首页 > 最新文献

International Journal of Heat and Fluid Flow最新文献

英文 中文
Numerical study of the temperature of cumulative jet formed as a result of laser-induced subcooled boiling at the end of the waveguide
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-25 DOI: 10.1016/j.ijheatfluidflow.2025.109751
V.A. Kosyakov , R.V. Fursenko , V.M. Chudnovsky
In the present study a single act of laser-induced subcooled boiling at the end of a laser waveguide is studied numerically. This type of boiling is accompanied by the growth and rapid collapse of a single vapor bubble, which gives rise to a cumulative jet directed away from the waveguide endface. These jets have an elevated temperature which have a number of applications, particularly in medicine. This study offers a physical explanation for the elevated jet temperature observed during subcooled boiling. Dependencies of jet temperature, jet velocity and maximum vapor bubble size on the initial temperature distribution of the liquid are obtained. It is shown that the jet temperature is predominantly influenced by the volume of water heated at the initial stage but not evaporated in the course of the process due to insufficient temperature. On the contrary, the volume of evaporated liquid affects maximum bubble size and jet velocity but has almost no effect on the jet temperature.
{"title":"Numerical study of the temperature of cumulative jet formed as a result of laser-induced subcooled boiling at the end of the waveguide","authors":"V.A. Kosyakov ,&nbsp;R.V. Fursenko ,&nbsp;V.M. Chudnovsky","doi":"10.1016/j.ijheatfluidflow.2025.109751","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109751","url":null,"abstract":"<div><div>In the present study a single act of laser-induced subcooled boiling at the end of a laser waveguide is studied numerically. This type of boiling is accompanied by the growth and rapid collapse of a single vapor bubble, which gives rise to a cumulative jet directed away from the waveguide endface. These jets have an elevated temperature which have a number of applications, particularly in medicine. This study offers a physical explanation for the elevated jet temperature observed during subcooled boiling. Dependencies of jet temperature, jet velocity and maximum vapor bubble size on the initial temperature distribution of the liquid are obtained. It is shown that the jet temperature is predominantly influenced by the volume of water heated at the initial stage but not evaporated in the course of the process due to insufficient temperature. On the contrary, the volume of evaporated liquid affects maximum bubble size and jet velocity but has almost no effect on the jet temperature.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109751"},"PeriodicalIF":2.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of water vapor concentration on the film cooling effectiveness of hydrogen gas turbine vane
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-23 DOI: 10.1016/j.ijheatfluidflow.2025.109760
Kun Du , Jiaxin Li , Tingrui Liang , Cunliang Liu , Bengt Sunden
Film cooling is a promising cooling method for turbine vanes. Inspired by hydrogen gas turbines, this paper investigates the effect of different water vapor volume fraction produced by hydrogen combustion on the film cooling of turbine vanes. Initially, to validate the turbulence model, the PSP experimental method was employed to conduct experiments on single-hole flat plate and vane models without water vapor in the mainstream. Through numerical simulation, laid-back fan-shaped and cylindrical holes in single-hole flat plate models were studied. Compared with different cases with varying water vapor volume fractions in the mainstream, the results show that the film cooling effects for both hole types weakened as the water vapor volume fraction increased. This phenomenon primarily occurs because the constant-pressure specific heat of the mainstream flow increases with higher water vapor concentration. By comparing different definitions of the cooling effectiveness, further verification confirmed that the weakening of the film cooling effect when there was water vapor in the mainstream flow is caused by changes in the constant-pressure specific heat. Numerical simulations were also performed on a real engine turbine vane model. The comparison between cases with and without water vapor showed that, although the film cooling effect of the blade was reduced under higher water vapor concentration, the position and type of holes in the vane also influenced the degree to which the film cooling effect weakened due to water vapor concentration.
{"title":"Effects of water vapor concentration on the film cooling effectiveness of hydrogen gas turbine vane","authors":"Kun Du ,&nbsp;Jiaxin Li ,&nbsp;Tingrui Liang ,&nbsp;Cunliang Liu ,&nbsp;Bengt Sunden","doi":"10.1016/j.ijheatfluidflow.2025.109760","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109760","url":null,"abstract":"<div><div>Film cooling is a promising cooling method for turbine vanes. Inspired by hydrogen gas turbines, this paper investigates the effect of different water vapor volume fraction produced by hydrogen combustion on the film cooling of turbine vanes. Initially, to validate the turbulence model, the PSP experimental method was employed to conduct experiments on single-hole flat plate and vane models without water vapor in the mainstream. Through numerical simulation, laid-back fan-shaped and cylindrical holes in single-hole flat plate models were studied. Compared with different cases with varying water vapor volume fractions in the mainstream, the results show that the film cooling effects for both hole types weakened as the water vapor volume fraction increased. This phenomenon primarily occurs because the constant-pressure specific heat of the mainstream flow increases with higher water vapor concentration. By comparing different definitions of the cooling effectiveness, further verification confirmed that the weakening of the film cooling effect when there was water vapor in the mainstream flow is caused by changes in the constant-pressure specific heat. Numerical simulations were also performed on a real engine turbine vane model. The comparison between cases with and without water vapor showed that, although the film cooling effect of the blade was reduced under higher water vapor concentration, the position and type of holes in the vane also influenced the degree to which the film cooling effect weakened due to water vapor concentration.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109760"},"PeriodicalIF":2.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical study on heat transfer and energy storage characteristics in double-layered enclosure packed with microencapsulated phase change material
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-23 DOI: 10.1016/j.ijheatfluidflow.2025.109757
Wei-Mon Yan , Yu-Fan Lin , Uzair Sajjad , Tien-Fu Yang , Saman Rashidi
Heat transfer and energy storage characteristics in double-layered enclosure packed with microencapsulated phase change material (MEPCM) are investigated numerically and experimentally in details. The rectangular enclosure is partitioned by an Al-plate to provide a double-layered enclosure. The top surface of enclosure is heated with varied heat flux with sine wave variation, the bottom surface is maintained at a low and constant temperature and the other vertical surfaces are thermally insulated. Two microencapsulated phase change materials made by paraffin with melting temperatures about TM=28 ℃ and 37℃, are selected. The high-temperature wall heat fluxes (qh) of 22.7sin(ωt)W/m2, 39.0sin(ωt)W/m2, and 61.3sin(ωt)W/m2 are considered. The low-temperature wall boundary conditions are set to 15 ℃, 20 ℃ , and 25. The results show that better net thermal energy storage is found for a case with a higher wall heat flux at the top surface. In addition, better thermal energy storage is noted when the MEPCM with low melting temperature is packed at the upper enclosure near the heated wall. Also, more energy storage is experienced for a double-layered enclosure with a higher partitioned ratio λ. The melting point temperature of microcapsule phase change materials needs to be between high/low-temperature wall heating conditions to effectively store heat.
{"title":"Experimental and numerical study on heat transfer and energy storage characteristics in double-layered enclosure packed with microencapsulated phase change material","authors":"Wei-Mon Yan ,&nbsp;Yu-Fan Lin ,&nbsp;Uzair Sajjad ,&nbsp;Tien-Fu Yang ,&nbsp;Saman Rashidi","doi":"10.1016/j.ijheatfluidflow.2025.109757","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109757","url":null,"abstract":"<div><div>Heat transfer and energy storage characteristics in double-layered enclosure packed with microencapsulated phase change material (MEPCM) are investigated numerically and experimentally in details. The rectangular enclosure is partitioned by an Al-plate to provide a double-layered enclosure. The top surface of enclosure is heated with varied heat flux with sine wave variation, the bottom surface is maintained at a low and constant temperature and the other vertical surfaces are thermally insulated. Two microencapsulated phase change materials made by paraffin with melting temperatures about <span><math><mrow><msub><mtext>T</mtext><mtext>M</mtext></msub><mo>=</mo></mrow></math></span>28 ℃ and 37℃, are selected. The high-temperature wall heat fluxes (<span><math><msub><mtext>q</mtext><mtext>h</mtext></msub></math></span>) of <span><math><mrow><mtext>22.7sin(</mtext><mi>ω</mi><mtext>t)</mtext><mtext>W</mtext><mo>/</mo><msup><mrow><mtext>m</mtext></mrow><mtext>2</mtext></msup><mtext>, 39.0sin(</mtext><mi>ω</mi><mtext>t)</mtext><mtext>W</mtext><mo>/</mo><msup><mrow><mtext>m</mtext></mrow><mtext>2</mtext></msup></mrow></math></span>, and <span><math><mrow><mtext>61.3sin(</mtext><mi>ω</mi><mtext>t)</mtext><mtext>W</mtext><mo>/</mo><msup><mrow><mtext>m</mtext></mrow><mtext>2</mtext></msup></mrow></math></span> are considered. The low-temperature wall boundary conditions are set to <span><math><mtext>15</mtext></math></span> ℃, <span><math><mrow><mspace></mspace><mtext>20</mtext></mrow></math></span> ℃ , and <span><math><mtext>25</mtext></math></span> ℃<span><math><mo>.</mo></math></span> The results show that better net thermal energy storage is found for a case with a higher wall heat flux at the top surface. In addition, better thermal energy storage is noted when the MEPCM with low melting temperature is packed at the upper enclosure near the heated wall. Also, more energy storage is experienced for a double-layered enclosure with a higher partitioned ratio λ. The melting point temperature of microcapsule phase change materials needs to be between high/low-temperature wall heating conditions to effectively store heat.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109757"},"PeriodicalIF":2.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of different multilayered PCM finned heat sinks using low melting point alloys and paraffin: A numerical analysis
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-20 DOI: 10.1016/j.ijheatfluidflow.2025.109752
Sherin Moustafa , Gaosheng Wei , M.Abd El-Hamid , Fei Sun , Xiaoze Du
Growing need for high-performance electronic devices has necessitate effective heat management solutions. This study conducts a three-dimensional numerical analysis of phase change material (PCM)-based heat sinks, examining single, double, and triple-layered structures with and without internal fins. The heat sinks are subjected to heat fluxes of 30,000 W/m2 and 100,000 W/m2 applied from both the bottom and side directions. The analysis evaluates the thermal performance of low-melting-point alloy (LMPA) PCM and paraffin-based PCM with comparable melting temperatures, while maintaining a constant PCM volume fraction (100 %) and under a set point temperature (SPT) of 100 °C. A cascading approach in the triple-layered module, where PCM layers are arranged in decreasing melting temperatures along the heat flux direction, is introduced. The results show that the cascaded PCM configuration in three layers are more effective to slow down the base temperature increase of the heat sink than the single and double ones. The presence of fins with triple layered LMPA PCM module shows a superior base temperature reduction, the complete melting time reach to about 1113 s under the temperature of 95.26 °C, remaining well below the SPT of 100 °C. This demonstrates the capability of LMPAs to sustain lower temperatures for extended periods, outperforming paraffin in terms of thermal shock resistance and faster melting under high heat flux. This work advances the design of PCM-based heat sinks by integrating cascaded configurations, metal PCM, and high-conductivity fins, offering an innovative holistic analysis of their combined effects on performance and providing a viable solution for cooling high-power electronic devices.
{"title":"Comparative study of different multilayered PCM finned heat sinks using low melting point alloys and paraffin: A numerical analysis","authors":"Sherin Moustafa ,&nbsp;Gaosheng Wei ,&nbsp;M.Abd El-Hamid ,&nbsp;Fei Sun ,&nbsp;Xiaoze Du","doi":"10.1016/j.ijheatfluidflow.2025.109752","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109752","url":null,"abstract":"<div><div>Growing need<!--> <!-->for high-performance electronic devices has necessitate<!--> <!-->effective heat management solutions. This study conducts a three-dimensional numerical analysis of phase change material (PCM)-based heat sinks, examining single, double, and triple-layered structures with and without internal fins. The heat sinks are subjected to heat fluxes of 30,000 W/m<sup>2</sup> and 100,000 W/m<sup>2</sup> applied from both the bottom and side directions. The analysis evaluates the thermal performance of low-melting-point alloy (LMPA) PCM and paraffin-based PCM with comparable melting temperatures, while maintaining a constant PCM volume fraction (100 %) and under a set point temperature (SPT) of 100 °C. A cascading approach in the triple-layered module, where PCM layers are arranged in decreasing melting temperatures along the heat flux direction, is introduced. The results show that the cascaded PCM configuration in three layers are more effective to slow down the base temperature increase of the heat sink than the single and double ones. The presence of fins with triple layered LMPA PCM module shows a superior base temperature reduction, the complete melting time reach to about 1113 s under the temperature of 95.26 °C, remaining well below the SPT of 100 °C. This demonstrates the capability of LMPAs to sustain lower temperatures for extended periods, outperforming paraffin in terms of thermal shock resistance and faster melting under high heat flux. This work advances the design of PCM-based heat sinks by integrating cascaded configurations, metal PCM, and high-conductivity fins, offering an innovative holistic analysis of their combined effects on performance and providing a viable solution for cooling high-power electronic devices.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109752"},"PeriodicalIF":2.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal performance analysis of arc-shaped fins of horizontal latent heat thermal energy storage system
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-17 DOI: 10.1016/j.ijheatfluidflow.2025.109748
Chuang Wang, Shouguang Yao, Xiya Chen, Xuan Yan, Xiaoyv Zhan
Aiming at the generally low thermal conductivity of PCM in the LHTES (latent heat thermal energy storage) system, this study proposes a new kind of fin structure by adding arc-shaped fractal fins on the longitudinal straight fins for the improvement of the melting efficiency within the horizontal double-tube LHTES system. Numerical simulations were performed to analyze the effects of the curvature direction of arc-shaped fins, curvature size, and distance between fractal fins on the thermal characteristics. The results indicate that negative curvature fins have better melting performance. With the influence of natural convection, the temperature response speed of the PCM near the outer pipe wall at the higher half of the system is faster than that in the central region; versus conventional straight fins, a 90° fractal fin has the best melting characteristics versus a traditional straight fin, and reducing the PCM complete melting time by 34.27 %. The fractal fin spacing change affects the internal PCM’s phase transition process. The PCM melts the fastest when the fractal fin spacing decreases uniformly from lateral to medial. This results in a 2.5 % reduction in total melt time and a 2.57 % improvement in energy storage rate over a system with uniformly distributed fins. Finally, the minimum complete melting time, together with the fastest energy storage rate of the PCM, are taken as the optimization objectives. Response surface methodology is used to optimize fin radian angle and spacing. The results indicate that the system has optimal melting characteristics when the fin radian angle θ = 98.81°, the fin spacing tolerance d = 0.20 mm, and the total melting rate of the PCM are enhanced by 35.297 %. The energy storage rate is improved by 52.16 %.
{"title":"Thermal performance analysis of arc-shaped fins of horizontal latent heat thermal energy storage system","authors":"Chuang Wang,&nbsp;Shouguang Yao,&nbsp;Xiya Chen,&nbsp;Xuan Yan,&nbsp;Xiaoyv Zhan","doi":"10.1016/j.ijheatfluidflow.2025.109748","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109748","url":null,"abstract":"<div><div>Aiming at the generally low thermal conductivity of PCM in the LHTES (latent heat thermal energy storage) system, this study proposes a new kind of fin structure by adding arc-shaped fractal fins on the longitudinal straight fins for the improvement of the melting efficiency within the horizontal double-tube LHTES system. Numerical simulations were performed to analyze the effects of the curvature direction of arc-shaped fins, curvature size, and distance between fractal fins on the thermal characteristics. The results indicate that negative curvature fins have better melting performance. With the influence of natural convection, the temperature response speed of the PCM near the outer pipe wall at the higher half of the system is faster than that in the central region; versus conventional straight fins, a 90° fractal fin has the best melting characteristics versus a traditional straight fin, and reducing the PCM complete melting time by 34.27 %. The fractal fin spacing change affects the internal PCM’s phase transition process. The PCM melts the fastest when the fractal fin spacing decreases uniformly from lateral to medial. This results in a 2.5 % reduction in total melt time and a 2.57 % improvement in energy storage rate over a system with uniformly distributed fins. Finally, the minimum complete melting time, together with the fastest energy storage rate of the PCM, are taken as the optimization objectives. Response surface methodology is used to optimize fin radian angle and spacing. The results indicate that the system has optimal melting characteristics when the fin radian angle <em>θ</em> = 98.81°, the fin spacing tolerance <em>d</em> = 0.20 mm, and the total melting rate of the PCM are enhanced by 35.297 %. The energy storage rate is improved by 52.16 %.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109748"},"PeriodicalIF":2.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of fin shapes and orientations with cyclic heating and cooling on melting and solidification of PCM-filled closed space
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-16 DOI: 10.1016/j.ijheatfluidflow.2025.109753
Burak Kıyak , Hakan F. Öztop , Nirmalendu Biswas , Hakan Coşanay , Fatih Selimefendigil
Phase-change materials (PCMs) offer an effective way to store and release thermal energy to balance the supply and demand for energy. Both the melting and solidification processes have a major impact on how effectively energy storage works and also it is affected by the thermal conditions of the heating or cooling source. Thermal energy storage systems using (PCMs are often limited by slow melting and solidification rates. The current work explores a novel strategy of cyclic heating and cooling for improving the PCM melting and solidification process combined with variations in fin shapes and orientations, to address these inefficiencies. The fins are heated and cooled following cyclic heating and cooling pattern for three different cycle periods (CP) with same amplitude. As a result, PCM is subjected to cyclic heating and cooling. The finite volume method is employed to analyze the impact of cyclic heating–cooling cycles on PCM performance. An analysis is also conducted on the impact of the relative shape of fins—that is, flat, concave, and convex, positions—vertical and horizontal—on the melting and solidification process under three different cycle periods. By applying a finite volume-based computational approach, the numerical model is solved. It is observed that the overall thermal performance of PCM-based energy storage is modulated by the cyclic heating–cooling arrangements. With this, melting time is reduced by 47.1 % compared to horizontal fin arrangement. When the fin pair is arranged vertically (θ = 0°), with the increase in the cycle period to CP3, the amount of stored energy (during the heating cycle) is about 24.7 %. Similarly, the amount of stored energy recovery (during the cooling cycle) is about 43.6 %. When the fin pair is arranged horizontally (θ = 90°), the amount of energy stored is up to 10 % due to the increase in the cycle periods. Similarly, the amount of stored energy recovery (during the cooling cycle) is about 38.5 %. An improved fin designs, combined with cyclic heating–cooling strategies, present an effective solution to enhance PCM-based thermal energy storage systems.
{"title":"Effects of fin shapes and orientations with cyclic heating and cooling on melting and solidification of PCM-filled closed space","authors":"Burak Kıyak ,&nbsp;Hakan F. Öztop ,&nbsp;Nirmalendu Biswas ,&nbsp;Hakan Coşanay ,&nbsp;Fatih Selimefendigil","doi":"10.1016/j.ijheatfluidflow.2025.109753","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109753","url":null,"abstract":"<div><div>Phase-change materials (PCMs) offer an effective way to store and release thermal energy to balance the supply and demand for energy. Both the melting and solidification processes have a major impact on how effectively energy storage works and also it is affected by the thermal conditions of the heating or cooling source. Thermal energy storage systems using (PCMs are often limited by slow melting and solidification rates. The current work explores a novel strategy of cyclic heating and cooling for improving the PCM melting and solidification process combined with variations in fin shapes and orientations, to address these inefficiencies. The fins are heated and cooled following cyclic heating and cooling pattern for three different cycle periods (CP) with same amplitude. As a result, PCM is subjected to cyclic heating and cooling. The finite volume method is employed to analyze the impact of cyclic heating–cooling cycles on PCM performance. An analysis is also conducted on the impact of the relative shape of fins—that is, flat, concave, and convex, positions—vertical and horizontal—on the melting and solidification process under three different cycle periods. By applying a finite volume-based computational approach, the numerical model is solved. It is observed that the overall thermal performance of PCM-based energy storage is modulated by the cyclic heating–cooling arrangements. With this, melting time is reduced by 47.1 % compared to horizontal fin arrangement. When the fin pair is arranged vertically (<em>θ</em> = 0°), with the increase in the cycle period to CP3, the amount of stored energy (during the heating cycle) is about 24.7 %. Similarly, the amount of stored energy recovery (during the cooling cycle) is about 43.6 %. When the fin pair is arranged horizontally (<em>θ</em> = 90°), the amount of energy stored is up to 10 % due to the increase in the cycle periods. Similarly, the amount of stored energy recovery (during the cooling cycle) is about 38.5 %. An improved fin designs, combined with cyclic heating–cooling strategies, present an effective solution to enhance PCM-based thermal energy storage systems.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109753"},"PeriodicalIF":2.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of droplet moving on a horizontal metal plate driven by cold airflow
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-16 DOI: 10.1016/j.ijheatfluidflow.2025.109747
Shuoshuo Wang, Shinan Chang, Weidong Yu, Ke Wu
The deformation and movement of droplets are a fundamental phenomenon in nature and industry. The droplet under shear airflow is involved in many aspects, and research on the droplet under different experimental conditions, such as airflow temperature, is still lacking. A series of experiments on droplet motion under different conditions were carried out. The speed and temperature of airflow ranged from 17.0 m/s to 35.0 m/s and −17.0 °C to 20.0 °C, respectively. The droplet volume varied from 5.0 to 40.0 μL. The droplet properties did not change under the cold airflow in the test time, which indicated that it did not freeze and remained liquid for a period of time. During the whole droplet motion in the view, no solidification is observed. The characteristic parameters including the position of the droplet centre, the wetting length, the droplet height and the difference between the cosines of the front contact angle and the rear contact angle (cah) of droplet were obtained by image post-processing. The maximum length ratio and the maximum height ratio of droplet deformation were discussed. The morphology of a droplet during its motion was classified into three regimes according to the droplet Reynolds number, S (sliding slightly), SS (sliding and moving), and SRS (sliding and rivulet formation, and separation). A map of the regimes of droplet motion under different conditions was obtained. It is found that when the Red is in a range from 0 to 25, the droplet motion is Regime I (S). With the Red increasing, the different regimes appeared. The order in which they appear is S, SS, and SRS. This study provides experimental reference data for the study of the droplet motion in different temperatures and shear of airflow.
{"title":"Experimental investigation of droplet moving on a horizontal metal plate driven by cold airflow","authors":"Shuoshuo Wang,&nbsp;Shinan Chang,&nbsp;Weidong Yu,&nbsp;Ke Wu","doi":"10.1016/j.ijheatfluidflow.2025.109747","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109747","url":null,"abstract":"<div><div>The deformation and movement of droplets are a fundamental phenomenon in nature and industry. The droplet under shear airflow is involved in many aspects, and research on the droplet under different experimental conditions, such as airflow temperature, is still lacking. A series of experiments on droplet motion under different conditions were carried out. The speed and temperature of airflow ranged from 17.0 m/s to 35.0 m/s and −17.0 °C to 20.0 °C, respectively. The droplet volume varied from 5.0 to 40.0 μL. The droplet properties did not change under the cold airflow in the test time, which indicated that it did not freeze and remained liquid for a period of time. During the whole droplet motion in the view, no solidification is observed. The characteristic parameters including the position of the droplet centre, the wetting length, the droplet height and the difference between the cosines of the front contact angle and the rear contact angle (<em>cah</em>) of droplet were obtained by image post-processing. The maximum length ratio and the maximum height ratio of droplet deformation were discussed. The morphology of a droplet during its motion was classified into three regimes according to the droplet Reynolds number, S (sliding slightly), SS (sliding and moving), and SRS (sliding and rivulet formation, and separation). A map of the regimes of droplet motion under different conditions was obtained. It is found that when the Re<sub>d</sub> is in a range from 0 to 25, the droplet motion is Regime I (S). With the Re<sub>d</sub> increasing, the different regimes appeared. The order in which they appear is S, SS, and SRS. This study provides experimental reference data for the study of the droplet motion in different temperatures and shear of airflow.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109747"},"PeriodicalIF":2.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of heat transfer enhancement in nucleate pool boiling using different fin geometries
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-15 DOI: 10.1016/j.ijheatfluidflow.2025.109746
Keyhan Kouzegar Ghiyasi, Siamak Hossainpour
This study investigates the effect of surface geometry on nucleate pool boiling heat transfer, focusing on smooth, rectangular finned, and trapezoidal finned surfaces. Using the Volume of Fluid (VOF) method in a two-dimensional numerical analysis, the research provides comprehensive insights into bubble dynamics, including nucleation, growth, detachment, and liquid–vapor interactions. The study shows good agreement between the numerical model results and experimental data, confirming the accuracy and reliability of the VOF method in simulating complex boiling phenomena. The results indicate that finned surfaces significantly enhance heat transfer compared to smooth surfaces, with trapezoidal fins demonstrating the best performance. Trapezoidal fins improved by 133% in the heat transfer coefficient (HTC) and 210% in heat flux compared to smooth surfaces, attributed to their optimized geometry that enhances bubble dynamics and thermal efficiency. Rectangular fins also showed sensitivity to fin height and spacing changes, with improvements of up to 95% in HTC and 150% in heat flux. This study provides practical guidelines for designing advanced heat transfer surfaces, with significant applications in thermal management systems for industries such as power generation, cooling systems, and electronics.
{"title":"Comparative analysis of heat transfer enhancement in nucleate pool boiling using different fin geometries","authors":"Keyhan Kouzegar Ghiyasi,&nbsp;Siamak Hossainpour","doi":"10.1016/j.ijheatfluidflow.2025.109746","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109746","url":null,"abstract":"<div><div>This study investigates the effect of surface geometry on nucleate pool boiling heat transfer, focusing on smooth, rectangular finned, and trapezoidal finned surfaces. Using the Volume of Fluid (VOF) method in a two-dimensional numerical analysis, the research provides comprehensive insights into bubble dynamics, including nucleation, growth, detachment, and liquid–vapor interactions. The study shows good agreement between the numerical model results and experimental data, confirming the accuracy and reliability of the VOF method in simulating complex boiling phenomena. The results indicate that finned surfaces significantly enhance heat transfer compared to smooth surfaces, with trapezoidal fins demonstrating the best performance. Trapezoidal fins improved by 133% in the heat transfer coefficient (HTC) and 210% in heat flux compared to smooth surfaces, attributed to their optimized geometry that enhances bubble dynamics and thermal efficiency. Rectangular fins also showed sensitivity to fin height and spacing changes, with improvements of up to 95% in HTC and 150% in heat flux. This study provides practical guidelines for designing advanced heat transfer surfaces, with significant applications in thermal management systems for industries such as power generation, cooling systems, and electronics.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109746"},"PeriodicalIF":2.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural convection through and over a heating porous medium: Towards high fidelity simulations of nuclear spent fuel pools
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-09 DOI: 10.1016/j.ijheatfluidflow.2024.109724
Victoria Hamtiaux , Pierre Ruyer , Yann Bartosiewicz
This paper presents a numerical investigation involving Direct Numerical Simulations (DNS) of natural convection occurring within mixed domains of porous and pure fluids, featuring an internally heated solid matrix. Our study does not aim to replicate 1:1 scale of Spent Fuel Pool (SFP) scenarios during Loss of Cooling Accidents (LOCA), but rather focuses on a reduced scale mock-up of such pool while keeping essential phenomena. By doing such, this study does provide valuable insights into the intricate dynamics of fluid flow and heat transfer in such prototypical configuration. We conduct a sensitivity analysis on the parameters driving the physical modeling of the porous medium, revealing the substantial influence of the drag on key features of the heat and mass transfers such as the Large-Scale Circulation (LSC), mass flow rates, temperatures within the porous medium, and overall heat transfer process. In a domain scaled to represent a reduced-scale SFP (1:200), we explore the effects of varying rack heights relative to the bottom wall. This variation significantly affects temperature distribution within both the bottom layer and the porous medium. Notably, when the racks make contact with the bottom wall, a dual-roll LSC pattern emerges. Additionally, we examine the consequences of non-uniform heat load distribution within the racks. This distribution leads to larger maximum temperatures within the most heated region of the porous medium. However, it also results in lower area-averaged temperatures due to increased horizontal diffusion and mixing. Consequently, the Nusselt number within the pure-fluid region is reduced compared to a scenario with uniform heat load distribution.
{"title":"Natural convection through and over a heating porous medium: Towards high fidelity simulations of nuclear spent fuel pools","authors":"Victoria Hamtiaux ,&nbsp;Pierre Ruyer ,&nbsp;Yann Bartosiewicz","doi":"10.1016/j.ijheatfluidflow.2024.109724","DOIUrl":"10.1016/j.ijheatfluidflow.2024.109724","url":null,"abstract":"<div><div>This paper presents a numerical investigation involving Direct Numerical Simulations (DNS) of natural convection occurring within mixed domains of porous and pure fluids, featuring an internally heated solid matrix. Our study does not aim to replicate 1:1 scale of Spent Fuel Pool (SFP) scenarios during Loss of Cooling Accidents (LOCA), but rather focuses on a reduced scale mock-up of such pool while keeping essential phenomena. By doing such, this study does provide valuable insights into the intricate dynamics of fluid flow and heat transfer in such prototypical configuration. We conduct a sensitivity analysis on the parameters driving the physical modeling of the porous medium, revealing the substantial influence of the drag on key features of the heat and mass transfers such as the Large-Scale Circulation (LSC), mass flow rates, temperatures within the porous medium, and overall heat transfer process. In a domain scaled to represent a reduced-scale SFP (1:200), we explore the effects of varying rack heights relative to the bottom wall. This variation significantly affects temperature distribution within both the bottom layer and the porous medium. Notably, when the racks make contact with the bottom wall, a dual-roll LSC pattern emerges. Additionally, we examine the consequences of non-uniform heat load distribution within the racks. This distribution leads to larger maximum temperatures within the most heated region of the porous medium. However, it also results in lower area-averaged temperatures due to increased horizontal diffusion and mixing. Consequently, the Nusselt number within the pure-fluid region is reduced compared to a scenario with uniform heat load distribution.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109724"},"PeriodicalIF":2.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on liquid-cooling structure for lithium-ion battery with bionic leaf-vein liquid channels
IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2025-01-09 DOI: 10.1016/j.ijheatfluidflow.2025.109743
Runze Yan , Qinghai Zhao , Chao Zhang , Qingheng Tang , Honghui Li
Effective thermal management is crucial for the thermal safety and temperature uniformity of Lithium-ion batteries. Taking inspiration from the natural leaf-vein structure, this paper proposes a cold plate with novel internal bionic leaf-vein liquid channels. Three-dimensional cold plate models are established according to the contour of leaf-vein for multi-physical field numerical simulations. The effects of different flow rates and inlet/outlet arrangements on the heat transfer performance are investigated. The velocity, temperature, and pressure fields are calculated with the finite element method. Compared with the conventional rectangular flow channel, the results demonstrate that the maximum temperature of the cooling plate with the bionic-type structure is reduced by 10.17 K and the heat transfer efficiency is increased by 22.43 %. Finally, the properties of the test samples are compared to verify the numerical results. The proposed bionic leaf-vein cooling channels provide a positive direction for designing lithium-ion battery cooling systems to control the temperature distribution of the cell module.
{"title":"Research on liquid-cooling structure for lithium-ion battery with bionic leaf-vein liquid channels","authors":"Runze Yan ,&nbsp;Qinghai Zhao ,&nbsp;Chao Zhang ,&nbsp;Qingheng Tang ,&nbsp;Honghui Li","doi":"10.1016/j.ijheatfluidflow.2025.109743","DOIUrl":"10.1016/j.ijheatfluidflow.2025.109743","url":null,"abstract":"<div><div>Effective thermal management is crucial for the thermal safety and temperature uniformity of Lithium-ion batteries. Taking inspiration from the natural leaf-vein structure, this paper proposes a cold plate with novel internal bionic leaf-vein liquid channels. Three-dimensional cold plate models are established according to the contour of leaf-vein for multi-physical field numerical simulations. The effects of different flow rates and inlet/outlet arrangements on the heat transfer performance are investigated. The velocity, temperature, and pressure fields are calculated with the finite element method. Compared with the conventional rectangular flow channel, the results demonstrate that the maximum temperature of the cooling plate with the bionic-type structure is reduced by 10.17 K and the heat transfer efficiency is increased by 22.43 %. Finally, the properties of the test samples are compared to verify the numerical results. The proposed bionic leaf-vein cooling channels provide a positive direction for designing lithium-ion battery cooling systems to control the temperature distribution of the cell module.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109743"},"PeriodicalIF":2.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Heat and Fluid Flow
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1