首页 > 最新文献

Journal of Renewable Energy and Mechanics最新文献

英文 中文
MECHANICAL PROPERTIES OF REPAIR WELDING HIGH YIELD STRENGTH STRUCTURAL STEEL S690Q 高屈服强度结构钢s690q的补焊力学性能
Pub Date : 2022-02-28 DOI: 10.25299/rem.2022.vol5.no01.8782
Hendri Budi Kurniyanto, Diki Hadi Pratama, Imam Khoirul, M. Thoriq Wahyudi, Mukhlis
Repeated welding caused by welding defects in the weld joint will result in changes in the mechanical properties of the weld joint, especially in the Heat Affected Zone (HAZ). Significant changes will occur when welding on steel materials that have undergone special treatment during the manufacturing process, such as quenched and tempered S690Q steel. S690Q steel is a structural steel with high yield strength with quenched and tempered conditions. The research was conducted by doing repeated welding as a simulation of the repair process using the GMAW process. Macro observations as well as tensile, bending, hardness, toughness tests were carried out on cross sections of welded joints. From the results of all the tests carried out the results meet the requirements of the BS EN ISO 15614-1 standard, but the results of the hardness test can identify significant changes in mechanical properties in the HAZ, especially in the bottom or root pass and hot pass areas. The average hardness value decreased from 334.07 HV at the top (face) to 209.55 HV and 198.88 HV at the bottom (hot pass and root pass) on the left side of the HAZ. While on the right side of the HAZ, the hardness value is 337.40 HV to 254.34 HV and 208.64 HV. Keywords: HAZ, S690Q, Structural Steel, Quenched and Tempered Steel
焊接接头中由于焊接缺陷引起的重复焊接会导致焊缝力学性能的变化,特别是在热影响区(HAZ)。在制造过程中经过特殊处理的钢材,如调质后的S690Q钢,在焊接时会发生较大的变化。S690Q钢是一种具有高屈服强度和调质条件的结构钢。通过重复焊接模拟GMAW工艺修复过程进行了研究。对焊接接头的横截面进行了宏观观察和拉伸、弯曲、硬度、韧性试验。从所进行的所有测试的结果来看,结果符合BS EN ISO 15614-1标准的要求,但硬度测试的结果可以识别热影响区机械性能的显著变化,特别是在底部或根部孔道和热孔道区域。平均硬度从顶部(表面)的334.07 HV下降到底部(热孔道和根孔道)的209.55 HV和198.88 HV。热影响区右侧的硬度值为337.40 ~ 254.34 HV和208.64 HV。关键词:热影响区,S690Q,结构钢,调质钢
{"title":"MECHANICAL PROPERTIES OF REPAIR WELDING HIGH YIELD STRENGTH STRUCTURAL STEEL S690Q","authors":"Hendri Budi Kurniyanto, Diki Hadi Pratama, Imam Khoirul, M. Thoriq Wahyudi, Mukhlis","doi":"10.25299/rem.2022.vol5.no01.8782","DOIUrl":"https://doi.org/10.25299/rem.2022.vol5.no01.8782","url":null,"abstract":"Repeated welding caused by welding defects in the weld joint will result in changes in the mechanical properties of the weld joint, especially in the Heat Affected Zone (HAZ). Significant changes will occur when welding on steel materials that have undergone special treatment during the manufacturing process, such as quenched and tempered S690Q steel. S690Q steel is a structural steel with high yield strength with quenched and tempered conditions. The research was conducted by doing repeated welding as a simulation of the repair process using the GMAW process. Macro observations as well as tensile, bending, hardness, toughness tests were carried out on cross sections of welded joints. From the results of all the tests carried out the results meet the requirements of the BS EN ISO 15614-1 standard, but the results of the hardness test can identify significant changes in mechanical properties in the HAZ, especially in the bottom or root pass and hot pass areas. The average hardness value decreased from 334.07 HV at the top (face) to 209.55 HV and 198.88 HV at the bottom (hot pass and root pass) on the left side of the HAZ. While on the right side of the HAZ, the hardness value is 337.40 HV to 254.34 HV and 208.64 HV. \u0000Keywords: HAZ, S690Q, Structural Steel, Quenched and Tempered Steel","PeriodicalId":33715,"journal":{"name":"Journal of Renewable Energy and Mechanics","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86001148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MODIFIKASI DAN EVALUASI PERFORMA DARI MESIN PENYEMAI BENIH SAYUR, SEEDER 改良和评估蔬菜种子加农机的性能
Pub Date : 2022-02-28 DOI: 10.25299/rem.2022.vol5.no01.5641
Riwendra Candra Saputra, Rieza Zulrian Aldio, Irwan Anwar, K. Hastuti, Jhonni Rahman, Sehat Abdi Saragih
Potensi tanaman sayuran sangat terpenting di daerah-daerah saat ini. Terutama yang dilakukan di kota-kota yang luas dengan tanah yang luas. Permasalahan yang terjadi adalah penanaman benih sayuran dilahan yang luas, dan akan menimbukan tenaga besar, maka untuk itu di perlukan teknologi penyemai benih (seeder). Penyemaian benih sayuran yang dilakukan di Indonesia saat ini umumnya masih secara manual. Penyemaian manual dilakukan dengan meletakkan benih satu-persatu ke lubang tray semai. Tujuan dari penelitian ini adalah untuk mendapatkan mesin penyemai dengan performa yang lebih baik dan lebih memudahkan petani dan untuk dapat melakukan penyemaian. Penelitian ini mengunakan diagram alir dengan metode pengambilan data mengevaluasi performa dan penambahan alat pembuka alur. perencanaan alat pembuka alur di gambar dengan software auto cad dan alat pembuka alur terdiri dari sprocket, poros, pelindung poros, mata pisau pembuat alur. Alur yang di hasilkan memiliki kedalaman lebih kurang 20 cm dengan lebar 5 cm, alat pembuka alur ini akan di pasangkan dengan mesin penyemai benih yang telah di modifikas dengan mengilangkan sebuah poros yang meneruskan dari putaran pully ke poros roda, sehingga langsung dari poros pully ke poros roda. Mengevaluasi performa dan mendapatkan kecepatan rata sesudah dimodifikasi 3𝑚⁄𝑠 dari sebelumnya hanya 1,2 𝑚⁄𝑠, dan alat pembuka alur memiliki daya 0,14 hp, torsi 0,67 nm. Hasil yang didapatkan alat pembuka alur dapat memudahkan pekerjaan petani dan mengurangi kerugian akibat benih yang tercecer sewaktu penyemaian manual dan meningkatkan kecepatan produksi penyemaian benih yang di lakukan oleh mesin penyemai benih
在这些地区,蔬菜的潜力是最重要的。主要是在大片土地的城市里。问题是在大型农场种植蔬菜,它会被摇动,因此需要一种播种技术。目前在印尼进行的蔬菜种子收获主要是手工完成的。播种手册是通过把种子一个接一个地放在托盘上的洞里来完成的。这项研究的目的是为农民提供更好的性能和更方便的喷雾器,并能够进行播种。本研究采用数据检索方法、评估性能和添加凹槽点火装置的流程图。计划图片中的槽打开与auto cad软件和槽打开器由sprocket、轴、轴护轴、凹槽刀片组成。产生的凹槽大约有20厘米(2英寸)深,5厘米(3英寸)宽,这条凹槽的开罐器将与经过修饰的种子过滤器连接,将一个从pully转到轮轴,从而直接从pully转到轮轴。性能评估和修改后得到平均速度3𝑚⁄𝑠比以往任何时候都只是120𝑚⁄𝑠,开场情节具有0,14工具手机,0,67扭矩nm。他们获得的开源工具可以促进农民的工作,减少手工播种和提高种子播种速度的损失
{"title":"MODIFIKASI DAN EVALUASI PERFORMA DARI MESIN PENYEMAI BENIH SAYUR, SEEDER","authors":"Riwendra Candra Saputra, Rieza Zulrian Aldio, Irwan Anwar, K. Hastuti, Jhonni Rahman, Sehat Abdi Saragih","doi":"10.25299/rem.2022.vol5.no01.5641","DOIUrl":"https://doi.org/10.25299/rem.2022.vol5.no01.5641","url":null,"abstract":"Potensi tanaman sayuran sangat terpenting di daerah-daerah saat ini. Terutama yang dilakukan di kota-kota yang luas dengan tanah yang luas. Permasalahan yang terjadi adalah penanaman benih sayuran dilahan yang luas, dan akan menimbukan tenaga besar, maka untuk itu di perlukan teknologi penyemai benih (seeder). Penyemaian benih sayuran yang dilakukan di Indonesia saat ini umumnya masih secara manual. Penyemaian manual dilakukan dengan meletakkan benih satu-persatu ke lubang tray semai. Tujuan dari penelitian ini adalah untuk mendapatkan mesin penyemai dengan performa yang lebih baik dan lebih memudahkan petani dan untuk dapat melakukan penyemaian. Penelitian ini mengunakan diagram alir dengan metode pengambilan data mengevaluasi performa dan penambahan alat pembuka alur. perencanaan alat pembuka alur di gambar dengan software auto cad dan alat pembuka alur terdiri dari sprocket, poros, pelindung poros, mata pisau pembuat alur. Alur yang di hasilkan memiliki kedalaman lebih kurang 20 cm dengan lebar 5 cm, alat pembuka alur ini akan di pasangkan dengan mesin penyemai benih yang telah di modifikas dengan mengilangkan sebuah poros yang meneruskan dari putaran pully ke poros roda, sehingga langsung dari poros pully ke poros roda. Mengevaluasi performa dan mendapatkan kecepatan rata sesudah dimodifikasi 3𝑚⁄𝑠 dari sebelumnya hanya 1,2 𝑚⁄𝑠, dan alat pembuka alur memiliki daya 0,14 hp, torsi 0,67 nm. Hasil yang didapatkan alat pembuka alur dapat memudahkan pekerjaan petani dan mengurangi kerugian akibat benih yang tercecer sewaktu penyemaian manual dan meningkatkan kecepatan produksi penyemaian benih yang di lakukan oleh mesin penyemai benih","PeriodicalId":33715,"journal":{"name":"Journal of Renewable Energy and Mechanics","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88384486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Material Analysis of Lead Aprons Using Radiography Non-Destructive Testing 用射线照相法无损检测铅围裙的材料分析
Pub Date : 2021-09-30 DOI: 10.25299/rem.2021.vol4.no02.7480
Tengku Mohammad Yoshandi, Hadi Eka Hamdani, Annisa
Lead Apron is a Personal Protective Equipment (PPE) against the effect of Ionizing Radiation such as X-ray. It is essential for the radiation worker to wear Radiation Protection Equipment during commissions involving ionizing radiation. In Pekanbaru, Indonesia the most common radiation worker is Radiographer which help in hospital for diagnose. In this study the Lead Apron analyzed were 6 apron which suspected to have fault due to its inappropriate tend using NDT radiography methods. Radiography methods have advantage of graphic presentation of object unlike any NDT-methods. The image produce from radiography were analyzed using Computed Radiography (CR) and measured the defection of the material. There was only 3 of 6 Lead Apron appropriate for radiation protection. 
铅围裙是防护电离辐射(如x射线)的个人防护装备。辐射工作人员在从事电离辐射工作时必须佩戴辐射防护设备。在北干巴鲁,印度尼西亚最常见的放射工作者是在医院帮助诊断的放射技师。本文采用无损检测方法对6个因倾斜不当而怀疑存在故障的铅围裙进行了分析。射线照相方法与任何无损检测方法不同,具有物体图形化呈现的优点。利用计算机放射成像技术(CR)对射线成像图像进行分析,测量材料的缺陷。6个铅围裙中只有3个适合辐射防护。
{"title":"Material Analysis of Lead Aprons Using Radiography Non-Destructive Testing","authors":"Tengku Mohammad Yoshandi, Hadi Eka Hamdani, Annisa","doi":"10.25299/rem.2021.vol4.no02.7480","DOIUrl":"https://doi.org/10.25299/rem.2021.vol4.no02.7480","url":null,"abstract":"Lead Apron is a Personal Protective Equipment (PPE) against the effect of Ionizing Radiation such as X-ray. It is essential for the radiation worker to wear Radiation Protection Equipment during commissions involving ionizing radiation. In Pekanbaru, Indonesia the most common radiation worker is Radiographer which help in hospital for diagnose. In this study the Lead Apron analyzed were 6 apron which suspected to have fault due to its inappropriate tend using NDT radiography methods. Radiography methods have advantage of graphic presentation of object unlike any NDT-methods. The image produce from radiography were analyzed using Computed Radiography (CR) and measured the defection of the material. There was only 3 of 6 Lead Apron appropriate for radiation protection. ","PeriodicalId":33715,"journal":{"name":"Journal of Renewable Energy and Mechanics","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84978776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SYNCHRONIZATION OF STORAGE TANK VOLUME, DISPOSAL WELL VOLUME AND ELECTRIC SUBMERSIBLE PUMP (ESP) PUMP CAPACITY IN DISPOSAL WELL FIELD A 处置井场储罐容积、处置井容积与电潜泵容量的同步分析
Pub Date : 2021-09-30 DOI: 10.25299/rem.2021.vol4.no02.7643
Ali Musnal, Fitrianti
In producing oil, one of the common problems faced by oil and gas companies is the production of a lot of water. Increased water production causes the storage tank to be unable to accommodate the produced water. To overcome the excess water production, some of the water is injected back into the well. In Field A, an innovation has been made for a water injection pump with the driving force coming from the Electrical Submersible Pump (ESP) pump. The working principle of this ESP pump is to drain water from the disposal well to the injection well. Therefore, in order for the injection to run optimally, synchronization is carried out starting from the water entering the holding tank, the flow rate in the Disposal well and the pump capacity (ESP) for injecting from the holding well to the injection well. The amount of water flow rate injected through the ESP pump is 9,500 BWPD. For this reason, the capacity of the ESP pump as an injection pump is calculated. First, determine the water level in the tank to control the amount of flow that enters the reservoir well. Based on the results of the research that has been done, the water level in the holding tank to get a flow rate of 9,500 BWPD is 4.11 ft. And the results of the calculation of water will be injected using an ESP pump with a number of stages 22 with the TRW Reda Pump Devision pump type. The water will be channeled to the injection well with a type of galvanized iron pipe with a diameter of the main pipe (mainline) of 6 inches. From the disposal well, it flows with a 4 inch pipe as far as 45.93 ft and a 2 inch pipe as far as 2214.57 ft for well 07. As for wells 60, the flowline size is 4 inches as far as 708.66 ft and 2 inches as far as 987.53 ft.
在生产石油的过程中,油气公司面临的一个常见问题是生产出大量的水。产水量增加导致储罐无法容纳产出水。为了克服过剩的水产出,一些水被注入井中。在A油田,一种创新的注水泵由电潜泵(ESP)驱动。该ESP泵的工作原理是将废水从处置井排至注水井。因此,为了使注入工作达到最佳状态,从进入储罐的水、处置井的流量以及从储罐注入到注入井的泵容量(ESP)开始进行同步。通过ESP泵注入的水流量为9500 BWPD。因此,需要计算ESP泵作为注油泵的容量。首先,确定水箱中的水位,以控制进入水库井的流量。根据已经完成的研究结果,储罐内的水位为4.11英尺,流速为9500 BWPD。根据计算结果,将使用具有22级的ESP泵,使用TRW Reda pump Devision泵类型进行注水。水将被引导到注入井与一种镀锌铁管的直径为6英寸的总管(主线)。从处理井开始,07井通过一根4英寸管和一根2英寸管分别向45.93英尺和2214.57英尺处流动。对于60号井,产线尺寸分别为708.66英尺处的4英寸和987.53英尺处的2英寸。
{"title":"SYNCHRONIZATION OF STORAGE TANK VOLUME, DISPOSAL WELL VOLUME AND ELECTRIC SUBMERSIBLE PUMP (ESP) PUMP CAPACITY IN DISPOSAL WELL FIELD A","authors":"Ali Musnal, Fitrianti","doi":"10.25299/rem.2021.vol4.no02.7643","DOIUrl":"https://doi.org/10.25299/rem.2021.vol4.no02.7643","url":null,"abstract":"In producing oil, one of the common problems faced by oil and gas companies is the production of a lot of water. Increased water production causes the storage tank to be unable to accommodate the produced water. To overcome the excess water production, some of the water is injected back into the well. In Field A, an innovation has been made for a water injection pump with the driving force coming from the Electrical Submersible Pump (ESP) pump. The working principle of this ESP pump is to drain water from the disposal well to the injection well. Therefore, in order for the injection to run optimally, synchronization is carried out starting from the water entering the holding tank, the flow rate in the Disposal well and the pump capacity (ESP) for injecting from the holding well to the injection well. \u0000The amount of water flow rate injected through the ESP pump is 9,500 BWPD. For this reason, the capacity of the ESP pump as an injection pump is calculated. First, determine the water level in the tank to control the amount of flow that enters the reservoir well. \u0000Based on the results of the research that has been done, the water level in the holding tank to get a flow rate of 9,500 BWPD is 4.11 ft. And the results of the calculation of water will be injected using an ESP pump with a number of stages 22 with the TRW Reda Pump Devision pump type. The water will be channeled to the injection well with a type of galvanized iron pipe with a diameter of the main pipe (mainline) of 6 inches. From the disposal well, it flows with a 4 inch pipe as far as 45.93 ft and a 2 inch pipe as far as 2214.57 ft for well 07. As for wells 60, the flowline size is 4 inches as far as 708.66 ft and 2 inches as far as 987.53 ft.","PeriodicalId":33715,"journal":{"name":"Journal of Renewable Energy and Mechanics","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76047664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
EFFECT OF SPRAYING AND MESH SIZE ON SURFACE ROUGHNESS OF SS400 STEEL SANDBLASTING PROCESS 喷砂和网孔尺寸对ss400钢喷砂表面粗糙度的影响
Pub Date : 2021-09-30 DOI: 10.25299/rem.2021.vol4.no02.7500
Budi Saputra, R. Z. Aldio, Dedikarni
During this time the ship's hull often occurs due to corrosion levels of salt in the Indonesian sea varies. The repair process often done to overcome this problem is by sandblasting which aims to clean the metal from the surface of the rust and provide suitable surface roughness on the metal surface so that the coating material can stick properly. This study aims to determine the size of silica sand and the repetition of the sandblasting process on the value of surface roughness and cleanliness of the material. In this study the SS400 material was sandblasting using 12 mesh, 16 mesh and 20 mesh sand at 7 bar, spraying 1x and 2x. From the test results obtained at a particle size of 20 mesh, 7 bar pressure, repeated spraying 2x which results in a surface roughness of 19.80 µm and cleanliness results achieved according to standard SA 2 1/2 (SSPC-SP10) from these conditions obtained surface roughness values according with the standard surface roughness of sandblasting and the level of cleanliness achieved in accordance with ISO 8503 standards and has been allowed for application.
在此期间,船体经常因印尼海域盐的腐蚀程度而发生变化。为了克服这个问题,修复过程通常是通过喷砂,其目的是清除金属表面的锈迹,并在金属表面提供适当的表面粗糙度,以便涂层材料能够正确粘附。本研究旨在确定硅砂的粒度和喷砂过程的重复次数对材料表面粗糙度和洁净度的影响。在本研究中,SS400材料采用12目、16目和20目砂在7 bar喷砂,喷砂量分别为1x和2x。在粒径为20目,压力为7巴,重复喷涂2倍的测试结果中,表面粗糙度为19.80微米,清洁度结果符合标准SA 2 1/2 (SSPC-SP10),从这些条件中获得的表面粗糙度值符合喷砂的标准表面粗糙度,清洁度达到ISO 8503标准,并已允许应用。
{"title":"EFFECT OF SPRAYING AND MESH SIZE ON SURFACE ROUGHNESS OF SS400 STEEL SANDBLASTING PROCESS","authors":"Budi Saputra, R. Z. Aldio, Dedikarni","doi":"10.25299/rem.2021.vol4.no02.7500","DOIUrl":"https://doi.org/10.25299/rem.2021.vol4.no02.7500","url":null,"abstract":"During this time the ship's hull often occurs due to corrosion levels of salt in the Indonesian sea varies. The repair process often done to overcome this problem is by sandblasting which aims to clean the metal from the surface of the rust and provide suitable surface roughness on the metal surface so that the coating material can stick properly. This study aims to determine the size of silica sand and the repetition of the sandblasting process on the value of surface roughness and cleanliness of the material. In this study the SS400 material was sandblasting using 12 mesh, 16 mesh and 20 mesh sand at 7 bar, spraying 1x and 2x. From the test results obtained at a particle size of 20 mesh, 7 bar pressure, repeated spraying 2x which results in a surface roughness of 19.80 µm and cleanliness results achieved according to standard SA 2 1/2 (SSPC-SP10) from these conditions obtained surface roughness values according with the standard surface roughness of sandblasting and the level of cleanliness achieved in accordance with ISO 8503 standards and has been allowed for application.","PeriodicalId":33715,"journal":{"name":"Journal of Renewable Energy and Mechanics","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87582745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OPTIMIZING OIL PRODUCTION AT THE GATHERING STATION BY MAINTAINING THE OIL STOCK TANK / INTERFACE LEVEL IN THE WASH TANK USING THE ROC SYSTEM 通过使用roc系统保持储油罐/洗油罐的油面水平来优化集油站的产油量
Pub Date : 2021-02-28 DOI: 10.25299/REM.2021.VOL4.NO01.5772
Rycha Melysa
One of the production problems that arise at the Gathering Station is an unstable production problem, this is caused by controlling the level of fluid in the wash tank that is less than the maximum for that need to be improved by changing the system from manual to automatic. To maintain the stability of production at the gathering station, special measures such as controlling fluid levels in the storage tanks need to be carried out, monitoring pressure, temperature monitoring and so on that can have a positive effect on oil production at the gathering station. Wash Tank is a tank that is useful for temporary storage of liquid fluid (liquid) that comes from the boot gas. The liquid fluid entering the wash tank consists of a mixture of crude oil and water. At the Wash tank the process of separation between crude oil and water. This washing tank is the largest tank compared to other processing tanks at the gathering station, its diameter is around 85 ft to 90 ft, and its height is around 35 ft to 40 ft. The normal level in the separation process is 36 ft, where the level 1 ft - 29 ft is the water level, while the level 29 ft - 36 ft is the oil level. The 1ft - 29 ft level is referred to as the interface level, where the water level is expected to be at level 29 and the thickness of the oil / oil stock tank 7 ft in the wash tank.   Research conducted on the problem of controlling the level of fluid in the wash tank, where manual control is ineffective and inefficient, for this reason it is necessary to change from a manual to automatic process with the ROC (Remote Operation Control) system, the changes made are expected to maintain the interface and the oil stock tank in accordance with the set point that has been determined and where the amount of oil production per day at the gathering station is very influential on the oil stock tank so that the oil pumped to the shipping line has a BS&W below 1% and has a temperature of 130 ° F -150 ° F In order to obtain this value, we must maintain the interface and the oil stock tank in accordance with the specified set point and where the amount of oil production per day at the gathering station is very influential on the oil stock tank
收集站出现的生产问题之一是不稳定的生产问题,这是由于控制洗涤槽中的液体液位低于最大液位造成的,因此需要通过将系统从手动改为自动来改善。为了保持集油站生产的稳定,需要采取特殊措施,如控制储罐内的液位、监测压力、监测温度等,对集油站的石油生产产生积极的影响。洗涤槽是一种用于临时储存来自启动气体的液体(液体)的槽。进入洗涤槽的液体由原油和水的混合物组成。在洗涤槽中,原油与水分离的过程。与收集站的其他处理槽相比,这个洗涤槽是最大的槽,其直径约为85英尺至90英尺,高度约为35英尺至40英尺。分离过程中的正常水位为36英尺,其中1英尺至29英尺为水位,而29英尺至36英尺为油位。1英尺至29英尺的高度被称为界面高度,其中水位预计为29英尺,油/油储罐的厚度为7英尺。对洗涤槽液面控制问题进行了研究,其中手动控制无效且效率低下,因此有必要使用ROC (Remote Operation control)系统将手动过程改为自动过程。所做的更改预计将保持接口和储油罐符合已确定的设定点,并且集油站每天的产油量对储油罐有很大影响,因此泵送到航运线路的油的BS&W低于1%,温度为130°F -150°F。为了获得该值,在集油站每天的产油量对储油罐影响很大的情况下,必须按照指定的设定点对接口和储油罐进行维护
{"title":"OPTIMIZING OIL PRODUCTION AT THE GATHERING STATION BY MAINTAINING THE OIL STOCK TANK / INTERFACE LEVEL IN THE WASH TANK USING THE ROC SYSTEM","authors":"Rycha Melysa","doi":"10.25299/REM.2021.VOL4.NO01.5772","DOIUrl":"https://doi.org/10.25299/REM.2021.VOL4.NO01.5772","url":null,"abstract":"One of the production problems that arise at the Gathering Station is an unstable production problem, this is caused by controlling the level of fluid in the wash tank that is less than the maximum for that need to be improved by changing the system from manual to automatic. To maintain the stability of production at the gathering station, special measures such as controlling fluid levels in the storage tanks need to be carried out, monitoring pressure, temperature monitoring and so on that can have a positive effect on oil production at the gathering station. \u0000Wash Tank is a tank that is useful for temporary storage of liquid fluid (liquid) that comes from the boot gas. The liquid fluid entering the wash tank consists of a mixture of crude oil and water. At the Wash tank the process of separation between crude oil and water. This washing tank is the largest tank compared to other processing tanks at the gathering station, its diameter is around 85 ft to 90 ft, and its height is around 35 ft to 40 ft. The normal level in the separation process is 36 ft, where the level 1 ft - 29 ft is the water level, while the level 29 ft - 36 ft is the oil level. The 1ft - 29 ft level is referred to as the interface level, where the water level is expected to be at level 29 and the thickness of the oil / oil stock tank 7 ft in the wash tank. \u0000  \u0000Research conducted on the problem of controlling the level of fluid in the wash tank, where manual control is ineffective and inefficient, for this reason it is necessary to change from a manual to automatic process with the ROC (Remote Operation Control) system, the changes made are expected to maintain the interface and the oil stock tank in accordance with the set point that has been determined and where the amount of oil production per day at the gathering station is very influential on the oil stock tank so that the oil pumped to the shipping line has a BS&W below 1% and has a temperature of 130 ° F -150 ° F In order to obtain this value, we must maintain the interface and the oil stock tank in accordance with the specified set point and where the amount of oil production per day at the gathering station is very influential on the oil stock tank","PeriodicalId":33715,"journal":{"name":"Journal of Renewable Energy and Mechanics","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80689730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Renewable Energy and Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1