首页 > 最新文献

Chemical Reviews最新文献

英文 中文
Vertically aligned hematite nanosheets with (110) facets controllably exposed for ammonia synthesis with high faraday efficiency beyond 2.5 A cm-2 垂直排列的赤铁矿纳米片,具有可控暴露的 (110) 面,用于合成氨,具有超过 2.5 A cm-2 的高法拉第效率
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4ee03987d
Jinfeng Liu, Shiwen Du, Wenjun Fan, Qinglin Li, Qi Yang, Lin Luo, Jiangnan Li, Fuxiang Zhang
Hematite has been widely investigated for promising (photo)electrocatalysis due to its good robustness and abundant element content in earth, but its application in electrochemical synthesis of ammonia has been still plagued by unsatisfactory Faraday efficiency at ampere-scale current density. Herein we prepared a vertically aligned hematite nanosheet (denoted as Fe2O3-NS) arrays with a high-aspect-ratio (110) crystal facet exposed by one simple in situ electrochemical reconstruction strategy, which delivers unprecedentedly efficient ammonia yield of 189.05 mg h-1 cm-2 companying with Faradaic efficiency of ca. 95% at the current density of exceeding 2.5 A cm-2, outperforming the state-of-the-art Fe-based electrocatalysts. It is experimentally and theoretically revealed that the exposed (110) crystal plane of Fe2O3-NS is favorable for the adsorption and activation of intermediate species during the electrocatalysis, and its vertically aligned nanosheet arrays provide abundant active sites and favorable charge transfer channels. The as-obtained hematite nanosheet arrays were finally employed as cathode of one Zn-nitrate battery to deliver an outstanding discharge power density of 36.2 mW cm-2.
赤铁矿因其良好的坚固性和丰富的地球元素含量而被广泛研究用于前景广阔的(光)电催化,但其在安培级电流密度下的法拉第效率仍不尽如人意,因此其在氨的电化学合成中的应用一直受到困扰。在此,我们通过简单的原位电化学重构策略制备了垂直排列的赤铁矿纳米片(记为 Fe2O3-NS)阵列,其高宽比(110)晶面暴露在外,在超过 2.5 A cm-2 的电流密度下,氨产量达到前所未有的 189.05 mg h-1 cm-2,法拉第效率约为 95%,优于最先进的铁基电催化剂。实验和理论均表明,Fe2O3-NS 裸露的(110)晶面有利于电催化过程中中间物种的吸附和活化,其垂直排列的纳米片阵列提供了丰富的活性位点和有利的电荷转移通道。最终得到的赤铁矿纳米片阵列被用作硝酸锌电池的阴极,放电功率密度高达 36.2 mW cm-2。
{"title":"Vertically aligned hematite nanosheets with (110) facets controllably exposed for ammonia synthesis with high faraday efficiency beyond 2.5 A cm-2","authors":"Jinfeng Liu, Shiwen Du, Wenjun Fan, Qinglin Li, Qi Yang, Lin Luo, Jiangnan Li, Fuxiang Zhang","doi":"10.1039/d4ee03987d","DOIUrl":"https://doi.org/10.1039/d4ee03987d","url":null,"abstract":"Hematite has been widely investigated for promising (photo)electrocatalysis due to its good robustness and abundant element content in earth, but its application in electrochemical synthesis of ammonia has been still plagued by unsatisfactory Faraday efficiency at ampere-scale current density. Herein we prepared a vertically aligned hematite nanosheet (denoted as Fe2O3-NS) arrays with a high-aspect-ratio (110) crystal facet exposed by one simple in situ electrochemical reconstruction strategy, which delivers unprecedentedly efficient ammonia yield of 189.05 mg h-1 cm-2 companying with Faradaic efficiency of ca. 95% at the current density of exceeding 2.5 A cm-2, outperforming the state-of-the-art Fe-based electrocatalysts. It is experimentally and theoretically revealed that the exposed (110) crystal plane of Fe2O3-NS is favorable for the adsorption and activation of intermediate species during the electrocatalysis, and its vertically aligned nanosheet arrays provide abundant active sites and favorable charge transfer channels. The as-obtained hematite nanosheet arrays were finally employed as cathode of one Zn-nitrate battery to deliver an outstanding discharge power density of 36.2 mW cm-2.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"9 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Market Optimization and Technoeconomic Analysis of Hydrogen-Electricity Coproduction Systems 氢电联产系统的市场优化和技术经济分析
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4ee02394c
Daniel Joseph Laky, Nicole P. Cortes, John C. Eslick, Alexander Noring, Naresh Susarla, Chinedu Okoli, Miguel Zamarripa-Perez, Douglas A. Allan, John H. Brewer, Arun Iyengar, Maojian Wang, Anthony P. Burgard, David C. Miller, Alexander William Dowling
Decarbonization efforts across North America, Europe, and beyond rely on variable renewable energy sources such as wind and solar, as well as alternative fuels, such as hydrogen, to support the sustainable energy transition. These advancements have prompted a need for more flexibility in the electric grid to complement non-dispatchable energy sources and increased demand from electrification. Integrated energy systems are well suited to provide this flexibility, but conventional technoeconomic modeling paradigms neglect the time-varying dynamic nature of the grid and thus undervalue resource flexibility. In this work, we develop a computational optimization framework for dynamic market-based technoeconomic comparison of integrated energy systems that coproduce low-carbon electricity and hydrogen (e.g., solid oxide fuel cells, solid oxide electrolysis) against technologies that only produce electricity (e.g., natural gas combined cycle with carbon capture) or only produce hydrogen. Our framework starts with rigorous physics-based process models, built in the open-source Institute for the Design of Advanced Energy Systems (IDAES) modeling and optimization platform, for six energy process concepts. Using these rigorous models and a workflow to optimally design each technology, the framework is shown to be capable of evaluating new and emerging technologies in varying energy markets under a plethora of future scenarios (i.e., renewables penetration, carbon tax, etc.). Ultimately, our framework finds that solid oxide fuel cell-based coproduction systems achieve positive profits for 85% of the analyzed market scenarios. From these market optimization results, we use multivariate linear regression (R-squared values up to 0.99) to determine which electricity price statistics are most significant to predict the optimized annual profit of each system. The proposed framework provides a powerful tool for directly comparing flexible, multi-product energy process concepts to help discern optimal technology and integration options.
北美、欧洲及其他地区的去碳化工作依靠风能和太阳能等可变可再生能源以及氢气等替代燃料来支持可持续能源转型。这些进步促使电网需要更大的灵活性,以补充不可调度的能源和电气化带来的更多需求。综合能源系统非常适合提供这种灵活性,但传统的技术经济建模模式忽视了电网的时变动态特性,从而低估了资源的灵活性。在这项工作中,我们开发了一个计算优化框架,用于基于动态市场的综合能源系统技术经济比较,该框架将联合生产低碳电力和氢气(如固体氧化物燃料电池、固体氧化物电解)的综合能源系统与只生产电力(如天然气联合循环与碳捕集)或只生产氢气的技术进行比较。我们的框架以严格的基于物理的工艺模型为起点,这些模型是在开源的先进能源系统设计研究所(IDAES)建模和优化平台上建立的,适用于六种能源工艺概念。利用这些严谨的模型和工作流程对每种技术进行优化设计,该框架能够在各种未来情景(如可再生能源渗透率、碳税等)下对不同能源市场中的新兴技术进行评估。最终,我们的框架发现,基于固体氧化物燃料电池的联合生产系统在 85% 的分析市场情景下都能实现正利润。根据这些市场优化结果,我们使用多元线性回归(R 平方值高达 0.99)来确定哪些电价统计数据对预测每个系统的优化年利润最有意义。所提出的框架为直接比较灵活的多产品能源流程概念提供了一个强大的工具,有助于确定最佳的技术和集成方案。
{"title":"Market Optimization and Technoeconomic Analysis of Hydrogen-Electricity Coproduction Systems","authors":"Daniel Joseph Laky, Nicole P. Cortes, John C. Eslick, Alexander Noring, Naresh Susarla, Chinedu Okoli, Miguel Zamarripa-Perez, Douglas A. Allan, John H. Brewer, Arun Iyengar, Maojian Wang, Anthony P. Burgard, David C. Miller, Alexander William Dowling","doi":"10.1039/d4ee02394c","DOIUrl":"https://doi.org/10.1039/d4ee02394c","url":null,"abstract":"Decarbonization efforts across North America, Europe, and beyond rely on variable renewable energy sources such as wind and solar, as well as alternative fuels, such as hydrogen, to support the sustainable energy transition. These advancements have prompted a need for more flexibility in the electric grid to complement non-dispatchable energy sources and increased demand from electrification. Integrated energy systems are well suited to provide this flexibility, but conventional technoeconomic modeling paradigms neglect the time-varying dynamic nature of the grid and thus undervalue resource flexibility. In this work, we develop a computational optimization framework for dynamic market-based technoeconomic comparison of integrated energy systems that coproduce low-carbon electricity and hydrogen (e.g., solid oxide fuel cells, solid oxide electrolysis) against technologies that only produce electricity (e.g., natural gas combined cycle with carbon capture) or only produce hydrogen. Our framework starts with rigorous physics-based process models, built in the open-source Institute for the Design of Advanced Energy Systems (IDAES) modeling and optimization platform, for six energy process concepts. Using these rigorous models and a workflow to optimally design each technology, the framework is shown to be capable of evaluating new and emerging technologies in varying energy markets under a plethora of future scenarios (i.e., renewables penetration, carbon tax, etc.). Ultimately, our framework finds that solid oxide fuel cell-based coproduction systems achieve positive profits for 85% of the analyzed market scenarios. From these market optimization results, we use multivariate linear regression (R-squared values up to 0.99) to determine which electricity price statistics are most significant to predict the optimized annual profit of each system. The proposed framework provides a powerful tool for directly comparing flexible, multi-product energy process concepts to help discern optimal technology and integration options.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"68 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating local chemical softness of collector to homogenize Li deposition for anode-free Li-metal batteries 调节集流体的局部化学软度,使无阳极锂金属电池的锂沉积均匀化
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4ee03673e
Jiaming Zhu, Cong Kang, Xiangjun Xiao, Ya Mao, Ying Luo, Yuheng Wang, Quansheng Zhang, Yulin Ma, Chunyu Du, Shuaifeng Lou, Fanpeng Kong, Jingying Xie, Geping Yin
Regulating the surface structure of collector to synergistically reduce the nucleation and lateral growth barrier of Li+ electrodeposition is key to long-cycle anode-free Li-metal batteries (AFLMB), but its adjusting mechanism and modulation remains formidable challenge. Herein, a previously-unreported heterogeneous collector with hard-base sites and soft-acidity sites is proposed to enhance chemical interaction with hard-acid Li+ and soft-base Li nuclei, respectively. Theoretical analysis demonstrates that the addition of Co single atoms into N-C host improves to the hardness of N bases and the softness of carbon matrix. According to the results of operando microscopy and electrochemical measurement, the HBSA-Co SAs collector with controlled local chemical softness substantially reduce nucleation/growth barriers without any dendrite morphology observed. The NCM811-based Li metal cells with a high cathode area capacity of 15 mAh cm-2 and limited lithium excess achieve a superior capacity retention rate of 98.8% after 150 cycles. This finding provides an avenue to rationally design highly efficient collector for AFLMB.
调节集流体的表面结构以协同降低 Li+ 电沉积的成核和横向生长障碍是实现长周期无阳极锂金属电池(AFLMB)的关键,但其调节机制和调控方法仍是一项艰巨的挑战。本文提出了一种以前未报道过的具有硬碱位点和软酸位点的异质集流体,以分别增强与硬酸锂核和软碱锂核的化学作用。理论分析表明,在 N-C 宿主中加入 Co 单原子可提高 N 碱的硬度和碳基质的软度。根据操作显微镜和电化学测量的结果,具有可控局部化学软度的 HBSA-Co SAs 收集器大大降低了成核/生长障碍,且未观察到任何枝晶形态。基于 NCM811 的锂金属电池具有 15 mAh cm-2 的高正极面积容量和有限的锂过量,经过 150 次循环后,容量保持率高达 98.8%。这一发现为合理设计 AFLMB 的高效集电体提供了途径。
{"title":"Regulating local chemical softness of collector to homogenize Li deposition for anode-free Li-metal batteries","authors":"Jiaming Zhu, Cong Kang, Xiangjun Xiao, Ya Mao, Ying Luo, Yuheng Wang, Quansheng Zhang, Yulin Ma, Chunyu Du, Shuaifeng Lou, Fanpeng Kong, Jingying Xie, Geping Yin","doi":"10.1039/d4ee03673e","DOIUrl":"https://doi.org/10.1039/d4ee03673e","url":null,"abstract":"Regulating the surface structure of collector to synergistically reduce the nucleation and lateral growth barrier of Li<small><sup>+</sup></small> electrodeposition is key to long-cycle anode-free Li-metal batteries (AFLMB), but its adjusting mechanism and modulation remains formidable challenge. Herein, a previously-unreported heterogeneous collector with hard-base sites and soft-acidity sites is proposed to enhance chemical interaction with hard-acid Li<small><sup>+</sup></small> and soft-base Li nuclei, respectively. Theoretical analysis demonstrates that the addition of Co single atoms into N-C host improves to the hardness of N bases and the softness of carbon matrix. According to the results of operando microscopy and electrochemical measurement, the HBSA-Co SAs collector with controlled local chemical softness substantially reduce nucleation/growth barriers without any dendrite morphology observed. The NCM811-based Li metal cells with a high cathode area capacity of 15 mAh cm<small><sup>-2</sup></small> and limited lithium excess achieve a superior capacity retention rate of 98.8% after 150 cycles. This finding provides an avenue to rationally design highly efficient collector for AFLMB.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"60 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing high-efficiency, stretchable organic solar cells: novel liquid metal electrode architecture† 推进高效、可拉伸有机太阳能电池:新型液态金属电极结构
IF 32.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/D4EE03406F
Seungbok Lee, Sungjun Oh, Seungseok Han, Dongchan Lee, Jihyung Lee, Yonghwi Kim, Hoe-Yeon Jeong, Jin-Woo Lee, Min-Ho Lee, Wu Bin Ying, Seonju Jeong, Seungjae Lee, Junho Kim, Yun Hoo Kim, Bumjoon J. Kim, Eun-chae Jeon, Taek-Soo Kim, Shinuk Cho and Jung-Yong Lee

The development of stretchable electrodes for intrinsically stretchable organic solar cells (IS-OSCs) with both high power conversion efficiency (PCE) and mechanical stability is crucial for wearable electronics. However, research on top electrodes that maintain high conductivity and excellent stretchability has been underexplored. Herein, we introduce a novel liquid metal electrode architecture (i.e., indium/metallic interlayer/gallium, InMiG) for IS-OSCs. Thermally deposited indium significantly improves mechanical properties by dispersing stress, mitigating crack initiation and propagation within the underlying layers. The metallic interlayer enhances the electrical conductivity and wettability of gallium, enabling the formation of a smooth and uniform film. The InMiG electrode surpasses eutectic gallium-indium (EGaIn) in both electrical conductivity and adhesion energy. Notably, the IS-OSCs with InMiG electrode achieve a high PCE of 14.6% and retain 70% of their initial PCE at 63% strain, highlighting their potential for commercial use in wearable electronics.

为本征性可拉伸有机太阳能电池(IS-OSCs)开发具有高功率转换效率(PCE)和机械稳定性的可拉伸电极,对于可穿戴电子设备至关重要。然而,对既能保持高导电性又能实现出色拉伸性的顶部电极的研究还很欠缺。在此,我们为 IS-OSC 引入了一种新型液态金属电极结构(即铟/金属夹层/镓,InMiG)。热沉积铟能分散应力,减少裂纹在底层的产生和扩展,从而显著提高机械性能。金属夹层可增强镓的导电性和润湿性,从而形成光滑均匀的薄膜。InMiG 电极的导电性和附着能都超过了共晶镓铟 (EGaIn)。值得注意的是,采用 InMiG 电极的 IS-OSC 实现了 14.6% 的高 PCE,并在应变为 63% 时保持了 70% 的初始 PCE,这凸显了它们在可穿戴电子产品中的商业应用潜力。
{"title":"Advancing high-efficiency, stretchable organic solar cells: novel liquid metal electrode architecture†","authors":"Seungbok Lee, Sungjun Oh, Seungseok Han, Dongchan Lee, Jihyung Lee, Yonghwi Kim, Hoe-Yeon Jeong, Jin-Woo Lee, Min-Ho Lee, Wu Bin Ying, Seonju Jeong, Seungjae Lee, Junho Kim, Yun Hoo Kim, Bumjoon J. Kim, Eun-chae Jeon, Taek-Soo Kim, Shinuk Cho and Jung-Yong Lee","doi":"10.1039/D4EE03406F","DOIUrl":"10.1039/D4EE03406F","url":null,"abstract":"<p >The development of stretchable electrodes for intrinsically stretchable organic solar cells (IS-OSCs) with both high power conversion efficiency (PCE) and mechanical stability is crucial for wearable electronics. However, research on top electrodes that maintain high conductivity and excellent stretchability has been underexplored. Herein, we introduce a novel liquid metal electrode architecture (<em>i.e.</em>, indium/metallic interlayer/gallium, InMiG) for IS-OSCs. Thermally deposited indium significantly improves mechanical properties by dispersing stress, mitigating crack initiation and propagation within the underlying layers. The metallic interlayer enhances the electrical conductivity and wettability of gallium, enabling the formation of a smooth and uniform film. The InMiG electrode surpasses eutectic gallium-indium (EGaIn) in both electrical conductivity and adhesion energy. Notably, the IS-OSCs with InMiG electrode achieve a high PCE of 14.6% and retain 70% of their initial PCE at 63% strain, highlighting their potential for commercial use in wearable electronics.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" 22","pages":" 8915-8925"},"PeriodicalIF":32.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Step Thermodynamic vs. Two-Step Kinetics-Limited Sulfur Reactions in All-Solid-State Sodium Batteries 全固态钠电池中的三步热力学与两步动力学限制硫反应
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4ee03160a
Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth Burch, Yong Yang, Hongli Zhu
The investigation of all-solid-state sodium-sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study for the first time presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex-situ synchrotron X-ray absorption spectroscopy (XAS), in-situ Raman spectroscopy, and first-principles calculations. The sulfur cathode undergoes a three-step solid-solid redox reaction following the thermodynamic principle. S8 first reduces to long-chain polysulfides, Na2S5 and Na2S4, then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile when temperatures ≥ 90°C or C-rates ≤ C/100. However, under kinetics-limited conditions, temperatures ≤ 60°C and C-rates ≥ C/20, the Na2S2 phase is skipped, leading to a direct conversion from Na2S4 to Na2S and resulting a two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV/atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, thereby facilitating the development of high-performance ASSSBs.
全固态钠硫电池(ASSSBs)的研究仍处于早期阶段,硫阴极复杂的 16 电子转换反应的中间产物和机理仍不清楚。在此,本研究首次结合电化学测量、原位同步辐射 X 射线吸收光谱(XAS)、原位拉曼光谱和第一原理计算,对 ASSSBs 中的硫反应机理进行了全面研究。硫阴极按照热力学原理进行了三步固-固氧化还原反应。S8 首先还原成长链多硫化物、Na2S5 和 Na2S4,然后还原成 Na2S2,最后还原成 Na2S,从而在温度≥ 90°C 或 C 速率≤ C/100 时产生三高原电压曲线。然而,在动力学限制条件下,即温度≤60°C 和 C 速率≥C/20 时,Na2S2 阶段被跳过,导致 Na2S4 直接转化为 Na2S,从而产生双波峰电压曲线。第一原理计算显示,Na2S2 的形成能仅比 Na2S4 和 Na2S 的两相平衡能低 4 meV/原子,这就解释了在动力学限制条件下没有 Na2S2 的原因。这项工作阐明了 ASSSB 中硫阴极 16 电子转换反应的热力学和动力学限制途径,从而促进了高性能 ASSSB 的开发。
{"title":"Three-Step Thermodynamic vs. Two-Step Kinetics-Limited Sulfur Reactions in All-Solid-State Sodium Batteries","authors":"Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth Burch, Yong Yang, Hongli Zhu","doi":"10.1039/d4ee03160a","DOIUrl":"https://doi.org/10.1039/d4ee03160a","url":null,"abstract":"The investigation of all-solid-state sodium-sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study for the first time presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex-situ synchrotron X-ray absorption spectroscopy (XAS), in-situ Raman spectroscopy, and first-principles calculations. The sulfur cathode undergoes a three-step solid-solid redox reaction following the thermodynamic principle. S8 first reduces to long-chain polysulfides, Na2S5 and Na2S4, then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile when temperatures ≥ 90°C or C-rates ≤ C/100. However, under kinetics-limited conditions, temperatures ≤ 60°C and C-rates ≥ C/20, the Na2S2 phase is skipped, leading to a direct conversion from Na2S4 to Na2S and resulting a two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV/atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, thereby facilitating the development of high-performance ASSSBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"74 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Zn(002)-preferential orientation enabled by proton additive for dendrite-free zinc anode 利用质子添加剂实现无枝晶锌阳极的高锌(002)优先取向
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4ee03276d
Yating Li, Xiaohui Ma, Xi Zhang, Fengyi Zhang, Qiong Wang, Qiang Guo, Jinlong Liu, Yonggang Wang, Jianhang Huang, Yongyao Xia
Although zinc-based batteries have long been considered as one of the most promising technologies for large-scale energy storage, its development was still seriously hindered by dendrite formation. Constructing highly (002)-textured Zn electrode to guide Zn deposition has been demonstrated as an effective approach for dendrite suppression due to the lowest surface energy and closest packing morphology of Zn(002) texture. Herein, cation additive (proton) was for the first time reported as a universal strategy to effectively promote the formation of Zn(002) texture. A high Zn(002)-preferential orientation was obtained in a simple ZnSO4 + H2SO4 electrolyte, which effectively suppressed formation of dendrite and side-reaction production. And Zn(002)||Zn(002) symmetric cell can cycle stably up to unprecedented 1900 hours under a practical deposition capacity of 5 mAh cm-2 with 5 mA cm-2 current density. Morphology evolution and formation mechanism of Zn (002) texture in electrolyte with proton additive was also systematically investigated. The cation texturing strategy may provide novel insights for constructing high (002)-preferential orientation of metallic Zn.
尽管锌基电池一直被认为是最有前途的大规模储能技术之一,但其发展仍然受到枝晶形成的严重阻碍。由于锌(002)具有最低的表面能和最紧密的堆积形态,因此构建高(002)纹理的锌电极来引导锌沉积已被证明是抑制枝晶的有效方法。本文首次报道了阳离子添加剂(质子)作为一种通用策略,可有效促进 Zn(002) 纹理的形成。在简单的 ZnSO4 + H2SO4 电解液中获得了高 Zn(002)- 偏好取向,有效抑制了枝晶的形成和副反应的产生。Zn(002)||Zn(002) 对称电池可在 5 mAh cm-2 的实际沉积容量和 5 mA cm-2 的电流密度下稳定循环长达 1900 小时。此外,还系统研究了含有质子添加剂的电解液中 Zn(002)纹理的形态演变和形成机制。该阳离子质构策略可为构建金属锌的高(002)优选取向提供新的见解。
{"title":"High Zn(002)-preferential orientation enabled by proton additive for dendrite-free zinc anode","authors":"Yating Li, Xiaohui Ma, Xi Zhang, Fengyi Zhang, Qiong Wang, Qiang Guo, Jinlong Liu, Yonggang Wang, Jianhang Huang, Yongyao Xia","doi":"10.1039/d4ee03276d","DOIUrl":"https://doi.org/10.1039/d4ee03276d","url":null,"abstract":"Although zinc-based batteries have long been considered as one of the most promising technologies for large-scale energy storage, its development was still seriously hindered by dendrite formation. Constructing highly (002)-textured Zn electrode to guide Zn deposition has been demonstrated as an effective approach for dendrite suppression due to the lowest surface energy and closest packing morphology of Zn(002) texture. Herein, cation additive (proton) was for the first time reported as a universal strategy to effectively promote the formation of Zn(002) texture. A high Zn(002)-preferential orientation was obtained in a simple ZnSO4 + H2SO4 electrolyte, which effectively suppressed formation of dendrite and side-reaction production. And Zn(002)||Zn(002) symmetric cell can cycle stably up to unprecedented 1900 hours under a practical deposition capacity of 5 mAh cm-2 with 5 mA cm-2 current density. Morphology evolution and formation mechanism of Zn (002) texture in electrolyte with proton additive was also systematically investigated. The cation texturing strategy may provide novel insights for constructing high (002)-preferential orientation of metallic Zn.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"43 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grease trap waste valorization through hydrothermal liquefaction and anaerobic digestion: a circular approach to dairy wastewater treatment† 通过热液液化和厌氧消化实现隔油池废物的价值化:乳制品废水处理的循环方法
IF 32.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/D4EE02245A
Daniela V. Cabrera, Ingrid Adema-Yusta, María J. Santibañez, Crispin Celis, Jefferson W. Tester and Rodrigo A. Labatut

Grease traps are commonly used in the dairy industry to separate fats from their generated wastewater. Due to its properties, grease trap waste (GTW) is predominantly incinerated or landfilled despite its high energy content. In this study, hydrothermal liquefaction (HTL) was used to convert dairy industry GTW into biocrude while the generated HTL-wastewater (AP) was subjected to anaerobic digestion (AD) to recover biomethane. To maximize organic carbon to biocrude conversion, and to minimize the use of freshwater, a fraction of the AP was recirculated in subsequent HTL reactions. AP recirculation increased biocrude yields (73 vs. 78 wt%) but decreased both the higher heating value (HHV) (38 vs. 37 MJ kg−1) and the fraction (72 vs. 64%) of lighter hydrocarbons. Continuous AD using an EGSB reactor proved to be an effective method to further reduce the COD of the AP from 6.5 g L−1 to 0.7 g L−1 and enhance the overall energy recovery of the GTW from 81% (HTL only) to 83.1% (HTL-AD). Integrating HTL with AD and recycling a fraction of the AP in the HTL process allows for efficient wastewater treatment and a recovery of up to 84.8% of the energy contained in the GTW.

隔油池通常用于乳制品行业,将油脂从其产生的废水中分离出来。由于其特性,尽管隔油池废物(GTW)的能量含量很高,但主要还是被焚烧或填埋。在这项研究中,水热液化(HTL)被用来将乳制品行业的隔油池废水转化为生物原油,同时将产生的隔油池废水(AP)进行厌氧消化(AD)以回收生物甲烷。为了最大限度地将有机碳转化为生物原油,并最大限度地减少淡水的使用量,在随后的 HTL 反应中对部分 AP 进行了再循环。AP 再循环提高了生物原油产量(73 对 78 wt%),但降低了较高的热值 (HHV)(38 对 37 MJ/kg)和较轻烃类的比例(72 对 64%)。事实证明,使用 EGSB 反应器进行连续厌氧消化(AD)是一种有效的方法,可进一步将 AP 的 COD 从 6.5 g L-1 降低到 0.7 g L-1,并将 GTW 的总体能量回收率从 81%(仅 HTL)提高到 83.1%(HTL-AD)。将 HTL 与 AD 相结合,并在 HTL 过程中回收部分 AP,可实现高效的废水处理,并回收 GTW 中所含的高达 84.8% 的能量。
{"title":"Grease trap waste valorization through hydrothermal liquefaction and anaerobic digestion: a circular approach to dairy wastewater treatment†","authors":"Daniela V. Cabrera, Ingrid Adema-Yusta, María J. Santibañez, Crispin Celis, Jefferson W. Tester and Rodrigo A. Labatut","doi":"10.1039/D4EE02245A","DOIUrl":"10.1039/D4EE02245A","url":null,"abstract":"<p >Grease traps are commonly used in the dairy industry to separate fats from their generated wastewater. Due to its properties, grease trap waste (GTW) is predominantly incinerated or landfilled despite its high energy content. In this study, hydrothermal liquefaction (HTL) was used to convert dairy industry GTW into biocrude while the generated HTL-wastewater (AP) was subjected to anaerobic digestion (AD) to recover biomethane. To maximize organic carbon to biocrude conversion, and to minimize the use of freshwater, a fraction of the AP was recirculated in subsequent HTL reactions. AP recirculation increased biocrude yields (73 <em>vs.</em> 78 wt%) but decreased both the higher heating value (HHV) (38 <em>vs.</em> 37 MJ kg<small><sup>−1</sup></small>) and the fraction (72 <em>vs.</em> 64%) of lighter hydrocarbons. Continuous AD using an EGSB reactor proved to be an effective method to further reduce the COD of the AP from 6.5 g L<small><sup>−1</sup></small> to 0.7 g L<small><sup>−1</sup></small> and enhance the overall energy recovery of the GTW from 81% (HTL only) to 83.1% (HTL-AD). Integrating HTL with AD and recycling a fraction of the AP in the HTL process allows for efficient wastewater treatment and a recovery of up to 84.8% of the energy contained in the GTW.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" 22","pages":" 8926-8941"},"PeriodicalIF":32.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography 用于无掩膜光刻技术的高功率 AlGaN 深紫外微发光二极管显示器
IF 35 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1038/s41566-024-01551-7
Feng Feng, Yibo Liu, Ke Zhang, Hang Yang, Byung-Ryool Hyun, Ke Xu, Hoi-Sing Kwok, Zhaojun Liu

Developing aluminium gallium nitride deep-ultraviolet (UVC) micro-light-emitting diodes (micro-LEDs) with sufficient power has been a challenge, which particularly limits these devices to various applications. However, advanced fabrication processes have been developed to enable the demonstration of highly efficient 270 nm UVC micro-LEDs and large-format UVC micro-LED displays with high resolution for maskless photolithography. Optical and electrical characterizations were performed on UVC micro-LEDs with sizes ranging from 3 µm to 100 μm to evaluate these emerging devices. The 3 μm device achieved a record-high peak external quantum efficiency of 5.7% and a maximum brightness of 396 W cm–2. Moreover, 2,540 pixels per inch parallel-connected UVC micro-LED arrays featuring rear-side reflection layers exhibited emission uniformity and collimation. UVC micro-LED displays, with a resolution of 320 × 140, were explicitly designed for maskless photolithography applications utilizing a customized integrated circuit driver for optimal performance. The UVC micro-LEDs and UVC micro-displays provide sufficient doses to fully expose the photoresist film within seconds, owing to their enhanced current spreading uniformity, improved heat dispersion and superior light extraction efficiency. This work may open a path to maskless photolithography, potentially leading to revolutionary developments in the semiconductor industry.

开发具有足够功率的氮化镓铝深紫外(UVC)微型发光二极管(micro-LED)一直是一项挑战,这尤其限制了这些设备的各种应用。不过,先进的制造工艺已经开发出来,能够展示高效的 270 纳米 UVC 微型发光二极管和具有高分辨率的大尺寸 UVC 微型发光二极管显示器,适用于无掩模光刻技术。为评估这些新兴器件,对尺寸从 3 μm 到 100 μm 的 UVC 微型 LED 进行了光学和电学表征。3 μm 器件的峰值外部量子效率达到了创纪录的 5.7%,最大亮度为 396 W cm-2。此外,每英寸 2,540 像素平行连接的 UVC 微型 LED 阵列具有后侧反射层,显示出发射均匀性和准直性。UVC 微型 LED 显示屏的分辨率为 320 × 140,是专为无掩模光刻应用而设计的,利用定制的集成电路驱动器实现了最佳性能。由于 UVC 微型 LED 和 UVC 微型显示器具有更强的电流传播均匀性、更好的热分散性和更高的光萃取效率,因此能在几秒钟内提供足够的剂量使光刻胶薄膜完全曝光。这项研究为无掩模光刻技术开辟了一条道路,有可能为半导体行业带来革命性的发展。
{"title":"High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography","authors":"Feng Feng, Yibo Liu, Ke Zhang, Hang Yang, Byung-Ryool Hyun, Ke Xu, Hoi-Sing Kwok, Zhaojun Liu","doi":"10.1038/s41566-024-01551-7","DOIUrl":"https://doi.org/10.1038/s41566-024-01551-7","url":null,"abstract":"<p>Developing aluminium gallium nitride deep-ultraviolet (UVC) micro-light-emitting diodes (micro-LEDs) with sufficient power has been a challenge, which particularly limits these devices to various applications. However, advanced fabrication processes have been developed to enable the demonstration of highly efficient 270 nm UVC micro-LEDs and large-format UVC micro-LED displays with high resolution for maskless photolithography. Optical and electrical characterizations were performed on UVC micro-LEDs with sizes ranging from 3 µm to 100 μm to evaluate these emerging devices. The 3 μm device achieved a record-high peak external quantum efficiency of 5.7% and a maximum brightness of 396 W cm<sup>–2</sup>. Moreover, 2,540 pixels per inch parallel-connected UVC micro-LED arrays featuring rear-side reflection layers exhibited emission uniformity and collimation. UVC micro-LED displays, with a resolution of 320 × 140, were explicitly designed for maskless photolithography applications utilizing a customized integrated circuit driver for optimal performance. The UVC micro-LEDs and UVC micro-displays provide sufficient doses to fully expose the photoresist film within seconds, owing to their enhanced current spreading uniformity, improved heat dispersion and superior light extraction efficiency. This work may open a path to maskless photolithography, potentially leading to revolutionary developments in the semiconductor industry.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"6 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unified laser stabilization and isolation on a silicon chip 硅芯片上的统一激光稳定和隔离技术
IF 35 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1038/s41566-024-01539-3
Alexander D. White, Geun Ho Ahn, Richard Luhtaru, Joel Guo, Theodore J. Morin, Abhi Saxena, Lin Chang, Arka Majumdar, Kasper Van Gasse, John E. Bowers, Jelena Vučković

Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale, heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main components for high-performance lasers—noise reduction and isolation—can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device, eliminating the need to combine incompatible technologies. To realize this, we take advantage of both the long photon lifetime and the non-reciprocal Kerr nonlinearity of a high-quality-factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. We also identify a previously unappreciated power regime limitation of current on-chip laser architectures, which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies.

光子学的飞速发展带来了集成器件的爆炸式增长,这些器件有望在纳米尺度上提供与桌面技术相同的性能,预示着下一代光通信、传感和计量以及量子技术的到来。然而,将高性能激光系统的多个组件共同集成所面临的挑战,使这些纳米级器件的应用受到比器件本身大几个数量级的笨重激光源的阻碍。在这里,我们展示了高性能激光器的两个主要组件--降噪和隔离--可以同时来自单一的、无源的、与 CMOS 兼容的纳米光子器件,从而无需结合不兼容的技术。为了实现这一目标,我们利用高质量因子氮化硅环形谐振器的长光子寿命和非互易克尔非线性特性,对半导体激光芯片进行自注入锁定,同时提供隔离。我们还发现了当前片上激光器架构中一个以前未曾注意到的功率机制限制,而我们的系统克服了这一限制。利用我们称之为统一激光稳定器的设备,我们展示了一种内置隔离和降噪功能的片上集成激光系统,该系统运行可靠。这种方法不同于将传统激光系统组件直接微型化和集成化的努力,而是为实现完全集成的光学技术架起了一座桥梁。
{"title":"Unified laser stabilization and isolation on a silicon chip","authors":"Alexander D. White, Geun Ho Ahn, Richard Luhtaru, Joel Guo, Theodore J. Morin, Abhi Saxena, Lin Chang, Arka Majumdar, Kasper Van Gasse, John E. Bowers, Jelena Vučković","doi":"10.1038/s41566-024-01539-3","DOIUrl":"https://doi.org/10.1038/s41566-024-01539-3","url":null,"abstract":"<p>Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale, heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main components for high-performance lasers—noise reduction and isolation—can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device, eliminating the need to combine incompatible technologies. To realize this, we take advantage of both the long photon lifetime and the non-reciprocal Kerr nonlinearity of a high-quality-factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. We also identify a previously unappreciated power regime limitation of current on-chip laser architectures, which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"193 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C† 自愈合聚合物电介质在 250 °C 时表现出超高电容储能性能
IF 32.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1039/D4EE03705G
Wenhan Xu, Fei Yang, Guodong Zhao, Shixian Zhang, Guanchun Rui, Muchen Zhao, Lingling Liu, Long-Qing Chen and Qing Wang

Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization (i.e., Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm−3 with a charge–discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics.

能够在高温下工作的聚合物电介质是先进电子和电力系统的重要组成部分。然而,由于电传导呈指数增长,介电聚合物在高温下的电容性能通常会明显下降。在这里,我们设计并制备了具有间断平移对称性的交联共聚物,并利用局部无序诱导电子定位(即安德森定位)来阻碍共聚物的电导。因此,这种共聚物在 250 °C 下的放电能量密度达到了 3.5 J cm-3,充放电效率高达 90%。与现有的介电聚合物相比,这种共聚物还能在 25 至 250 °C 的温度范围内显示出更稳定的电容储能性能。由于该共聚物具有击穿自愈能力和出色的循环性,这项研究为高温高能量密度聚合物电介质的设计带来了新的启示。
{"title":"Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C†","authors":"Wenhan Xu, Fei Yang, Guodong Zhao, Shixian Zhang, Guanchun Rui, Muchen Zhao, Lingling Liu, Long-Qing Chen and Qing Wang","doi":"10.1039/D4EE03705G","DOIUrl":"10.1039/D4EE03705G","url":null,"abstract":"<p >Polymer dielectrics capable of operating at elevated temperatures are essential components in advanced electronics and electrical power systems. However, dielectric polymers generally display significantly deteriorated capacitive performance at high temperatures because of exponential growth of electrical conduction. Here we design and prepare the cross-linked copolymers with interrupted translational symmetry and the use of local disorder-induced electron localization (<em>i.e.</em>, Anderson localization) to impede electrical conduction of the copolymers. Consequently, the copolymer exhibits state-of-the-art discharged energy density of 3.5 J cm<small><sup>−3</sup></small> with a charge–discharge efficiency of 90% at 250 °C. The copolymer also displays much more stable capacitive energy storage performance in the temperature range of 25 to 250 °C compared to existing dielectric polymers. With the demonstrated breakdown self-healing ability and excellent cyclability of the copolymer, this work sheds a new light on the design of high-temperature high-energy-density polymer dielectrics.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" 22","pages":" 8866-8873"},"PeriodicalIF":32.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee03705g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1