Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913191
Alexandru-Robert Guduvan, H. Waeselynck, V. Wiels, G. Durrieu, Yann Fusero, Michel Schieber
In this paper we present STELAE, a model-driven test development environment for avionics embedded systems, implemented on top of a real integration test platform. It is the result of an R&D project between two research laboratories and a test solution provider, aiming to introduce model-driven engineering methodologies and technologies for the development of tests. Our work was motivated by the multiplicity of proprietary test languages in this industrial context, which no longer respond to the stakeholder needs. We present the early prototype functionalities (test model definition, automatic code generation and execution) on a case study inspired from real-life. Our feedback on the used technologies concludes this paper.
{"title":"STELAE — A model-driven test development environment for avionics systems","authors":"Alexandru-Robert Guduvan, H. Waeselynck, V. Wiels, G. Durrieu, Yann Fusero, Michel Schieber","doi":"10.1109/ISORC.2013.6913191","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913191","url":null,"abstract":"In this paper we present STELAE, a model-driven test development environment for avionics embedded systems, implemented on top of a real integration test platform. It is the result of an R&D project between two research laboratories and a test solution provider, aiming to introduce model-driven engineering methodologies and technologies for the development of tests. Our work was motivated by the multiplicity of proprietary test languages in this industrial context, which no longer respond to the stakeholder needs. We present the early prototype functionalities (test model definition, automatic code generation and execution) on a case study inspired from real-life. Our feedback on the used technologies concludes this paper.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127126343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913201
Zied Ellouze, Nada Louati, R. Bouaziz
Real-time databases are different from conventional databases in that they have timing constraints on data and on transactions upon the data. The timing constraints of data require that the current status of the real world must be close enough to the state represented by the contents of the database. The timing constraints of transactions are typically expressed in the form of deadline which indicates a certain time in the future by which a transaction must be completed. Conventional data models can not be directly applied to describe the conceptual data model of a real-time database, since there is no mechanism to deal with the representation of timing constraints. A real-time data model should simultaneously satisfy many goals. It should clearly and concisely provide support for specifying timing constraints on data and transactions, semantics of real-time data and real-time transactions, concurrency control mechanisms, and transactions scheduling policies to meet the timing constraints defined by the real-time applications. This paper presents a real-time object-oriented data model and its use in designing real-time extensions to the DB4O database management system. This data model supports expression of time-constrained data, time-constrained transactions, concurrency control mechanisms, and transactions scheduling policies. It also can be integrated easily in existing object-oriented method and permits automatic code generation of all the real-time code of an application.
{"title":"A real-time object-oriented data model and prototype implementation","authors":"Zied Ellouze, Nada Louati, R. Bouaziz","doi":"10.1109/ISORC.2013.6913201","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913201","url":null,"abstract":"Real-time databases are different from conventional databases in that they have timing constraints on data and on transactions upon the data. The timing constraints of data require that the current status of the real world must be close enough to the state represented by the contents of the database. The timing constraints of transactions are typically expressed in the form of deadline which indicates a certain time in the future by which a transaction must be completed. Conventional data models can not be directly applied to describe the conceptual data model of a real-time database, since there is no mechanism to deal with the representation of timing constraints. A real-time data model should simultaneously satisfy many goals. It should clearly and concisely provide support for specifying timing constraints on data and transactions, semantics of real-time data and real-time transactions, concurrency control mechanisms, and transactions scheduling policies to meet the timing constraints defined by the real-time applications. This paper presents a real-time object-oriented data model and its use in designing real-time extensions to the DB4O database management system. This data model supports expression of time-constrained data, time-constrained transactions, concurrency control mechanisms, and transactions scheduling policies. It also can be integrated easily in existing object-oriented method and permits automatic code generation of all the real-time code of an application.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126856947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913235
Christoph Etzien, Tayfun Gezgin, Sibylle B. Fröschle, Stefan Henkler, A. Rettberg
In this work we address evolving systems, which are basically collaborative and distributed systems building up a larger scale system of system (SoS). These systems are able to adapt the current architecture to some changes in the environment. Constituent systems of a SoS, which represent the basic elements of our modeling approach, operate with different degrees of freedom and as a result the self-adaptation and cooperation between a set of constituent systems is driven by local needs. Based on our former work [11], we propose a well-defined modelling approach for SoS capturing both static and dynamic aspects. The aim is to address on the one hand the required flexibility to adapt the systems during run-time, and on the other hand to guarantee that the SoS reacts still in a safe manner. For this, we will use the contract paradigm for both the specification of legal configurations of the SoS, and to specify the dynamicity model, describing how the SoS architecture can change during run-time. Further, we depict how to adapt a system level analysis technique in order to check the dynamicity model against the invariants of the SoS. With this, we are able to determine, whether the SoS can reach some critical configurations. This enables us to modify the dynamicity model in an adequate manner.
{"title":"Contracts for evolving systems","authors":"Christoph Etzien, Tayfun Gezgin, Sibylle B. Fröschle, Stefan Henkler, A. Rettberg","doi":"10.1109/ISORC.2013.6913235","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913235","url":null,"abstract":"In this work we address evolving systems, which are basically collaborative and distributed systems building up a larger scale system of system (SoS). These systems are able to adapt the current architecture to some changes in the environment. Constituent systems of a SoS, which represent the basic elements of our modeling approach, operate with different degrees of freedom and as a result the self-adaptation and cooperation between a set of constituent systems is driven by local needs. Based on our former work [11], we propose a well-defined modelling approach for SoS capturing both static and dynamic aspects. The aim is to address on the one hand the required flexibility to adapt the systems during run-time, and on the other hand to guarantee that the SoS reacts still in a safe manner. For this, we will use the contract paradigm for both the specification of legal configurations of the SoS, and to specify the dynamicity model, describing how the SoS architecture can change during run-time. Further, we depict how to adapt a system level analysis technique in order to check the dynamicity model against the invariants of the SoS. With this, we are able to determine, whether the SoS can reach some critical configurations. This enables us to modify the dynamicity model in an adequate manner.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127730645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913242
Emil Vassev, M. Hinchey
In new space exploration initiatives of NASA and ESA, there is emphasis on both human and robotic exploration. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. In that context, an autonomous system is able to monitor its behavior and eventually modify the same according to changes in the operational environment, thus being considered as self-adaption. Requirements engineering for autonomous systems, therefore, must address what adaptations are possible and under what constrains, and how those adaptations are realized. Requirements engineering for autonomous systems appears to be a wide open research area with only a limited number of approaches yet considered. In this paper, we present initial results of our research and study on autonomy requirements for space systems.
{"title":"On the autonomy requirements for space missions","authors":"Emil Vassev, M. Hinchey","doi":"10.1109/ISORC.2013.6913242","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913242","url":null,"abstract":"In new space exploration initiatives of NASA and ESA, there is emphasis on both human and robotic exploration. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. In that context, an autonomous system is able to monitor its behavior and eventually modify the same according to changes in the operational environment, thus being considered as self-adaption. Requirements engineering for autonomous systems, therefore, must address what adaptations are possible and under what constrains, and how those adaptations are realized. Requirements engineering for autonomous systems appears to be a wide open research area with only a limited number of approaches yet considered. In this paper, we present initial results of our research and study on autonomy requirements for space systems.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131485964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913199
W. Otte, A. Dubey, Subhav Pradhan, Prithviraj Patil, A. Gokhale, G. Karsai, J. Willemsen
Component-based programming models are well-suited to the design of large-scale, distributed applications because of the ease with which distributed functionality can be developed, deployed, and validated using the models' compositional properties. Existing component models supported by standardized technologies, such as the OMG's CORBA Component Model (CCM), however, incur a number of limitations in the context of cyber physical systems (CPS) that operate in highly dynamic, resource-constrained, and uncertain environments, such as space environments, yet require multiple quality of service (QoS) assurances, such as timeliness, reliability, and security. To overcome these limitations, this paper presents the design of a novel component model called F6COM that is developed for applications operating in the context of a cluster of fractionated spacecraft. Although F6COM leverages the compositional capabilities and port abstractions of existing component models, it provides several new features. Specifically, F6COM abstracts the component operations as tasks, which are scheduled sequentially based on a specified scheduling policy. The infrastructure ensures that at any time at most one task of a component can be active - eliminating race conditions and deadlocks without requiring complicated and error-prone synchronization logic to be written by the component developer. These tasks can be initiated due to (a) interactions with other components, (b) expiration of timers, both sporadic and periodic, and (c) interactions with input/output devices. Interactions with other components are facilitated by ports. To ensure secure information flows, every port of an F6COM component is associated with a security label such that all interactions are executed within a security context. Thus, all component interactions can be subjected to Mandatory Access Control checks by a Trusted Computing Base that facilitates the interactions. Finally, F6COM provides capabilities to monitor task execution deadlines and to configure component-specific fault mitigation actions.
{"title":"F6COM: A component model for resource-constrained and dynamic space-based computing environments","authors":"W. Otte, A. Dubey, Subhav Pradhan, Prithviraj Patil, A. Gokhale, G. Karsai, J. Willemsen","doi":"10.1109/ISORC.2013.6913199","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913199","url":null,"abstract":"Component-based programming models are well-suited to the design of large-scale, distributed applications because of the ease with which distributed functionality can be developed, deployed, and validated using the models' compositional properties. Existing component models supported by standardized technologies, such as the OMG's CORBA Component Model (CCM), however, incur a number of limitations in the context of cyber physical systems (CPS) that operate in highly dynamic, resource-constrained, and uncertain environments, such as space environments, yet require multiple quality of service (QoS) assurances, such as timeliness, reliability, and security. To overcome these limitations, this paper presents the design of a novel component model called F6COM that is developed for applications operating in the context of a cluster of fractionated spacecraft. Although F6COM leverages the compositional capabilities and port abstractions of existing component models, it provides several new features. Specifically, F6COM abstracts the component operations as tasks, which are scheduled sequentially based on a specified scheduling policy. The infrastructure ensures that at any time at most one task of a component can be active - eliminating race conditions and deadlocks without requiring complicated and error-prone synchronization logic to be written by the component developer. These tasks can be initiated due to (a) interactions with other components, (b) expiration of timers, both sporadic and periodic, and (c) interactions with input/output devices. Interactions with other components are facilitated by ports. To ensure secure information flows, every port of an F6COM component is associated with a security label such that all interactions are executed within a security context. Thus, all component interactions can be subjected to Mandatory Access Control checks by a Trusted Computing Base that facilitates the interactions. Finally, F6COM provides capabilities to monitor task execution deadlines and to configure component-specific fault mitigation actions.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114206165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913213
Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang
Fault-tolerant real-time scheduling algorithm is one of the most important means to ensure the timeliness and high availability characteristics of fault-tolerant real-time systems. Existing scheduling models for periodic real-time task in heterogeneous platforms typically require the number of processors in the systems to be determined in advance; hence prohibit the scalability and the performance of distributed systems. The algorithms based on these models also require a large number of schedubility tests which lead to long execution time. To address these problems, we propose a primary and backup replica partition based fault-tolerant scheduling algorithm (PBPFT) based on a scalable scheduling model using heterogeneity that does not have to determine the scale of the distributed system in advance. The PBPFT approach also takes advantage of backup copy overlapping and phasing delay techniques to minimize system redundancy, and adopts the processor grouping technique to simplify algorithm complexity. Comprehensive experiments are conducted, and the results validate high resource utilization and commendable performance of our proposed approach.
{"title":"An efficient fault-tolerant scheduling algorithm for periodic real-time tasks in heterogeneous platforms","authors":"Weiwei Qiu, Zibin Zheng, Xinyu Wang, Xiaohu Yang","doi":"10.1109/ISORC.2013.6913213","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913213","url":null,"abstract":"Fault-tolerant real-time scheduling algorithm is one of the most important means to ensure the timeliness and high availability characteristics of fault-tolerant real-time systems. Existing scheduling models for periodic real-time task in heterogeneous platforms typically require the number of processors in the systems to be determined in advance; hence prohibit the scalability and the performance of distributed systems. The algorithms based on these models also require a large number of schedubility tests which lead to long execution time. To address these problems, we propose a primary and backup replica partition based fault-tolerant scheduling algorithm (PBPFT) based on a scalable scheduling model using heterogeneity that does not have to determine the scale of the distributed system in advance. The PBPFT approach also takes advantage of backup copy overlapping and phasing delay techniques to minimize system redundancy, and adopts the processor grouping technique to simplify algorithm complexity. Comprehensive experiments are conducted, and the results validate high resource utilization and commendable performance of our proposed approach.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116785226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913216
Hiroyuki Chishiro, N. Yamasaki
An imprecise computation model has the advantage of supporting overloaded conditions in dynamic real-time environments, compared to Liu and Layland's model. However, the imprecise computation model is not practical because the termination of each optional part cannot guarantee the schedulability. In order to guarantee the schedulability of the termination of the optional part, a practical imprecise computation model is presented. In the practical imprecise computation model, each task has multiple mandatory parts and optional parts to support many imprecise real-time applications. The practical imprecise computation model is supported by dynamic-priority scheduling on uniprocessors. Unfortunately, dynamic-priority scheduling is difficult to support multiprocessors. In contrast, semifixed-priority scheduling, which is part-level fixed-priority scheduling, supports only two mandatory parts so that supported imprecise real-time applications are restricted. This paper presents semi-fixed-priority scheduling with multiple mandatory parts on uniprocessors and multiprocessors respectively. In addition, this paper explains how to calculate the optional deadline of each task, which is the termination time of optional part. The schedulability analysis shows that semi-fixed-priority scheduling strictly dominates fixed-priority scheduling. Thanks to semi-fixed-priority scheduling with multiple mandatory parts, many imprecise realtime applications can be supported.
{"title":"Semi-fixed-priority scheduling with multiple mandatory parts","authors":"Hiroyuki Chishiro, N. Yamasaki","doi":"10.1109/ISORC.2013.6913216","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913216","url":null,"abstract":"An imprecise computation model has the advantage of supporting overloaded conditions in dynamic real-time environments, compared to Liu and Layland's model. However, the imprecise computation model is not practical because the termination of each optional part cannot guarantee the schedulability. In order to guarantee the schedulability of the termination of the optional part, a practical imprecise computation model is presented. In the practical imprecise computation model, each task has multiple mandatory parts and optional parts to support many imprecise real-time applications. The practical imprecise computation model is supported by dynamic-priority scheduling on uniprocessors. Unfortunately, dynamic-priority scheduling is difficult to support multiprocessors. In contrast, semifixed-priority scheduling, which is part-level fixed-priority scheduling, supports only two mandatory parts so that supported imprecise real-time applications are restricted. This paper presents semi-fixed-priority scheduling with multiple mandatory parts on uniprocessors and multiprocessors respectively. In addition, this paper explains how to calculate the optional deadline of each task, which is the termination time of optional part. The schedulability analysis shows that semi-fixed-priority scheduling strictly dominates fixed-priority scheduling. Thanks to semi-fixed-priority scheduling with multiple mandatory parts, many imprecise realtime applications can be supported.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115786933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913211
Ioannis Boutsis, V. Kalogeraki
In the recent years we have witnessed a proliferation of distributed stream processing systems that need to operate efficiently, even when data bursts occur. Examples include road traffic networks, processing of financial feeds, network monitoring and real-time sensor data analysis systems. An important challenge in managing these systems is effective resource management and meeting the QoS demands of the stream processing applications under different workload conditions, even under bursts. In this paper we present our approach that aims to predict the execution times of the distributed stream processing applications by taking into account the effects of the bursts and what is the typical workload of the stream processing system. Our approach builds application data rate patterns at run-time and predicts the effect of the burst on the performance of the applications, to identify whether there is a need to react on the onset of a burst. Our detailed experimental results over our Synergy middleware illustrate that our approach is practical, depicts good performance and has low resource overhead.
{"title":"Resource management using pattern-based prediction to address bursty data streams","authors":"Ioannis Boutsis, V. Kalogeraki","doi":"10.1109/ISORC.2013.6913211","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913211","url":null,"abstract":"In the recent years we have witnessed a proliferation of distributed stream processing systems that need to operate efficiently, even when data bursts occur. Examples include road traffic networks, processing of financial feeds, network monitoring and real-time sensor data analysis systems. An important challenge in managing these systems is effective resource management and meeting the QoS demands of the stream processing applications under different workload conditions, even under bursts. In this paper we present our approach that aims to predict the execution times of the distributed stream processing applications by taking into account the effects of the bursts and what is the typical workload of the stream processing system. Our approach builds application data rate patterns at run-time and predicts the effect of the burst on the performance of the applications, to identify whether there is a need to react on the onset of a burst. Our detailed experimental results over our Synergy middleware illustrate that our approach is practical, depicts good performance and has low resource overhead.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"1767 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129523503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913189
F. Ribeiro, M. S. Soares
Modeling and tracing requirements are difficult, error-prone activities which have great impact on the overall software development process. Most techniques for modeling requirements present a number of problems and limitations, including modeling requirements at a single level of abstraction, and being specific to model functional requirements. In addition, non-functional requirements are frequently overlooked. Without the proper modeling of requirements, the activity of tracing requirements is impaired. This article aims to perform a study on modeling requirements of Real-Time Systems through an extension of the SysML Requirements Diagram focusing on the traceability of non-functional and functional requirements. The SysML metamodel is extended with new stereotypes and relationships, and the proposed metamodel is applied to a set of requirements for the specification of a Road Traffic Control System. The proposed approach has demonstrated to be effective for representing software requirements of real-time systems at multiple levels of abstraction and classification. The proposed metamodel represents concisely the traceability of requirements at a high level of abstraction.
{"title":"A metamodel for tracing requirements of real-time systems","authors":"F. Ribeiro, M. S. Soares","doi":"10.1109/ISORC.2013.6913189","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913189","url":null,"abstract":"Modeling and tracing requirements are difficult, error-prone activities which have great impact on the overall software development process. Most techniques for modeling requirements present a number of problems and limitations, including modeling requirements at a single level of abstraction, and being specific to model functional requirements. In addition, non-functional requirements are frequently overlooked. Without the proper modeling of requirements, the activity of tracing requirements is impaired. This article aims to perform a study on modeling requirements of Real-Time Systems through an extension of the SysML Requirements Diagram focusing on the traceability of non-functional and functional requirements. The SysML metamodel is extended with new stereotypes and relationships, and the proposed metamodel is applied to a set of requirements for the specification of a Road Traffic Control System. The proposed approach has demonstrated to be effective for representing software requirements of real-time systems at multiple levels of abstraction and classification. The proposed metamodel represents concisely the traceability of requirements at a high level of abstraction.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123999145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1109/ISORC.2013.6913210
Fabien Cadoret, T. Robert, Etienne Borde, L. Pautet, Frank Singhoff
The design of hard real-time embedded systems has to comply with strong requirements with respect to time determinism and resource consumption. However, interacting tasks may induce pessimism in schedulability analysis or introduce significant overheads in memory usage. In this paper, we restrict the execution and communication models to enforce an efficient and predictable implementation. To ensure determinism, a message sent by an emitting task is delivered at its deadline. We take advantage of a wait-free specialized message queues to provide predictable and efficient implementation. The integration of such mechanisms is assisted by a model driven engineering framework1.
{"title":"Deterministic implementation of periodic-delayed communications and experimentation in AADL","authors":"Fabien Cadoret, T. Robert, Etienne Borde, L. Pautet, Frank Singhoff","doi":"10.1109/ISORC.2013.6913210","DOIUrl":"https://doi.org/10.1109/ISORC.2013.6913210","url":null,"abstract":"The design of hard real-time embedded systems has to comply with strong requirements with respect to time determinism and resource consumption. However, interacting tasks may induce pessimism in schedulability analysis or introduce significant overheads in memory usage. In this paper, we restrict the execution and communication models to enforce an efficient and predictable implementation. To ensure determinism, a message sent by an emitting task is delivered at its deadline. We take advantage of a wait-free specialized message queues to provide predictable and efficient implementation. The integration of such mechanisms is assisted by a model driven engineering framework1.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121603890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}