首页 > 最新文献

Chemical Reviews最新文献

英文 中文
Thermal Evaporating-Trapping Strategy to Synthesize Flexible and Robust Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries 为可充电锌-空气电池合成灵活而坚固的氧电催化剂的热蒸发-捕集策略
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-19 DOI: 10.1039/d4ee03005b
Hong-Bo Zhang, Yu Meng, Lingzhe Fang, Fei Yang, Shangqian Zhu, Tao Li, Xiaohua Yu, Ju Rong, Weiwei Chen, Dong Su, Yi Mei, Peng-Xiang Hou, Chang Liu, Minhua Shao, Jin-Cheng Li
Great efforts have been devoted to the development of bifunctional electrocatalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) in zinc–air batteries (ZABs). Here we report a thermal evaporating-trapping synergistic strategy to fabricate bifunctional electrocatalyst of flexible N-doped carbon fiber cloth loaded with both CoFe-oxide nanoparticles and single-atom Co/Fe-Nx sites, in which the thermal evaporation process functions in both downsizing CoFe-oxide nanoparticles and trapping the evaporated Co/Fe species to generate Co/Fe-Nx sites. The obtained flexible electrocatalyst, directly served as an oxygen electrode, displays a small potential gap of 0.542 V for OER/ORR, large peak power densities (liquid-state ZAB: 237.4 mW cm–2; solid-state ZAB: 141.1 mW cm-2), and excellent charge-discharge cycling stability without decay after 1000 cycles. Furthermore, in situ Raman spectroscopy characterization reveals that CoFe2O4 species is responsible for the OER catalysis.
人们一直致力于开发双功能电催化剂,以加速锌-空气电池(ZAB)中缓慢的阴极氧还原/进化反应(ORR/OER)动力学。在此,我们报告了一种热蒸发-捕集协同策略,用于制造同时负载氧化钴纳米颗粒和单原子 Co/Fe-Nx 位点的柔性 N 掺杂碳纤维布双功能电催化剂,其中热蒸发过程既能缩小氧化钴纳米颗粒的尺寸,又能捕集蒸发的 Co/Fe 物种以生成 Co/Fe-Nx 位点。所获得的柔性电催化剂可直接用作氧电极,其 OER/ORR 电位间隙小至 0.542 V,峰值功率密度大(液态 ZAB:237.4 mW cm-2;固态 ZAB:141.1 mW cm-2),充放电循环稳定性极佳,1000 次循环后无衰减。此外,原位拉曼光谱表征显示,CoFe2O4 物种是 OER 催化的主要成分。
{"title":"Thermal Evaporating-Trapping Strategy to Synthesize Flexible and Robust Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries","authors":"Hong-Bo Zhang, Yu Meng, Lingzhe Fang, Fei Yang, Shangqian Zhu, Tao Li, Xiaohua Yu, Ju Rong, Weiwei Chen, Dong Su, Yi Mei, Peng-Xiang Hou, Chang Liu, Minhua Shao, Jin-Cheng Li","doi":"10.1039/d4ee03005b","DOIUrl":"https://doi.org/10.1039/d4ee03005b","url":null,"abstract":"Great efforts have been devoted to the development of bifunctional electrocatalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) in zinc–air batteries (ZABs). Here we report a thermal evaporating-trapping synergistic strategy to fabricate bifunctional electrocatalyst of flexible N-doped carbon fiber cloth loaded with both CoFe-oxide nanoparticles and single-atom Co/Fe-Nx sites, in which the thermal evaporation process functions in both downsizing CoFe-oxide nanoparticles and trapping the evaporated Co/Fe species to generate Co/Fe-Nx sites. The obtained flexible electrocatalyst, directly served as an oxygen electrode, displays a small potential gap of 0.542 V for OER/ORR, large peak power densities (liquid-state ZAB: 237.4 mW cm–2; solid-state ZAB: 141.1 mW cm-2), and excellent charge-discharge cycling stability without decay after 1000 cycles. Furthermore, in situ Raman spectroscopy characterization reveals that CoFe2O4 species is responsible for the OER catalysis.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"2 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-regulated Structures Featured Giant-molecule Acceptors Enable Long-term Stability and High-Performance Binary Organic Solar Cells 以巨分子受体为特色的良好调节结构实现了二元有机太阳能电池的长期稳定性和高性能
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/d4ee03754e
Jingyu Shi, Pengfei Ding, Jintao Zhu, Zhenyu Chen, Shuangjiao Gao, Xueliang Yu, Xiaochun Liao, Quan Liu, Ziyi Ge
The well-defined structures featured giant-molecule acceptors (GMAs) can exhibit unique properties of small-molecule acceptors and polymers simultaneously, and the consecutive innovations in materials design have enabled GMAs-based organic solar cells (OSCs) to possess outstanding devices power conversion efficiency (PCE) over 19% and extended long-term stability. Here, through systematically selecting the numbers and positions of selenium atom, π-spacer linking units and the outermost conjugate ring of central core of monomers, four novel GMAs are successfully synthesized, GMA-SSS, GMA-SSeS, GMA-SeSSe and GMA-SeSeSe. Surprisingly, PM6:GMA-SSeS-based OSC yields the highest PCE of 19.37% with remarkably open current voltage of 0.917 V with reduced voltage loss (ΔE3 = 0.246 eV), and excellent fill factor of 77.12%. Furthermore, when devices annealed at 100 °C, the PM6:GMA-SSeS and PM6:GMA-SSS-based OSCs exhibit remarkably extended t80% lifetimes of 5600 and 5250 h, respectively. Our work indicates that the selenium substituted regulation of GMAs structures in linking units and monomers is a valuable approach to obtain high-performance and long-term stability devices at the same time, shedding light on the further development of GMAs-based OSCs.
巨分子受体(GMAs)具有定义明确的结构特点,可同时表现出小分子受体和聚合物的独特性质,材料设计的不断创新使基于 GMAs 的有机太阳能电池(OSCs)具有超过 19% 的出色器件功率转换效率(PCE)和更长的长期稳定性。本文通过系统选择硒原子、π-间隔连接单元和单体中心核最外层共轭环的数量和位置,成功合成了四种新型 GMA:GMA-SSS、GMA-SSeS、GMA-SeSSe 和 GMA-SeSeSe。令人惊讶的是,基于 PM6:GMA-SSeS 的 OSC 产生了 19.37% 的最高 PCE,开路电流电压高达 0.917 V,电压损耗降低(ΔE3 = 0.246 eV),填充因子高达 77.12%。此外,当器件在 100 °C 下退火时,基于 PM6:GMA-SSeS 和 PM6:GMA-SSS 的 OSCs 的 t80% 寿命显著延长,分别达到 5600 小时和 5250 小时。我们的工作表明,在连接单元和单体中对 GMAs 结构进行硒取代调节是同时获得高性能和长期稳定性器件的一种有价值的方法,为进一步开发基于 GMAs 的 OSCs 提供了启示。
{"title":"Well-regulated Structures Featured Giant-molecule Acceptors Enable Long-term Stability and High-Performance Binary Organic Solar Cells","authors":"Jingyu Shi, Pengfei Ding, Jintao Zhu, Zhenyu Chen, Shuangjiao Gao, Xueliang Yu, Xiaochun Liao, Quan Liu, Ziyi Ge","doi":"10.1039/d4ee03754e","DOIUrl":"https://doi.org/10.1039/d4ee03754e","url":null,"abstract":"The well-defined structures featured giant-molecule acceptors (GMAs) can exhibit unique properties of small-molecule acceptors and polymers simultaneously, and the consecutive innovations in materials design have enabled GMAs-based organic solar cells (OSCs) to possess outstanding devices power conversion efficiency (PCE) over 19% and extended long-term stability. Here, through systematically selecting the numbers and positions of selenium atom, π-spacer linking units and the outermost conjugate ring of central core of monomers, four novel GMAs are successfully synthesized, GMA-SSS, GMA-SSeS, GMA-SeSSe and GMA-SeSeSe. Surprisingly, PM6:GMA-SSeS-based OSC yields the highest PCE of 19.37% with remarkably open current voltage of 0.917 V with reduced voltage loss (ΔE3 = 0.246 eV), and excellent fill factor of 77.12%. Furthermore, when devices annealed at 100 °C, the PM6:GMA-SSeS and PM6:GMA-SSS-based OSCs exhibit remarkably extended t80% lifetimes of 5600 and 5250 h, respectively. Our work indicates that the selenium substituted regulation of GMAs structures in linking units and monomers is a valuable approach to obtain high-performance and long-term stability devices at the same time, shedding light on the further development of GMAs-based OSCs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-guided computational holographic wavefront shaping 图像引导的计算全息波前整形
IF 35 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1038/s41566-024-01544-6
Omri Haim, Jeremy Boger-Lombard, Ori Katz

Optical imaging through scattering media is important in a variety of fields ranging from microscopy to autonomous vehicles. Although advanced wavefront shaping techniques have offered several breakthroughs in the past decade, current techniques still require a known guide star and a high-resolution spatial light modulator or a very large number of measurements and are limited in their correction field of view. Here we introduce a guide-star-free, non-invasive approach that can correct more than 190,000 scattered modes using only 25 incoherently compounded, holographically measured, scattered light fields, obtained under unknown random illuminations. This is achieved by computationally emulating an image-guided wavefront shaping experiment, where several virtual spatial light modulators are simultaneously optimized to maximize the reconstructed image quality. Our method shifts the burden from the physical hardware to a digital, naturally parallelizable computational optimization, leveraging state-of-the-art automatic differentiation tools. We demonstrate the flexibility and generality of this framework by applying it to imaging through various complex samples and imaging modalities, including epi-illumination, anisoplanatic multi-conjugate correction of highly scattering layers, lensless endoscopy in multicore fibres and acousto-optic tomography. The presented approach offers high versatility, effectiveness and generality for fast, non-invasive imaging in diverse applications.

通过散射介质进行光学成像在从显微镜到自动驾驶汽车等多个领域都非常重要。尽管先进的波前整形技术在过去十年中取得了一些突破,但目前的技术仍然需要已知的导星和高分辨率空间光调制器或大量的测量,而且校正视野有限。在这里,我们介绍一种无需导星的非侵入式方法,只需使用 25 个非相干复合、全息测量的散射光场,就能校正 190,000 多种散射模式,这些散射光场是在未知的随机光照下获得的。这是通过计算模拟图像引导的波前整形实验实现的,在该实验中,多个虚拟空间光调制器同时进行优化,以最大限度地提高重建图像的质量。我们的方法利用最先进的自动微分工具,将物理硬件的负担转移到数字化、自然可并行的计算优化上。我们将这一框架应用于各种复杂样本和成像模式的成像,包括外延照明、高散射层的异平面多共轭校正、多芯光纤中的无镜头内窥镜和声光层析成像,从而展示了这一框架的灵活性和通用性。所提出的方法具有很高的通用性、有效性和通用性,可在各种应用中实现快速、无创成像。
{"title":"Image-guided computational holographic wavefront shaping","authors":"Omri Haim, Jeremy Boger-Lombard, Ori Katz","doi":"10.1038/s41566-024-01544-6","DOIUrl":"https://doi.org/10.1038/s41566-024-01544-6","url":null,"abstract":"<p>Optical imaging through scattering media is important in a variety of fields ranging from microscopy to autonomous vehicles. Although advanced wavefront shaping techniques have offered several breakthroughs in the past decade, current techniques still require a known guide star and a high-resolution spatial light modulator or a very large number of measurements and are limited in their correction field of view. Here we introduce a guide-star-free, non-invasive approach that can correct more than 190,000 scattered modes using only 25 incoherently compounded, holographically measured, scattered light fields, obtained under unknown random illuminations. This is achieved by computationally emulating an image-guided wavefront shaping experiment, where several virtual spatial light modulators are simultaneously optimized to maximize the reconstructed image quality. Our method shifts the burden from the physical hardware to a digital, naturally parallelizable computational optimization, leveraging state-of-the-art automatic differentiation tools. We demonstrate the flexibility and generality of this framework by applying it to imaging through various complex samples and imaging modalities, including epi-illumination, anisoplanatic multi-conjugate correction of highly scattering layers, lensless endoscopy in multicore fibres and acousto-optic tomography. The presented approach offers high versatility, effectiveness and generality for fast, non-invasive imaging in diverse applications.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"102 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient fluoride, Zn-salt-rich hydrophobic interphase enabled by Zn-philic, H2O-phobic, anion-philic polymer 'skin' for anode-free solid Zn battery 通过亲锌、疏水性、亲阴离子聚合物 "表皮 "实现富含氟化物和锌盐的梯度疏水相,用于无阳极固体锌电池
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/d4ee01978d
Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun
Manipulating ion solvation sheath behaviour is of great significance for alleviating dendritic growth, hydrogen production, and metal corrosion, thus achieving long-term stability of zinc ion batteries. Herein, we rationally design a Zn2+·O=C group-derived contact ion pair (CIP)/aggregate (AGG)-rich electrolyte with Zn-philic and H2O-phobic features through in situ polymerization of 3-methacryloxypropyl trimethoxysilane monomers. Being attributed with this unique electrolyte design, this "skin" enables the generation of gradient fluoride, Zn-salt-rich hydrophobic solid electrolyte interface (SEI) layer through increasing the ratios of ZnF2/ZnO in SEI layer. Moreover, the amounts of ZnF2 in inner SEI are higher than those in outer SEI. Considering the higher dendrite-suppressing and desolvation ability of ZnF2 instead of ZnO, the SEI exhibits excellent capability in suppressing the growth of Zn dendrite and restraining H2O-related side reactions. Owing to its unprecedented average modulus (71.25 GPa), the SEI effectively inhibits the external stress originating from dendritic growth, the undesirable volume expansion of Zn and the long-lasting anode/electrolyte side reactions. Consequently, at high depth of discharge of 34.2%, the symmetric cell maintains long-term stability for over 1000 h, and anode-free battery delivers superior performance with a high-capacity retention of 99.2% after 110 cycles.
操纵离子溶解鞘行为对于缓解树枝状生长、氢气产生和金属腐蚀,从而实现锌离子电池的长期稳定性具有重要意义。在此,我们通过原位聚合 3 甲基丙烯酰氧基丙基三甲氧基硅烷单体,合理地设计出一种 Zn2+-O=C 基团衍生的接触离子对(CIP)/聚集体(AGG)富电解质,它具有亲锌和疏水的特性。由于采用了这种独特的电解质设计,这种 "皮肤 "能够通过增加 SEI 层中 ZnF2/ZnO 的比例生成梯度氟化物、富含 Zn 盐的疏水性固体电解质界面(SEI)层。此外,内 SEI 中的 ZnF2 含量高于外 SEI。考虑到 ZnF2 比 ZnO 具有更高的枝晶抑制和脱溶能力,SEI 在抑制锌枝晶生长和抑制与 H2O 相关的副反应方面表现出卓越的能力。由于其前所未有的平均模量(71.25 GPa),SEI 能有效抑制枝晶生长所产生的外应力、锌的不良体积膨胀以及持久的阳极/电解质副反应。因此,在 34.2% 的高放电深度下,对称电池可保持 1000 小时以上的长期稳定性,无阳极电池性能优越,110 次循环后容量保持率高达 99.2%。
{"title":"Gradient fluoride, Zn-salt-rich hydrophobic interphase enabled by Zn-philic, H2O-phobic, anion-philic polymer 'skin' for anode-free solid Zn battery","authors":"Xinpeng Han, Jinpeng Han, Kang Ma, Jiaqi Wen, Lianpeng Li, Daliang Han, Jie Sun","doi":"10.1039/d4ee01978d","DOIUrl":"https://doi.org/10.1039/d4ee01978d","url":null,"abstract":"Manipulating ion solvation sheath behaviour is of great significance for alleviating dendritic growth, hydrogen production, and metal corrosion, thus achieving long-term stability of zinc ion batteries. Herein, we rationally design a Zn2+·O=C group-derived contact ion pair (CIP)/aggregate (AGG)-rich electrolyte with Zn-philic and H2O-phobic features through in situ polymerization of 3-methacryloxypropyl trimethoxysilane monomers. Being attributed with this unique electrolyte design, this \"skin\" enables the generation of gradient fluoride, Zn-salt-rich hydrophobic solid electrolyte interface (SEI) layer through increasing the ratios of ZnF2/ZnO in SEI layer. Moreover, the amounts of ZnF2 in inner SEI are higher than those in outer SEI. Considering the higher dendrite-suppressing and desolvation ability of ZnF2 instead of ZnO, the SEI exhibits excellent capability in suppressing the growth of Zn dendrite and restraining H2O-related side reactions. Owing to its unprecedented average modulus (71.25 GPa), the SEI effectively inhibits the external stress originating from dendritic growth, the undesirable volume expansion of Zn and the long-lasting anode/electrolyte side reactions. Consequently, at high depth of discharge of 34.2%, the symmetric cell maintains long-term stability for over 1000 h, and anode-free battery delivers superior performance with a high-capacity retention of 99.2% after 110 cycles.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global softening to manipulate sound velocity for reliable high-performance MgAgSb thermoelectrics† 通过全局软化控制声速,实现可靠的高性能镁银铍热电效应
IF 32.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/D4EE03521F
Airan Li, Longquan Wang, Jiankang Li and Takao Mori

High-performance thermoelectric materials at room temperature are eagerly pursued due to their promising applications in the Internet of Things for sustainable power supply. Reducing sound velocity by softening chemical bonds is considered an effective approach to lowering thermal conductivity and enhancing thermoelectric performance. Here, different from softening chemical bonds at the atomic scale, we introduce a global softening strategy, which macroscopically softens the overall material to manipulate its sound velocity. This is demonstrated in MgAgSb, one of the most promising p-type thermoelectric materials at room temperature to replace (Bi,Sb)2Te3, that the addition of inherently soft organic compounds can easily lower its sound velocity, leading to an obvious reduction in lattice thermal conductivity. Despite a simultaneous reduction of the power factor, the overall thermoelectric quality factor B is enhanced, enabling softened MgAgSb by C18H36O2 addition to achieve a figure of merit zT value of ∼0.88 at 300 K and a peak zT value of ∼1.30. Consequently, an impressive average zT of ∼1.17 over a wide temperature range has been realized. Moreover, this high-performance MgAgSb is verified to be highly repeatable and stable. With this MgAgSb, a decent conversion efficiency of 8.6% for a single thermoelectric leg and ∼7% for a two-pair module have been achieved under a temperature difference of ∼276 K, indicating its great potential for low-grade heat harvesting. This work will not only advance MgAgSb for low-grade power generation, but also inspire the development of high-performance thermoelectrics with global softening in the future.

室温下的高性能热电材料在可持续供电的物联网中有着广阔的应用前景,因此受到热切追捧。通过软化化学键降低声速被认为是降低热导率和提高热电性能的有效方法。在这里,与在原子尺度上软化化学键不同,我们引入了一种全局软化策略,从宏观上软化整体材料,从而操纵其声速。MgAgSb 是室温下最有希望取代 (Bi,Sb)2Te3 的 p 型热电材料之一,我们在 MgAgSb 中证明,添加固有的软有机化合物可以轻松降低其声速,从而明显降低晶格热导率。尽管同时降低了功率因数,但整体热电品质因数 B 却得到了提高,这使得通过添加 C18H36O2 而软化的 MgAgSb 在 300 K 时的性能系数 zT 值达到了∼0.88,峰值 zT 值达到了∼1.30。因此,在很宽的温度范围内,平均 zT 值达到了惊人的 ∼ 1.17。此外,这种高性能 MgAgSb 的可重复性和稳定性也得到了验证。在温度差为 ∼276 K 的条件下,这种 MgAgSb 的单热电腿转换效率达到了 8.6%,双对模块转换效率达到了 ∼7%,这表明它在低品位热收集方面具有巨大潜力。这项工作不仅推动了 MgAgSb 在低品位发电领域的应用,还为未来开发全局软化的高性能热电半导体器件提供了灵感。
{"title":"Global softening to manipulate sound velocity for reliable high-performance MgAgSb thermoelectrics†","authors":"Airan Li, Longquan Wang, Jiankang Li and Takao Mori","doi":"10.1039/D4EE03521F","DOIUrl":"10.1039/D4EE03521F","url":null,"abstract":"<p >High-performance thermoelectric materials at room temperature are eagerly pursued due to their promising applications in the Internet of Things for sustainable power supply. Reducing sound velocity by softening chemical bonds is considered an effective approach to lowering thermal conductivity and enhancing thermoelectric performance. Here, different from softening chemical bonds at the atomic scale, we introduce a global softening strategy, which macroscopically softens the overall material to manipulate its sound velocity. This is demonstrated in MgAgSb, one of the most promising p-type thermoelectric materials at room temperature to replace (Bi,Sb)<small><sub>2</sub></small>Te<small><sub>3</sub></small>, that the addition of inherently soft organic compounds can easily lower its sound velocity, leading to an obvious reduction in lattice thermal conductivity. Despite a simultaneous reduction of the power factor, the overall thermoelectric quality factor <em>B</em> is enhanced, enabling softened MgAgSb by C<small><sub>18</sub></small>H<small><sub>36</sub></small>O<small><sub>2</sub></small> addition to achieve a figure of merit <em>zT</em> value of ∼0.88 at 300 K and a peak <em>zT</em> value of ∼1.30. Consequently, an impressive average <em>zT</em> of ∼1.17 over a wide temperature range has been realized. Moreover, this high-performance MgAgSb is verified to be highly repeatable and stable. With this MgAgSb, a decent conversion efficiency of 8.6% for a single thermoelectric leg and ∼7% for a two-pair module have been achieved under a temperature difference of ∼276 K, indicating its great potential for low-grade heat harvesting. This work will not only advance MgAgSb for low-grade power generation, but also inspire the development of high-performance thermoelectrics with global softening in the future.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" 22","pages":" 8810-8819"},"PeriodicalIF":32.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03521f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anion-π Interaction and Solvent Dehydrogenation Control Enable High-Voltage Lithium-ion Batteries 阴离子-π 相互作用和溶剂脱氢控制使高压锂离子电池成为可能
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/d4ee03027c
Tao Zhou, Jinze Wang, Ling Lv, Ruhong Li, Long Chen, Shuoqing Zhang, Haikuo Zhang, Baochen Ma, Jiajie Huang, Bing Wu, Lixin Chen, Tao Deng, Xiulin Fan
Extending the charging cutoff voltage of lithium cobalt oxide (LCO) cathode is an effective strategy to enhance energy density of lithium-ion batteries (LIBs), while the formation of poor cathode electrolyte interphase (CEI) has limited its widespread application. Various electrolyte additives, particularly nitrile compounds, have shown promise in addressing these interfacial issues, though the fundamental design principles remain unclear. Herein, we introduce an interfacial leverage mechanism utilizing nitriles adsorbed on LCO surface to fine-tune the CEI composition. A nitrile additive's suitability for high-voltage LCO is determined by the repulsive interaction with the solvent (Esol) and the attractive interaction with the anion (Eanion). The former inhibits solvent decomposition, while the latter facilitates the anion decomposition during CEI construction. These interactions can be tailored through the functional design of nitrile compounds, as demonstrated using 3,5-bis(trifluoromethyl)benzonitrile (BFBN) in a commercial carbonate electrolyte. The BFBN molecules adsorb onto the LCO surface through coordination between cyano groups (-CN) and cobalt (Co) atoms. Exhibiting repulsive interactions with the solvent and attractive interactions with the anion through anion-π interaction, BFBN suppresses carbonate solvent dehydrogenation while promoting PF6- anions decomposition to form an inorganic-rich CEI. A 1 wt.% addition of BFBN enables 4.55 V-graphite||LCO pouch cells to achieve over 550 cycles at 25 °C and more than 145 cycles at 45 °C, significantly surpassing the lifespan of around 110 and 50 cycles observed in the baseline electrolyte. This work provides new insights into the design of high-voltage electrolyte additives for high-energy-density LIBs.
延长锂钴氧化物(LCO)阴极的充电截止电压是提高锂离子电池(LIB)能量密度的有效策略,但形成不良阴极电解质相(CEI)限制了其广泛应用。各种电解质添加剂,尤其是腈化合物,在解决这些界面问题方面已显示出前景,但其基本设计原理仍不清楚。在此,我们介绍一种界面杠杆机制,利用吸附在 LCO 表面的腈类化合物来微调 CEI 成分。腈类添加剂对高压 LCO 的适用性取决于与溶剂(Esol)的排斥作用和与阴离子(Eanion)的吸引作用。前者抑制溶剂的分解,而后者则促进阴离子在 CEI 构建过程中的分解。正如在商用碳酸盐电解液中使用 3,5-双(三氟甲基)苯甲腈(BFBN)所证明的那样,这些相互作用可以通过腈化合物的功能设计进行定制。BFBN 分子通过氰基(-CN)和钴(Co)原子之间的配位吸附到 LCO 表面。BFBN 与溶剂发生排斥作用,并通过阴离子-π 相互作用与阴离子发生吸引作用,从而抑制碳酸盐溶剂的脱氢,同时促进 PF6-阴离子的分解,形成富含无机物的 CEI。添加 1 wt.% 的 BFBN 可使 4.55 V 石墨||LCO 袋式电池在 25 °C 下循环 550 次以上,在 45 °C 下循环 145 次以上,大大超过了在基线电解液中观察到的大约 110 次和 50 次循环的寿命。这项研究为高能量密度 LIB 的高压电解质添加剂设计提供了新的见解。
{"title":"Anion-π Interaction and Solvent Dehydrogenation Control Enable High-Voltage Lithium-ion Batteries","authors":"Tao Zhou, Jinze Wang, Ling Lv, Ruhong Li, Long Chen, Shuoqing Zhang, Haikuo Zhang, Baochen Ma, Jiajie Huang, Bing Wu, Lixin Chen, Tao Deng, Xiulin Fan","doi":"10.1039/d4ee03027c","DOIUrl":"https://doi.org/10.1039/d4ee03027c","url":null,"abstract":"Extending the charging cutoff voltage of lithium cobalt oxide (LCO) cathode is an effective strategy to enhance energy density of lithium-ion batteries (LIBs), while the formation of poor cathode electrolyte interphase (CEI) has limited its widespread application. Various electrolyte additives, particularly nitrile compounds, have shown promise in addressing these interfacial issues, though the fundamental design principles remain unclear. Herein, we introduce an interfacial leverage mechanism utilizing nitriles adsorbed on LCO surface to fine-tune the CEI composition. A nitrile additive's suitability for high-voltage LCO is determined by the repulsive interaction with the solvent (<em>E</em><small><sub>sol</sub></small>) and the attractive interaction with the anion (<em>E</em><small><sub>anion</sub></small>). The former inhibits solvent decomposition, while the latter facilitates the anion decomposition during CEI construction. These interactions can be tailored through the functional design of nitrile compounds, as demonstrated using 3,5-bis(trifluoromethyl)benzonitrile (BFBN) in a commercial carbonate electrolyte. The BFBN molecules adsorb onto the LCO surface through coordination between cyano groups (-CN) and cobalt (Co) atoms. Exhibiting repulsive interactions with the solvent and attractive interactions with the anion through anion-π interaction, BFBN suppresses carbonate solvent dehydrogenation while promoting PF<small><sub>6</sub></small><small><sup>-</sup></small> anions decomposition to form an inorganic-rich CEI. A 1 wt.% addition of BFBN enables 4.55 V-graphite||LCO pouch cells to achieve over 550 cycles at 25 °C and more than 145 cycles at 45 °C, significantly surpassing the lifespan of around 110 and 50 cycles observed in the baseline electrolyte. This work provides new insights into the design of high-voltage electrolyte additives for high-energy-density LIBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and optimization of anaerobic digestion technology: Current status and future outlook 厌氧消化技术的建模和优化:现状与未来展望
IF 32 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1016/j.pecs.2024.101199
Tina Kegl , Eloísa Torres Jiménez , Breda Kegl , Anita Kovač Kralj , Marko Kegl
Anaerobic digestion (AD) is an important technology that can be engaged to produce renewable energy and valuable products from organic waste while reducing the net greenhouse gas emissions. Due to the AD process complexity, further development of AD technology goes hand in hand with the advancement of underlying mathematical models and optimization techniques. This paper presents a comprehensive and critical review of current AD process modeling and optimization techniques as well as various aspects of further processing of AD products. The most important mechanistically inspired, kinetic, and phenomenological AD models and the most frequently used deterministic and stochastic methods for AD process optimization are addressed. The foundations, properties, and features of these models and methods are highlighted, discussed, and compared with respect to advantages, disadvantages, and various performance metrics; the models are also ranked with respect to adequately introduced criteria. Since AD process optimization affects heavily the required treatment and utilization of AD products, biogas and digestate utilization in the production of renewable energy and other valuable products is also addressed. Furthermore, special attention is devoted to the challenges and future research needs related to AD modeling and optimization, such are modeling issues related to foaming and microbial activities, AD model parameters calibration, CFD simulation challenges, availability of experimental data, and optimization of the AD process with respect to further biogas and digestate utilizations. As current research results indicate, further progress in these areas could notably improve AD modeling robustness and accuracy as well as AD optimization performance.
厌氧消化(AD)是一项重要的技术,可以利用有机废物生产可再生能源和有价值的产品,同时减少温室气体的净排放量。由于厌氧消化工艺的复杂性,厌氧消化技术的进一步发展与基础数学模型和优化技术的进步密不可分。本文对当前的厌氧消化(AD)工艺建模和优化技术以及厌氧消化(AD)产品深加工的各个方面进行了全面而严谨的评述。本文探讨了最重要的机理启发、动力学和现象学厌氧消化(AD)模型,以及最常用的确定性和随机性厌氧消化(AD)工艺优化方法。重点介绍、讨论了这些模型和方法的基础、特性和特点,并就其优缺点和各种性能指标进行了比较;还根据适当引入的标准对模型进行了排序。由于厌氧消化(AD)工艺优化在很大程度上影响着厌氧消化(AD)产品所需的处理和利用,因此还讨论了利用沼气和沼渣生产可再生能源和其他有价值产品的问题。此外,还特别关注了与厌氧消化(AD)建模和优化相关的挑战和未来研究需求,如与泡沫和微生物活动相关的建模问题、厌氧消化(AD)模型参数校准、CFD 模拟挑战、实验数据的可用性,以及厌氧消化(AD)工艺在进一步沼气和沼渣利用方面的优化。目前的研究结果表明,在这些领域取得进一步进展可以显著提高厌氧消化(AD)建模的稳健性和准确性以及厌氧消化(AD)优化性能。
{"title":"Modeling and optimization of anaerobic digestion technology: Current status and future outlook","authors":"Tina Kegl ,&nbsp;Eloísa Torres Jiménez ,&nbsp;Breda Kegl ,&nbsp;Anita Kovač Kralj ,&nbsp;Marko Kegl","doi":"10.1016/j.pecs.2024.101199","DOIUrl":"10.1016/j.pecs.2024.101199","url":null,"abstract":"<div><div>Anaerobic digestion (AD) is an important technology that can be engaged to produce renewable energy and valuable products from organic waste while reducing the net greenhouse gas emissions. Due to the AD process complexity, further development of AD technology goes hand in hand with the advancement of underlying mathematical models and optimization techniques. This paper presents a comprehensive and critical review of current AD process modeling and optimization techniques as well as various aspects of further processing of AD products. The most important mechanistically inspired, kinetic, and phenomenological AD models and the most frequently used deterministic and stochastic methods for AD process optimization are addressed. The foundations, properties, and features of these models and methods are highlighted, discussed, and compared with respect to advantages, disadvantages, and various performance metrics; the models are also ranked with respect to adequately introduced criteria. Since AD process optimization affects heavily the required treatment and utilization of AD products, biogas and digestate utilization in the production of renewable energy and other valuable products is also addressed. Furthermore, special attention is devoted to the challenges and future research needs related to AD modeling and optimization, such are modeling issues related to foaming and microbial activities, AD model parameters calibration, CFD simulation challenges, availability of experimental data, and optimization of the AD process with respect to further biogas and digestate utilizations. As current research results indicate, further progress in these areas could notably improve AD modeling robustness and accuracy as well as AD optimization performance.</div></div>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"106 ","pages":"Article 101199"},"PeriodicalIF":32.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodialysis and nitrate reduction (EDNR) to enable distributed ammonia manufacturing from wastewaters† 电渗析和硝酸盐还原 (EDNR),利用废水实现分布式合成氨生产
IF 32.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/D4EE03002H
Jinyu Guo, Matthew J. Liu, Chloe Laguna, Dean M. Miller, Kindle S. Williams, Brandon D. Clark, Carolina Muñoz, Sarah J. Blair, Adam C. Nielander, Thomas F. Jaramillo and William A. Tarpeh

Underutilized wastewaters containing dilute levels of reactive nitrogen (Nr) can help rebalance the nitrogen cycle. This study describes electrodialysis and nitrate reduction (EDNR), a reactive electrochemical separation architecture that combines catalysis and separations to remediate nitrate and ammonium-polluted wastewaters while recovering ammonia. By engineering operating parameters (e.g., background electrolyte, applied potential, electrolyte flow rate), we achieved high recovery and conversion of Nr in both simulated and real wastewaters. The EDNR process demonstrated long-term robustness and up-concentration that recovered >100 mM ammonium fertilizer solution from agricultural runoff that contained 8.2 mM Nr. EDNR is the first reported process to our knowledge that remediates dilute real wastewater and recovers ammonia from multiple Nr pollutants, with an energy consumption (245 MJ per kg NH3–N in simulated wastewater, 920 MJ per kg NH3–N in agricultural runoff) on par with the state-of-the-art. Demonstrated first at proof-of-concept and engineered to technology readiness level (TRL) 4–5, EDNR shows great promise for distributed wastewater treatment and sustainable ammonia manufacturing.

含有稀释活性氮 (Nr) 的未充分利用废水有助于重新平衡氮循环。本研究介绍了电渗析和硝酸盐还原 (EDNR),这是一种反应型电化学分离结构,它将催化和分离相结合,在回收氨的同时修复硝酸盐和铵污染废水。通过设计操作参数(如背景电解质、应用电位、电解质流速),我们在模拟废水和实际废水中都实现了较高的硝酸回收率和转化率。EDNR 工艺具有长期稳定性和高浓缩性,可从含有 8.2 mM Nr 的农业径流中回收 100 mM 氨肥溶液。据我们所知,EDNR 是首个报告的工艺,可修复稀释的实际废水并从多种 Nr 污染物中回收氨,能耗(模拟废水中每千克 NH3-N 245 兆焦耳,农业径流中每千克 NH3-N 920 兆焦耳)与最先进的工艺相当。EDNR 首先进行了概念验证,其工程设计达到了技术就绪水平 (TRL) 4-5,为分布式废水处理和可持续合成氨生产带来了巨大希望。
{"title":"Electrodialysis and nitrate reduction (EDNR) to enable distributed ammonia manufacturing from wastewaters†","authors":"Jinyu Guo, Matthew J. Liu, Chloe Laguna, Dean M. Miller, Kindle S. Williams, Brandon D. Clark, Carolina Muñoz, Sarah J. Blair, Adam C. Nielander, Thomas F. Jaramillo and William A. Tarpeh","doi":"10.1039/D4EE03002H","DOIUrl":"10.1039/D4EE03002H","url":null,"abstract":"<p >Underutilized wastewaters containing dilute levels of reactive nitrogen (Nr) can help rebalance the nitrogen cycle. This study describes electrodialysis and nitrate reduction (EDNR), a reactive electrochemical separation architecture that combines catalysis and separations to remediate nitrate and ammonium-polluted wastewaters while recovering ammonia. By engineering operating parameters (<em>e.g.</em>, background electrolyte, applied potential, electrolyte flow rate), we achieved high recovery and conversion of Nr in both simulated and real wastewaters. The EDNR process demonstrated long-term robustness and up-concentration that recovered &gt;100 mM ammonium fertilizer solution from agricultural runoff that contained 8.2 mM Nr. EDNR is the first reported process to our knowledge that remediates dilute real wastewater and recovers ammonia from multiple Nr pollutants, with an energy consumption (245 MJ per kg NH<small><sub>3</sub></small>–N in simulated wastewater, 920 MJ per kg NH<small><sub>3</sub></small>–N in agricultural runoff) on par with the state-of-the-art. Demonstrated first at proof-of-concept and engineered to technology readiness level (TRL) 4–5, EDNR shows great promise for distributed wastewater treatment and sustainable ammonia manufacturing.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" 22","pages":" 8787-8800"},"PeriodicalIF":32.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03002h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-economic insights and deployment prospects of permanent carbon dioxide sequestration in solid carbonates† 固体碳酸盐中永久封存二氧化碳的技术经济见解和应用前景
IF 32.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1039/D4EE03166K
Andreas Mühlbauer, Dominik Keiner and Christian Breyer

While a rapid defossilisation of the energy-industry system is at the highest priority for climate change mitigation, additional post-fossil carbon dioxide removal (CDR) for net-negative emissions will likely be necessary to ensure a safe future. An in-depth techno-economic analysis of differentiated sequestration options for carbon dioxide (CO2) in solid carbonates is not yet available, as direct air capture-based mineralisation is usually aggregated in direct air capture and carbon sequestration. This research gap is closed by studying mineralisation as a key CDR option to sequester atmospheric CO2 permanently, based on available literature. The most frequently discussed routes for mineralisation, i.e., in situ, ex situ mineralisation, and enhanced rock weathering, are examined. The deployment potentials of these options are determined globally for nine major regions. Results indicate that costs for all mineralisation options can be kept below 100 € per tCO2 from 2050. From 2030 onwards, in situ mineralisation, with low energy-intensity, can be realised at cost of ≤131 € per tCO2, ex situ mineralisation at ≤189 € per tCO2, and enhanced weathering at ≤88 € per tCO2. Final energy demand for CO2 sequestration via in situ mineralisation is ≤1.8 MWh per tCO2, via ex situ mineralisation ≤3.7 MWh per tCO2, and via enhanced weathering ≤1.1 MWh per tCO2 from 2030. Large-scale deployment of mineralisation options supporting 60% of projected CDR demand is assessed to require up to 0.06% and 0.21% in global gross domestic product and up to 2.5% and 8.6% additional primary energy demand in 2070 for a 1.5 °C and 1.0 °C climate target, respectively. Implications, permanence of sequestration, and limitations are discussed, and a research outlook is provided.

虽然能源工业系统的快速化石化是减缓气候变化的重中之重,但为了确保未来的安全,可能还需要额外的化石后二氧化碳清除(CDR),以实现净负排放。固体碳酸盐中二氧化碳(CO2)不同封存方案的深入技术经济分析尚未问世,因为基于直接空气捕集的矿化通常被归入直接空气捕集和碳封存。根据现有文献,将矿化作为永久封存大气二氧化碳的主要 CDR 选项进行研究,填补了这一研究空白。本文研究了最常讨论的矿化途径,即原地矿化、异地矿化和增强岩石风化。确定了这些方案在全球九个主要地区的部署潜力。结果表明,从 2050 年起,所有矿化方案的成本都可保持在每吨二氧化碳 100 欧元以下。从 2030 年起,低能耗的原地矿化成本≤131 欧元/tCO2,异地矿化成本≤189 欧元/tCO2,强化风化成本≤88 欧元/tCO2。从 2030 年起,通过原地矿化封存二氧化碳的最终能源需求为每吨二氧化碳≤1.8 兆瓦时,通过异地矿化封存二氧化碳的最终能源需求为每吨二氧化碳≤3.7 兆瓦时,通过强化风化封存二氧化碳的最终能源需求为每吨二氧化碳≤1.1 兆瓦时。据评估,在 1.5 ℃ 和 1.0 ℃ 的气候目标下,大规模部署支持 60% 预计 CDR 需求的矿化方案,在 2070 年分别需要全球国内生产总值增加 0.06% 和 0.21%,一次能源需求增加 2.5% 和 8.6%。讨论了影响、固存的持久性和局限性,并提供了研究展望。
{"title":"Techno-economic insights and deployment prospects of permanent carbon dioxide sequestration in solid carbonates†","authors":"Andreas Mühlbauer, Dominik Keiner and Christian Breyer","doi":"10.1039/D4EE03166K","DOIUrl":"10.1039/D4EE03166K","url":null,"abstract":"<p >While a rapid defossilisation of the energy-industry system is at the highest priority for climate change mitigation, additional post-fossil carbon dioxide removal (CDR) for net-negative emissions will likely be necessary to ensure a safe future. An in-depth techno-economic analysis of differentiated sequestration options for carbon dioxide (CO<small><sub>2</sub></small>) in solid carbonates is not yet available, as direct air capture-based mineralisation is usually aggregated in direct air capture and carbon sequestration. This research gap is closed by studying mineralisation as a key CDR option to sequester atmospheric CO<small><sub>2</sub></small> permanently, based on available literature. The most frequently discussed routes for mineralisation, <em>i.e.</em>, <em>in situ</em>, <em>ex situ</em> mineralisation, and enhanced rock weathering, are examined. The deployment potentials of these options are determined globally for nine major regions. Results indicate that costs for all mineralisation options can be kept below 100 € per tCO<small><sub>2</sub></small> from 2050. From 2030 onwards, <em>in situ</em> mineralisation, with low energy-intensity, can be realised at cost of ≤131 € per tCO<small><sub>2</sub></small>, <em>ex situ</em> mineralisation at ≤189 € per tCO<small><sub>2</sub></small>, and enhanced weathering at ≤88 € per tCO<small><sub>2</sub></small>. Final energy demand for CO<small><sub>2</sub></small> sequestration <em>via in situ</em> mineralisation is ≤1.8 MWh per tCO<small><sub>2</sub></small>, <em>via ex situ</em> mineralisation ≤3.7 MWh per tCO<small><sub>2</sub></small>, and <em>via</em> enhanced weathering ≤1.1 MWh per tCO<small><sub>2</sub></small> from 2030. Large-scale deployment of mineralisation options supporting 60% of projected CDR demand is assessed to require up to 0.06% and 0.21% in global gross domestic product and up to 2.5% and 8.6% additional primary energy demand in 2070 for a 1.5 °C and 1.0 °C climate target, respectively. Implications, permanence of sequestration, and limitations are discussed, and a research outlook is provided.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" 22","pages":" 8756-8775"},"PeriodicalIF":32.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03166k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoelectrochemical nitrate denitrification towards acidic ammonia synthesis on copper-decorated black silicon 在铜装饰的黑硅上进行光电化学硝酸盐脱硝以实现酸性氨合成
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-17 DOI: 10.1039/d4ee04438j
Yuchan Li, Qi Zhang, Huan Dai, Dong He, Zunjian Ke, Xiangheng Xiao
Nitrate electroreduction to ammonia has broad prospects as a complementary route to the energy-intensive Haber-Bosch industry. Currently, most electrocatalytic NO3−-to-NH3 transformations are achieved in alkaline electrolyte, which not only requires a large power supply but also poses additional challenges for accurate quantitation and large-scale separation of NH3. Herein, the silicon nanowire (black silicon) uniformly modified with Cu nanoparticles (Cu-Si NWs) is designed for photoelectrochemical nitrate reduction (PEC NO3RR) in strong acid electrolyte. Under AM 1.5 G illumination, the Cu-Si NWs achieves a remarkably positive onset potential of 0.3 V vs. RHE and an impressive saturated photocurrent density of −34.29 mA cm−2 in 0.5 M H2SO4. More importantly, the Faradaic efficiency of ammonium (NH4+) and corresponding solar-to-NH4+ efficiency reach up to 97.03% and 51.07%, respectively. Mechanistic investigations uncover the proper Schottky contact in Cu/Si interfaces facilitates charge transfer effectively, contributing to the low onset potential and high photocurrent density. In-situ experiments and theoretical analysis have further confirmed that the incorporation of Cu effectively accelerates the activation and protonation steps of NO3–. Moreover, the PEC system exhibits excellent stability and great potential in environmental remediation in simulated industrial wastewater treatment. This work introduces a strategy for fabricating highly efficient PEC devices for diminishing nitrate contaminant in strong acid media.
硝酸盐电还原为氨气作为能源密集型哈伯-博施工业的补充途径具有广阔的前景。目前,大多数电催化 NO3 转化为 NH3 的过程都是在碱性电解液中实现的,这不仅需要大量的电力供应,还对 NH3 的精确定量和大规模分离提出了额外的挑战。本文设计了均匀修饰有铜纳米颗粒的硅纳米线(黑硅)(Cu-Si NWs),用于强酸电解液中的光电化学硝酸盐还原(PEC NO3RR)。在 AM 1.5 G 光照下,Cu-Si NWs 在 0.5 M H2SO4 中的起始电位为 0.3 V(相对于 RHE),达到惊人的正值,饱和光电流密度为 -34.29 mA cm-2。更重要的是,铵(NH4+)的法拉第效率和相应的太阳能转化 NH4+ 的效率分别高达 97.03% 和 51.07%。机理研究发现,铜/硅界面中适当的肖特基接触可有效促进电荷转移,从而实现低起始电位和高光电流密度。原位实验和理论分析进一步证实,铜的加入有效地加速了 NO3- 的活化和质子化步骤。此外,该 PEC 系统在模拟工业废水处理的环境修复中表现出卓越的稳定性和巨大的潜力。这项研究提出了一种制造高效 PEC 器件的策略,以减少强酸介质中的硝酸盐污染物。
{"title":"Photoelectrochemical nitrate denitrification towards acidic ammonia synthesis on copper-decorated black silicon","authors":"Yuchan Li, Qi Zhang, Huan Dai, Dong He, Zunjian Ke, Xiangheng Xiao","doi":"10.1039/d4ee04438j","DOIUrl":"https://doi.org/10.1039/d4ee04438j","url":null,"abstract":"Nitrate electroreduction to ammonia has broad prospects as a complementary route to the energy-intensive Haber-Bosch industry. Currently, most electrocatalytic NO3−-to-NH3 transformations are achieved in alkaline electrolyte, which not only requires a large power supply but also poses additional challenges for accurate quantitation and large-scale separation of NH3. Herein, the silicon nanowire (black silicon) uniformly modified with Cu nanoparticles (Cu-Si NWs) is designed for photoelectrochemical nitrate reduction (PEC NO3RR) in strong acid electrolyte. Under AM 1.5 G illumination, the Cu-Si NWs achieves a remarkably positive onset potential of 0.3 V vs. RHE and an impressive saturated photocurrent density of −34.29 mA cm−2 in 0.5 M H2SO4. More importantly, the Faradaic efficiency of ammonium (NH4+) and corresponding solar-to-NH4+ efficiency reach up to 97.03% and 51.07%, respectively. Mechanistic investigations uncover the proper Schottky contact in Cu/Si interfaces facilitates charge transfer effectively, contributing to the low onset potential and high photocurrent density. In-situ experiments and theoretical analysis have further confirmed that the incorporation of Cu effectively accelerates the activation and protonation steps of NO3–. Moreover, the PEC system exhibits excellent stability and great potential in environmental remediation in simulated industrial wastewater treatment. This work introduces a strategy for fabricating highly efficient PEC devices for diminishing nitrate contaminant in strong acid media.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"11 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1