Pub Date : 2024-06-27DOI: 10.1016/j.ibmb.2024.104152
Lenka Rouhová , Šárka Podlahová , Peter Kmet , Michal Žurovec , Hana Sehadová , Ivo Sauman
The larvae of the moth Hyalophora cecropia spin silk cocoons with morphologically distinct layers. We investigated the expression of the individual silk protein components of these cocoons in relation to the morphology of the silk gland and its affiliation to the different layers of the cocoon. The study used transcriptomic and proteomic analyses to identify 91 proteins associated with the silk cocoons, 63 of which have a signal peptide indicating their secretory nature. We checked the specificity of their expression in different parts of the SG and the presence of the corresponding protein products in each cocoon layer. Differences were observed among less abundant proteins with unclear functions. The representation of proteins in the inner envelope and intermediate space was similar, except for a higher proportion of probable contaminating proteins, mostly originating from the gut. On the other hand, the outer envelope contains a number of putative enzymes with unclear function. However, the protein most specific to the outer layer has sequence homology to putative serine/threonine kinase-like proteins and some adhesive proteins, and its closest homolog in Bombyx mori was found in the scaffold silk. This research provides valuable insights into the silk production of the cecropia moth, highlighting both similarities and differences to other moth species.
{"title":"A comprehensive gene expression analysis of the unique three-layered cocoon of the cecropia moth, Hyalophora cecropia","authors":"Lenka Rouhová , Šárka Podlahová , Peter Kmet , Michal Žurovec , Hana Sehadová , Ivo Sauman","doi":"10.1016/j.ibmb.2024.104152","DOIUrl":"10.1016/j.ibmb.2024.104152","url":null,"abstract":"<div><p>The larvae of the moth <em>Hyalophora cecropia</em> spin silk cocoons with morphologically distinct layers. We investigated the expression of the individual silk protein components of these cocoons in relation to the morphology of the silk gland and its affiliation to the different layers of the cocoon. The study used transcriptomic and proteomic analyses to identify 91 proteins associated with the silk cocoons, 63 of which have a signal peptide indicating their secretory nature. We checked the specificity of their expression in different parts of the SG and the presence of the corresponding protein products in each cocoon layer. Differences were observed among less abundant proteins with unclear functions. The representation of proteins in the inner envelope and intermediate space was similar, except for a higher proportion of probable contaminating proteins, mostly originating from the gut. On the other hand, the outer envelope contains a number of putative enzymes with unclear function. However, the protein most specific to the outer layer has sequence homology to putative serine/threonine kinase-like proteins and some adhesive proteins, and its closest homolog in <em>Bombyx mori</em> was found in the scaffold silk. This research provides valuable insights into the silk production of the cecropia moth, highlighting both similarities and differences to other moth species.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"171 ","pages":"Article 104152"},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.ibmb.2024.104151
Xutong Duan , Ting Fu , Chang Liu , Fuhui Wang , Chengbao Liu , Lin Zhao , JinZhu Yu , Xialu Wang , Rong Zhang
Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors that play a critical role in the immune response of invertebrates and vertebrates. Herein, the short ApPGRP-D gene was cloned from the model lepidopteran Antheraea pernyi. Quantitative PCR (qPCR) confirmed that ApPGRP-D is an immune-related protein and that the expression of ApPGRP-D can be induced by microorganisms. ApPGRP-D is a broad-spectrum pattern recognition protein that activates the prophenoloxidase cascade activation system and promotes the agglutination of microbial cells. Likely due to its amidase activity, ApPGRP-D can inhibit the growth of E. coli and S. aureus. In addition, we demonstrated for the first time that zinc ions, as important metal coenzymes, could promote multiple functions of ApPGRP-D but not its amidase activity.
{"title":"The role of a novel secretory peptidoglycan recognition protein with antibacterial ability from the Chinese Oak Silkworm Antheraea pernyi in humoral immunity","authors":"Xutong Duan , Ting Fu , Chang Liu , Fuhui Wang , Chengbao Liu , Lin Zhao , JinZhu Yu , Xialu Wang , Rong Zhang","doi":"10.1016/j.ibmb.2024.104151","DOIUrl":"10.1016/j.ibmb.2024.104151","url":null,"abstract":"<div><p>Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors that play a critical role in the immune response of invertebrates and vertebrates. Herein, the short <em>Ap</em>PGRP-D gene was cloned from the model lepidopteran <em>Antheraea pernyi.</em> Quantitative PCR (qPCR) confirmed that <em>Ap</em>PGRP-D is an immune-related protein and that the expression of <em>Ap</em>PGRP-D can be induced by microorganisms. <em>Ap</em>PGRP-D is a broad-spectrum pattern recognition protein that activates the prophenoloxidase cascade activation system and promotes the agglutination of microbial cells. Likely due to its amidase activity, <em>Ap</em>PGRP-D can inhibit the growth of <em>E. coli</em> and <em>S. aureus</em>. In addition, we demonstrated for the first time that zinc ions, as important metal coenzymes, could promote multiple functions of <em>Ap</em>PGRP-D but not its amidase activity.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"171 ","pages":"Article 104151"},"PeriodicalIF":3.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1016/j.ibmb.2024.104150
Ming Liu , Rongchumu Ge , Lihong Song , Yan Chen , Shuo Yan , Chunya Bu
Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, TuCht1 (group II), TuCht4 (group I) and TuCht10 (group IV) were identified, and their roles during molting process were investigated. TuCht1 was mainly expressed in the deutonymphal stage, while TuCht4 was mainly expressed in the nymphal stage and the highest expression level of TuCht10 was observed in the larvae. Feeding RNAi assays have shown that group I TuCht4 and group Ⅳ TuCht10 are involved in mite molting. Suppression of TuCht4 or TuCht10 resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes TuCht4 and TuCht10 are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.
{"title":"The chitinase genes TuCht4 and TuCht10 are indispensable for molting and survival of Tetranychus urticae","authors":"Ming Liu , Rongchumu Ge , Lihong Song , Yan Chen , Shuo Yan , Chunya Bu","doi":"10.1016/j.ibmb.2024.104150","DOIUrl":"10.1016/j.ibmb.2024.104150","url":null,"abstract":"<div><p>Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, <em>TuCht1</em> (group II), <em>TuCht4</em> (group I) and <em>TuCht10</em> (group IV) were identified, and their roles during molting process were investigated. <em>TuCht1</em> was mainly expressed in the deutonymphal stage, while <em>TuCht4</em> was mainly expressed in the nymphal stage and the highest expression level of <em>TuCht10</em> was observed in the larvae. Feeding RNAi assays have shown that group I <em>TuCht4</em> and group Ⅳ <em>TuCht10</em> are involved in mite molting. Suppression of <em>TuCht4</em> or <em>TuCht10</em> resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes <em>TuCht4</em> and <em>TuCht10</em> are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"171 ","pages":"Article 104150"},"PeriodicalIF":3.8,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.ibmb.2024.104149
Natalia Konopińska , Radosław Gmyrek , Natalia Bylewska , Sara Tchórzewska , Grzegorz Nowicki , Jan Lubawy , Karolina Walkowiak-Nowicka , Arkadiusz Urbański
The central nervous system (CNS) plays a critical role in signal integration in animals and allows the orchestration of life processes to maintain homeostasis. Current research clearly shows that inflammatory processes can also be modulated by the CNS via the neuroendocrine system. One of the neuropeptide families that participate in vertebrates in this process is orexins (OXs). Interestingly, our previous results suggested that a similar dependency may also exist between neuropeptides and immune system activity in insects. Due to the structural homology of orexin and allatotropin receptors and the functional similarity between these two neuropeptide families, the main aim of this research was to perform a complex analysis of the relationships between allatotropin (AT) and the insect immune response. Our results revealed functional similarities between vertebrate OXs and insect ATs. Similar effects were observed in the profile of the expression level of the gene encoding the AT precursor in the Tenebrio molitor nervous system and in the general action of Tenmo-AT on selected immune parameters of the tested beetles. Moreover, for the first time in insects, we confirmed the role of cytokines in the modulation of neuroendocrine system by determining the effect of Spätzle-like protein injection on the expression of genes encoding AT precursor and receptor. All these results are important for understanding the evolutionary basis of hormonal regulation of the immune response.
中枢神经系统(CNS)在动物体内的信号整合中发挥着至关重要的作用,并能协调生命过程以维持体内平衡。目前的研究清楚地表明,中枢神经系统还可以通过神经内分泌系统调节炎症过程。在脊椎动物中,参与这一过程的神经肽家族之一是奥曲肽。有趣的是,我们之前的研究结果表明,昆虫的神经肽和免疫系统活动之间也可能存在类似的依赖关系。由于奥曲肽和促肾上腺皮质激素受体在结构上的同源性以及这两种神经肽家族在功能上的相似性,本研究的主要目的是对促肾上腺皮质激素(AT)和昆虫免疫反应之间的关系进行复杂的分析。我们的研究结果揭示了脊椎动物 OX 与昆虫 AT 在功能上的相似性。在甲壳虫神经系统中编码 AT 前体的基因表达水平以及 TenmoAT 对受试甲壳虫某些免疫参数的总体作用方面,我们观察到了类似的效果。此外,我们还首次在昆虫中证实了细胞因子在调节神经内分泌系统中的作用,确定了注射史派滋莱样蛋白对AT前体和受体编码基因表达的影响。所有这些结果对于理解激素调节免疫反应的进化基础非常重要。
{"title":"The allatotropin/orexin system as an example of immunomodulatory properties of neuropeptides","authors":"Natalia Konopińska , Radosław Gmyrek , Natalia Bylewska , Sara Tchórzewska , Grzegorz Nowicki , Jan Lubawy , Karolina Walkowiak-Nowicka , Arkadiusz Urbański","doi":"10.1016/j.ibmb.2024.104149","DOIUrl":"10.1016/j.ibmb.2024.104149","url":null,"abstract":"<div><p>The central nervous system (CNS) plays a critical role in signal integration in animals and allows the orchestration of life processes to maintain homeostasis. Current research clearly shows that inflammatory processes can also be modulated by the CNS <em>via</em> the neuroendocrine system. One of the neuropeptide families that participate in vertebrates in this process is orexins (OXs). Interestingly, our previous results suggested that a similar dependency may also exist between neuropeptides and immune system activity in insects. Due to the structural homology of orexin and allatotropin receptors and the functional similarity between these two neuropeptide families, the main aim of this research was to perform a complex analysis of the relationships between allatotropin (AT) and the insect immune response. Our results revealed functional similarities between vertebrate OXs and insect ATs. Similar effects were observed in the profile of the expression level of the gene encoding the AT precursor in the <em>Tenebrio molitor</em> nervous system and in the general action of Tenmo-AT on selected immune parameters of the tested beetles. Moreover, for the first time in insects, we confirmed the role of cytokines in the modulation of neuroendocrine system by determining the effect of Spätzle-like protein injection on the expression of genes encoding AT precursor and receptor. All these results are important for understanding the evolutionary basis of hormonal regulation of the immune response.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"171 ","pages":"Article 104149"},"PeriodicalIF":3.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0965174824000808/pdfft?md5=8d2d8a44f2123e404e6b16082a208295&pid=1-s2.0-S0965174824000808-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.ibmb.2024.104139
Yuqiong Liu, Huan Dai, Anfu Bamu, Xinda Lin
Peroxisomes are ubiquitous cellular organelles participating in a variety of critical metabolic reactions. PEX14 is an essential peroxin responsible for peroxisome biogenesis. In this study, we identified the human PEX14 homolog in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). N. lugens PEX14 (NlPEX14) showed significant topological similarity to its human counterpart. It is expressed throughout all developmental stages, with the highest expression observed in adult insects. Down-regulation of NlPEX14 through injection of NlPEX14-specific double-strand RNA impaired nymphal development. Moreover, females subjected to dsNlPEX14 treatment exhibited a significantly reduced lifespan. Additionally, we found abnormal ovarian development and a significant decrease in the number of eggs laid in NlPEX14-downregulated females. Further experiments support that the shortening of lifespan and the decrease in female fecundity can be attributed, at least partially, to the accumulation of fatty acids and reduced expression of vitellogenin. Together, our study reveals an indispensable function of NlPEX14 for insect reproduction and establishes a causal connection between the phenotypes and peroxisome biogenesis, shedding light on the importance of peroxisomes in female fecundity.
{"title":"Peroxisome biogenesis factor PEX14 is crucial for survival and fecundity of female brown planthopper, Nilaparvata lugens (Stål)","authors":"Yuqiong Liu, Huan Dai, Anfu Bamu, Xinda Lin","doi":"10.1016/j.ibmb.2024.104139","DOIUrl":"10.1016/j.ibmb.2024.104139","url":null,"abstract":"<div><p>Peroxisomes are ubiquitous cellular organelles participating in a variety of critical metabolic reactions. PEX14 is an essential peroxin responsible for peroxisome biogenesis. In this study, we identified the human PEX14 homolog in the brown planthopper, <em>Nilaparvata lugens</em> (Hemiptera: Delphacidae). <em>N. lugens</em> PEX14 (NlPEX14) showed significant topological similarity to its human counterpart. It is expressed throughout all developmental stages, with the highest expression observed in adult insects. Down-regulation of <em>NlPEX14</em> through injection of <em>NlPEX14-</em>specific double-strand RNA impaired nymphal development. Moreover, females subjected to <em>dsNlPEX14</em> treatment exhibited a significantly reduced lifespan. Additionally, we found abnormal ovarian development and a significant decrease in the number of eggs laid in <em>NlPEX14</em>-downregulated females. Further experiments support that the shortening of lifespan and the decrease in female fecundity can be attributed, at least partially, to the accumulation of fatty acids and reduced expression of vitellogenin. Together, our study reveals an indispensable function of <em>NlPEX14</em> for insect reproduction and establishes a causal connection between the phenotypes and peroxisome biogenesis, shedding light on the importance of peroxisomes in female fecundity.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"170 ","pages":"Article 104139"},"PeriodicalIF":3.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.ibmb.2024.104138
Hongjian Zhou , Li Liu , Yujia Pang , Yina Xu , Jing Wu , Fei Ma , Ping Jin , Xue Zhou
The dysregulation of intensity and duration in innate immunity can result in detrimental effects on the body, emphasizing the crucial need for precise regulation. However, the intricate and accurate nature of innate immunity implies the existence of numerous undiscovered innate immunomodulators, particularly transcription factors. In this study, we have identified a Drosophila C2H2 zinc finger protein CG18262, named Immune-mediated Zinc Finger protein (IMZF), capable of suppressing immune responses of Imd pathway. Mechanistically, IMZF serves as a transcription factor that represses the expression of Imd and Tak1. Intriguingly, our findings also reveal that Relish, an NF-κB transcription factor, positively regulates the expression of IMZF, consequently inhibiting the activation of Imd and Tak1 to prevent an exaggerated immune response. Additionally, we have elucidated the pivotal role played by the Relish-IMZF-Imd/Tak1 axis in restoring immune homeostasis of Drosophila Imd pathway. In summary, our findings not only unveil a novel C2H2 zinc finger immunoregulatory transcription factor, IMZF, along with its specific mechanism of immune regulation, but also shed light on the dual functionality of Relish in different stages of the immune response by modulating distinct effectors. This discovery provides new insights and enlightenment into the complex regulation of Drosophila innate immunity.
{"title":"Relish-mediated C2H2 zinc finger protein IMZF restores Drosophila immune homeostasis via inhibiting the transcription of Imd/Tak1","authors":"Hongjian Zhou , Li Liu , Yujia Pang , Yina Xu , Jing Wu , Fei Ma , Ping Jin , Xue Zhou","doi":"10.1016/j.ibmb.2024.104138","DOIUrl":"10.1016/j.ibmb.2024.104138","url":null,"abstract":"<div><p>The dysregulation of intensity and duration in innate immunity can result in detrimental effects on the body, emphasizing the crucial need for precise regulation. However, the intricate and accurate nature of innate immunity implies the existence of numerous undiscovered innate immunomodulators, particularly transcription factors. In this study, we have identified a <em>Drosophila</em> C2H2 zinc finger protein <em>CG18262</em>, named Immune-mediated Zinc Finger protein (<em>IMZF</em>), capable of suppressing immune responses of Imd pathway. Mechanistically, <em>IMZF</em> serves as a transcription factor that represses the expression of <em>Imd</em> and <em>Tak1</em>. Intriguingly, our findings also reveal that Relish, an NF-κB transcription factor, positively regulates the expression of <em>IMZF</em>, consequently inhibiting the activation of <em>Imd</em> and <em>Tak1</em> to prevent an exaggerated immune response. Additionally, we have elucidated the pivotal role played by the Relish-<em>IMZF</em>-<em>Imd</em>/<em>Tak1</em> axis in restoring immune homeostasis of <em>Drosophila</em> Imd pathway. In summary, our findings not only unveil a novel C2H2 zinc finger immunoregulatory transcription factor, <em>IMZF</em>, along with its specific mechanism of immune regulation, but also shed light on the dual functionality of Relish in different stages of the immune response by modulating distinct effectors. This discovery provides new insights and enlightenment into the complex regulation of <em>Drosophila</em> innate immunity.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"170 ","pages":"Article 104138"},"PeriodicalIF":3.8,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1016/j.ibmb.2024.104137
Kai Wang , Tienthanh Nguyen , Yihan Gao , Ruiyin Guo , Chaofan Fan , Hang Liao , Jiali Li , Jinwei Chai , Xueqing Xu , Yuxin Gong , Xin Chen
Scorpion venom is a potent natural source for antitumor drug development due to the multiple action modes of anticancer components. Although the sequence of Androcin 18−1 has been identified from the transcriptome profile of the scorpion venom Androctonus bicolor, its bioactivity remains unclear. In this study, we described the antitumor mechanism whereby Androcin 18−1 inhibits the proliferation and induces apoptosis by inducing cell membrane disruption, ROS accumulation, and mitochondrial dysfunction in human U87 glioblastoma cells. Moreover, Androcin 18−1 could suppress cell migration via the mechanisms associated with cytoskeleton disorganization and MMPs/TIMPs expression regulation. The discovery of this work highlights the potential application of Androcin 18−1 in drug development for glioblastoma treatment.
{"title":"Androcin 18−1, a novel scorpion-venom peptide, shows a potent antitumor activity against human U87 cells via inducing mitochondrial dysfunction","authors":"Kai Wang , Tienthanh Nguyen , Yihan Gao , Ruiyin Guo , Chaofan Fan , Hang Liao , Jiali Li , Jinwei Chai , Xueqing Xu , Yuxin Gong , Xin Chen","doi":"10.1016/j.ibmb.2024.104137","DOIUrl":"10.1016/j.ibmb.2024.104137","url":null,"abstract":"<div><p>Scorpion venom is a potent natural source for antitumor drug development due to the multiple action modes of anticancer components. Although the sequence of Androcin 18−1 has been identified from the transcriptome profile of the scorpion venom <em>Androctonus bicolor</em>, its bioactivity remains unclear. In this study, we described the antitumor mechanism whereby Androcin 18−1 inhibits the proliferation and induces apoptosis by inducing cell membrane disruption, ROS accumulation, and mitochondrial dysfunction in human U87 glioblastoma cells. Moreover, Androcin 18−1 could suppress cell migration via the mechanisms associated with cytoskeleton disorganization and MMPs/TIMPs expression regulation. The discovery of this work highlights the potential application of Androcin 18−1 in drug development for glioblastoma treatment.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"170 ","pages":"Article 104137"},"PeriodicalIF":3.8,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.
{"title":"Characterization of an agmatine N-acetyltransferase from Bactrocera dorsalis that modulates ovary development","authors":"Fei-yue Teng, Ji-mei Feng, Fu-cai Ma, Zhuo-xin Wang, Yong-yue Lu, Yi-xiang Qi","doi":"10.1016/j.ibmb.2024.104130","DOIUrl":"10.1016/j.ibmb.2024.104130","url":null,"abstract":"<div><p>Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of <em>Drosophila AgmNAT</em> using sequence information from an activity-verified <em>Drosophila AgmNAT</em> in a BLAST search of the <em>Bactrocera dorsalis</em> genome. We expressed and purified <em>B. dorsalis</em> AgmNAT in <em>Escherichia coli</em> and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest k<sub>cat</sub>/K<sub>m</sub> value. We successfully obtained a <em>BdorAgmNAT</em> knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the <em>BdorAgmNAT</em> knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of <em>BdorAgmNAT</em> caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"170 ","pages":"Article 104130"},"PeriodicalIF":3.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.ibmb.2024.104129
Binu Antony , Nicolas Montagné , Arthur Comte , Sara Mfarrej , Jernej Jakše , Rémi Capoduro , Rajan Shelke , Khasim Cali , Mohammed Ali AlSaleh , Krishna Persaud , Arnab Pain , Emmanuelle Jacquin-Joly
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
亚洲棕榈象鼻虫(Rhynchophorus ferrugineus)是一种非常重要的农业害虫,主要适应棕榈树,造成严重破坏,威胁全球棕榈树的可持续种植。这种象鼻虫对寄主植物的选择主要归因于嗅觉受体(ORs)的功能特化,这种受体能检测到棕榈树的挥发性物质。然而,目前只知道 R. ferrugineus 的两个 OR 的配体,我们仍然缺乏有关棕榈树检测机制的信息。本研究利用新生成的转录组数据,发现了一种高表达的铁纹蛙触角OR--RferOR2。系统进化分析表明,RferOR2属于主要鞘翅目OR群2A,并与一个包含R. ferrugineus OR(RferOR41)的姊妹支系密切相关,该支系与非寄主植物挥发物和拮抗剂α-蒎烯相调谐。通过在果蝇嗅觉神经元中进行异源表达对 RferOR2 进行功能表征后发现,该受体对几种与生态相关的棕榈散发的气味(最明显的是乙酯和甲酯化合物)具有调节作用,但对所测试的任何信息素化合物(包括阿魏集聚信息素)均不具有调节作用。我们没有发现 RferOR2 在雌雄触角上有任何不同的表达,这表明雌雄对这些化合物的检测是相同的。接下来,我们利用新发现的 RferOR2 配体证明,在基于信息素的大规模诱捕中,将合成棕榈酯挥发物作为单一化合物或组合化合物,对铁锈色狼聚集信息素具有协同吸引效应,从而显著增加象鼻虫的捕获量。我们的研究发现了棕榈象鼻虫物种的一个关键 OR,它能对几种生态相关的棕榈挥发性物质进行调谐,这标志着我们在了解棕榈象鼻虫宿主检测的化学感觉机制方面迈出了重要一步。我们的研究还将 RferOR2 定义为探索其他棕榈象鼻虫寄主检测分子基础的重要模型。最后,我们的工作表明,昆虫 OR 的非形态化有助于鉴定新型行为活性挥发性物质,这些物质可在可持续害虫管理应用中干扰象鼻虫的宿主搜寻行为。
{"title":"Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection","authors":"Binu Antony , Nicolas Montagné , Arthur Comte , Sara Mfarrej , Jernej Jakše , Rémi Capoduro , Rajan Shelke , Khasim Cali , Mohammed Ali AlSaleh , Krishna Persaud , Arnab Pain , Emmanuelle Jacquin-Joly","doi":"10.1016/j.ibmb.2024.104129","DOIUrl":"10.1016/j.ibmb.2024.104129","url":null,"abstract":"<div><p>The Asian palm weevil, <em>Rhynchophorus ferrugineus</em>, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of <em>R. ferrugineus</em>, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal <em>R. ferrugineus</em> OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an <em>R. ferrugineus</em> OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in <em>Drosophila</em> olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the <em>R. ferrugineus</em> aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to <em>R. ferrugineus</em> aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"169 ","pages":"Article 104129"},"PeriodicalIF":3.8,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1016/j.ibmb.2024.104126
Min Li , Shuo Yan , Xinying Feng, Qinhong Jiang, Mei Guan, Jie Shen, Zhiqi Liu
Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.
{"title":"An upstream signaling gene calmodulin regulates the synthesis of insect wax via activating fatty acid biosynthesis pathway","authors":"Min Li , Shuo Yan , Xinying Feng, Qinhong Jiang, Mei Guan, Jie Shen, Zhiqi Liu","doi":"10.1016/j.ibmb.2024.104126","DOIUrl":"https://doi.org/10.1016/j.ibmb.2024.104126","url":null,"abstract":"<div><p>Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes <em>fatty acyl-CoA reductase</em> (<em>CsFAR</em>) and <em>calmodulin</em> (<em>CsCaM</em>) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of <em>CsCaM</em> apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the <em>CsCaM</em> might act as a main upstream regulator of fatty acid biosynthesis pathway.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"169 ","pages":"Article 104126"},"PeriodicalIF":3.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}