resistance rate, energy consumption, high recovery rate, water flux and scourable. The FO membrane is fabricated by successive steps namely phase inversion via immersion precipitation followed by interfacial polymerization under suitable parameters. The application of FO in various fields can be enhanced by overcoming the limitations. This study shows the approaches of membrane fabrication for FO technique, applications, advancement in the current industries with limitations and overcoming solutions.\u0000\u0000 ","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129748905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}