首页 > 最新文献

Machine Learning Science and Technology最新文献

英文 中文
Photonic modes prediction via multi-modal diffusion model 通过多模式扩散模型预测光子模式
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-05 DOI: 10.1088/2632-2153/ad743f
Jinyang Sun, Xi Chen, Xiumei Wang, Dandan Zhu, Xingping Zhou
The concept of photonic modes is the cornerstone in optics and photonics, which can describe the propagation of the light. The Maxwell’s equations play the role in calculating the mode field based on the structure information, while this process needs a great deal of computations, especially in the handle with a three-dimensional model. To overcome this obstacle, we introduce the multi-modal diffusion model to predict the photonic modes in one certain structure. The Contrastive Language–Image Pre-training (CLIP) model is used to build the connections between photonic structures and the corresponding modes. Then we exemplify Stable Diffusion (SD) model to realize the function of optical fields generation from structure information. Our work introduces multi-modal deep learning to construct complex mapping between structural information and optical field as high-dimensional vectors, and generates optical field images based on this mapping.
光子模式的概念是光学和光子学的基石,它可以描述光的传播。麦克斯韦方程的作用是根据结构信息计算模场,而这一过程需要大量计算,尤其是在处理三维模型时。为了克服这一障碍,我们引入了多模式扩散模型来预测特定结构中的光子模式。对比语言-图像预训练(CLIP)模型用于建立光子结构与相应模式之间的联系。然后,我们以稳定扩散(SD)模型为例,实现了从结构信息生成光场的功能。我们的工作引入多模态深度学习,以高维向量的形式构建结构信息与光场之间的复杂映射,并基于此映射生成光场图像。
{"title":"Photonic modes prediction via multi-modal diffusion model","authors":"Jinyang Sun, Xi Chen, Xiumei Wang, Dandan Zhu, Xingping Zhou","doi":"10.1088/2632-2153/ad743f","DOIUrl":"https://doi.org/10.1088/2632-2153/ad743f","url":null,"abstract":"The concept of photonic modes is the cornerstone in optics and photonics, which can describe the propagation of the light. The Maxwell’s equations play the role in calculating the mode field based on the structure information, while this process needs a great deal of computations, especially in the handle with a three-dimensional model. To overcome this obstacle, we introduce the multi-modal diffusion model to predict the photonic modes in one certain structure. The Contrastive Language–Image Pre-training (CLIP) model is used to build the connections between photonic structures and the corresponding modes. Then we exemplify Stable Diffusion (SD) model to realize the function of optical fields generation from structure information. Our work introduces multi-modal deep learning to construct complex mapping between structural information and optical field as high-dimensional vectors, and generates optical field images based on this mapping.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exponential reduction in training data sizes for machine learning derived entanglement witnesses 机器学习推导纠缠见证的训练数据量指数级减少
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-05 DOI: 10.1088/2632-2153/ad7457
Aiden R Rosebush, Alexander C B Greenwood, Brian T Kirby, Li Qian
We propose a support vector machine (SVM) based approach for generating an entanglement witness that requires exponentially less training data than previously proposed methods. SVMs generate hyperplanes represented by a weighted sum of expectation values of local observables whose coefficients are optimized to sum to a positive number for all separable states and a negative number for as many entangled states as possible near a specific target state. Previous SVM-based approaches for entanglement witness generation used large amounts of randomly generated separable states to perform training, a task with considerable computational overhead. Here, we propose a method for orienting the witness hyperplane using only the significantly smaller set of states consisting of the eigenstates of the generalized Pauli matrices and a set of entangled states near the target entangled states. With the orientation of the witness hyperplane set by the SVM, we tune the plane’s placement using a differential program that ensures perfect classification accuracy on a limited test set as well as maximal noise tolerance. For N qubits, the SVM portion of this approach requires only O(6N) training states, whereas an existing method needs O(24N). We use this method to construct witnesses of 4 and 5 qubit GHZ states with coefficients agreeing with stabilizer formalism witnesses to within 3.7 percent and 1 percent, respectively. We also use the same training states to generate novel 4 and 5 qubit W state witnesses. Finally, we computationally verify these witnesses on small test sets and propose methods for further verification.
我们提出了一种基于支持向量机(SVM)的方法来生成纠缠见证,与之前提出的方法相比,这种方法所需的训练数据要少得多。SVM 生成的超平面由局部观测值期望值的加权和表示,其系数经过优化,对于所有可分离状态,其总和为正数,而对于特定目标状态附近尽可能多的纠缠状态,其总和为负数。以前基于 SVM 的纠缠见证生成方法使用大量随机生成的可分离状态来进行训练,这项任务的计算开销相当大。在这里,我们提出了一种方法,只使用由广义保利矩阵的特征状态和目标纠缠状态附近的一组纠缠状态组成的较小的状态集来确定见证超平面的方向。利用 SVM 设定的见证超平面方向,我们使用差分程序调整平面的位置,以确保在有限的测试集上获得完美的分类准确性以及最大的噪声容限。对于 N 个量子比特,这种方法的 SVM 部分只需要 O(6N) 个训练状态,而现有方法需要 O(24N) 个训练状态。我们用这种方法构建了 4 和 5 量子 GHZ 状态的见证,其系数与稳定器形式主义见证的吻合度分别在 3.7% 和 1% 以内。我们还使用相同的训练态生成了新颖的 4 和 5 量子位 W 状态见证。最后,我们在小型测试集上对这些见证进行了计算验证,并提出了进一步验证的方法。
{"title":"An exponential reduction in training data sizes for machine learning derived entanglement witnesses","authors":"Aiden R Rosebush, Alexander C B Greenwood, Brian T Kirby, Li Qian","doi":"10.1088/2632-2153/ad7457","DOIUrl":"https://doi.org/10.1088/2632-2153/ad7457","url":null,"abstract":"We propose a support vector machine (SVM) based approach for generating an entanglement witness that requires exponentially less training data than previously proposed methods. SVMs generate hyperplanes represented by a weighted sum of expectation values of local observables whose coefficients are optimized to sum to a positive number for all separable states and a negative number for as many entangled states as possible near a specific target state. Previous SVM-based approaches for entanglement witness generation used large amounts of randomly generated separable states to perform training, a task with considerable computational overhead. Here, we propose a method for orienting the witness hyperplane using only the significantly smaller set of states consisting of the eigenstates of the generalized Pauli matrices and a set of entangled states near the target entangled states. With the orientation of the witness hyperplane set by the SVM, we tune the plane’s placement using a differential program that ensures perfect classification accuracy on a limited test set as well as maximal noise tolerance. For <italic toggle=\"yes\">N</italic> qubits, the SVM portion of this approach requires only <inline-formula>\u0000<tex-math><?CDATA $O(6^N)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>O</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mn>6</mml:mn><mml:mi>N</mml:mi></mml:msup><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad7457ieqn1.gif\"></inline-graphic></inline-formula> training states, whereas an existing method needs <inline-formula>\u0000<tex-math><?CDATA $O(2^{4^N})$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>O</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:msup><mml:mn>4</mml:mn><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad7457ieqn2.gif\"></inline-graphic></inline-formula>. We use this method to construct witnesses of 4 and 5 qubit GHZ states with coefficients agreeing with stabilizer formalism witnesses to within 3.7 percent and 1 percent, respectively. We also use the same training states to generate novel 4 and 5 qubit W state witnesses. Finally, we computationally verify these witnesses on small test sets and propose methods for further verification.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating the development of accurate data-driven physics-informed deformation models 规范准确的数据驱动型物理信息变形模型的开发
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-04 DOI: 10.1088/2632-2153/ad7192
Will Newman, Jamshid Ghaboussi, Michael Insana
The challenge posed by the inverse problem associated with ultrasonic elasticity imaging is well matched to the capabilities of data-driven solutions. This report describes how data properties and the time sequence by which the data are introduced during training influence deformation-model accuracy and training times. Our goal is to image the elastic modulus of soft linear-elastic media as accurately as possible within a limited volume. To monitor progress during training, we introduce metrics describing convergence rate and stress entropy to guide data acquisition and other timing features. For example, a regularization term in the loss function may be introduced and later removed to speed and stabilize developing deformation models as well as establishing stopping rules for neural-network convergence. Images of a 14.4 cm3 volume within 3D software phantom visually indicate the quality of modulus images resulting over a range of training variables. The results show that a data-driven method constrained by the physics of a deformed solid will lead to quantitively accurate 3D elastic modulus images with minimum artifacts.
与超声波弹性成像相关的逆问题所带来的挑战与数据驱动解决方案的能力非常匹配。本报告介绍了数据属性和在训练过程中引入数据的时间顺序如何影响形变模型的准确性和训练时间。我们的目标是在有限的体积内尽可能精确地对软线性弹性介质的弹性模量进行成像。为了监控训练过程中的进展,我们引入了描述收敛速度和应力熵的指标,以指导数据采集和其他计时特征。例如,可以在损失函数中引入正则化项,之后再将其移除,以加快和稳定变形模型的开发,并建立神经网络收敛的停止规则。三维软件模型中一个 14.4 cm3 体积的图像直观地显示了在一系列训练变量下产生的模量图像的质量。结果表明,受变形实体物理学制约的数据驱动方法可生成定量精确的三维弹性模量图像,并将伪影降到最低。
{"title":"Regulating the development of accurate data-driven physics-informed deformation models","authors":"Will Newman, Jamshid Ghaboussi, Michael Insana","doi":"10.1088/2632-2153/ad7192","DOIUrl":"https://doi.org/10.1088/2632-2153/ad7192","url":null,"abstract":"The challenge posed by the inverse problem associated with ultrasonic elasticity imaging is well matched to the capabilities of data-driven solutions. This report describes how data properties and the time sequence by which the data are introduced during training influence deformation-model accuracy and training times. Our goal is to image the elastic modulus of soft linear-elastic media as accurately as possible within a limited volume. To monitor progress during training, we introduce metrics describing convergence rate and stress entropy to guide data acquisition and other timing features. For example, a regularization term in the loss function may be introduced and later removed to speed and stabilize developing deformation models as well as establishing stopping rules for neural-network convergence. Images of a 14.4 cm<sup>3</sup> volume within 3D software phantom visually indicate the quality of modulus images resulting over a range of training variables. The results show that a data-driven method constrained by the physics of a deformed solid will lead to quantitively accurate 3D elastic modulus images with minimum artifacts.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving model robustness to weight noise via consistency regularization 通过一致性正则化提高模型对权重噪声的鲁棒性
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-03 DOI: 10.1088/2632-2153/ad734a
Yaoqi Hou, Qingtian Zhang, Namin Wang, Huaqiang Wu
As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural network, may significantly impact the inference accuracy. In this paper, we propose a novel training algorithm designed to mitigate the impact of weight noise. The algorithm strategically minimizes cross-entropy loss while concurrently refining the feature representations in intermediate layers to emulate those of an ideal, noise-free network. This dual-objective approach not only preserves the accuracy of the neural network but also enhances its robustness against noise-induced degradation. Empirical validation across several benchmark datasets confirms that our algorithm sets a new benchmark for accuracy in CIM-enabled neural network applications. Compared to the most commonly used forward noise training methods, our approach yields approximately a 2% accuracy boost on the ResNet32 model with the CIFAR-10 dataset and a weight noise scale of 0.2, and achieves a minimum performance gain of 1% on ResNet18 with the ImageNet dataset under the same noise quantization conditions.
作为一种新兴的计算架构,内存计算(CIM)在人工智能应用的能效和计算能力方面展现出巨大的潜力。然而,CIM 设备的内在非理想性,表现为对神经网络权重的随机干扰,可能会严重影响推理的准确性。在本文中,我们提出了一种新型训练算法,旨在减轻权重噪声的影响。该算法战略性地将交叉熵损失降至最低,同时完善中间层的特征表征,以模拟理想的无噪声网络。这种双目标方法不仅能保持神经网络的准确性,还能增强其抗噪能力。多个基准数据集的经验验证证实,我们的算法为支持 CIM 的神经网络应用设定了新的精度基准。与最常用的前向噪声训练方法相比,我们的方法在使用 CIFAR-10 数据集和 0.2 权重噪声标度的 ResNet32 模型上提高了约 2% 的准确率,并在使用相同噪声量化条件的 ImageNet 数据集的 ResNet18 模型上实现了最低 1% 的性能提升。
{"title":"Improving model robustness to weight noise via consistency regularization","authors":"Yaoqi Hou, Qingtian Zhang, Namin Wang, Huaqiang Wu","doi":"10.1088/2632-2153/ad734a","DOIUrl":"https://doi.org/10.1088/2632-2153/ad734a","url":null,"abstract":"As an emerging computing architecture, the computing-in-memory (CIM) exhibits significant potential for energy efficiency and computing power in artificial intelligence applications. However, the intrinsic non-idealities of CIM devices, manifesting as random interference on the weights of neural network, may significantly impact the inference accuracy. In this paper, we propose a novel training algorithm designed to mitigate the impact of weight noise. The algorithm strategically minimizes cross-entropy loss while concurrently refining the feature representations in intermediate layers to emulate those of an ideal, noise-free network. This dual-objective approach not only preserves the accuracy of the neural network but also enhances its robustness against noise-induced degradation. Empirical validation across several benchmark datasets confirms that our algorithm sets a new benchmark for accuracy in CIM-enabled neural network applications. Compared to the most commonly used forward noise training methods, our approach yields approximately a 2% accuracy boost on the ResNet32 model with the CIFAR-10 dataset and a weight noise scale of 0.2, and achieves a minimum performance gain of 1% on ResNet18 with the ImageNet dataset under the same noise quantization conditions.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network 利用深度神经网络同时校准 ATLAS 探测器的大半径喷流的能量和质量
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-03 DOI: 10.1088/2632-2153/ad611e
G Aad, E Aakvaag, B Abbott, K Abeling, N J Abicht, S H Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, B S Acharya, C Adam Bourdarios, L Adamczyk, S V Addepalli, M J Addison, J Adelman, A Adiguzel, T Adye, A A Affolder, Y Afik, M N Agaras, J Agarwala, A Aggarwal, C Agheorghiesei, A Ahmad, F Ahmadov, W S Ahmed, S Ahuja, X Ai, G Aielli, A Aikot, M Ait Tamlihat, B Aitbenchikh, I Aizenberg, M Akbiyik, T P A Åkesson, A V Akimov, D Akiyama, N N Akolkar, S Aktas, K Al Khoury, G L Alberghi, J Albert, P Albicocco, G L Albouy, S Alderweireldt, Z L Alegria, M Aleksa, I N Aleksandrov, C Alexa, T Alexopoulos, F Alfonsi, M Algren, M Alhroob, B Ali, H M J Ali, S Ali, S W Alibocus, M Aliev, G Alimonti, W Alkakhi, C Allaire, B M M Allbrooke, J F Allen, C A Allendes Flores, P P Allport, A Aloisio, F Alonso, C Alpigiani, M Alvarez Estevez, A Alvarez Fernandez, M Alves Cardoso, M G Alviggi, M Aly, Y Amaral Coutinho, A Ambler, C Amelung, M Amerl, C G Ames, D Amidei, S P Amor Dos Santos, K R Amos, V Ananiev, C Anastopoulos, T Andeen, J K Anders, S Y Andrean, A Andreazza, S Angelidakis, A Angerami, A V Anisenkov, A Annovi, C Antel, M T Anthony, E Antipov, M Antonelli, F Anulli, M Aoki, T Aoki, J A Aparisi Pozo, M A Aparo, L Aperio Bella, C Appelt, A Apyan, S J Arbiol Val, C Arcangeletti, A T H Arce, E Arena, J-F Arguin, S Argyropoulos, J-H Arling, O Arnaez, H Arnold, G Artoni, H Asada, K Asai, S Asai, N A Asbah, K Assamagan, R Astalos, S Atashi, R J Atkin, M Atkinson, H Atmani, P A Atmasiddha, K Augsten, S Auricchio, A D Auriol, V A Austrup, G Avolio, K Axiotis, G Azuelos, D Babal, H Bachacou, K Bachas, A Bachiu, F Backman, A Badea, T M Baer, P Bagnaia, M Bahmani, D Bahner, K Bai, A J Bailey, V R Bailey, J T Baines, L Baines, O K Baker, E Bakos, D Bakshi Gupta, V Balakrishnan, R Balasubramanian, E M Baldin, P Balek, E Ballabene, F Balli, L M Baltes, W K Balunas, J Balz, E Banas, M Bandieramonte, A Bandyopadhyay, S Bansal, L Barak, M Barakat, E L Barberio, D Barberis, M Barbero, M Z Barel, K N Barends, T Barillari, M-S Barisits, T Barklow, P Baron, D A Baron Moreno, A Baroncelli, G Barone, A J Barr, J D Barr, F Barreiro, J Barreiro Guimarães da Costa, U Barron, M G Barros Teixeira, S Barsov, F Bartels, R Bartoldus, A E Barton, P Bartos, A Basan, M Baselga, A Bassalat, M J Basso, C R Basson, R L Bates, S Batlamous, B Batool, M Battaglia, D Battulga, M Bauce, M Bauer, P Bauer, L T Bazzano Hurrell, J B Beacham, T Beau, J Y Beaucamp, P H Beauchemin, P Bechtle, H P Beck, K Becker, A J Beddall, V A Bednyakov, C P Bee, L J Beemster, T A Beermann, M Begalli, M Begel, A Behera, J K Behr, J F Beirer, F Beisiegel, M Belfkir, G Bella, L Bellagamba, A Bellerive, P Bellos, K Beloborodov, D Benchekroun, F Bendebba, Y Benhammou, K C Benkendorfer, L Beresford, M Beretta, E Bergeaas Kuutmann, N Berger, B Bergmann, J Beringer, G Bernardi, C Bernius, F U Bernlochner, F Bernon, A Berrocal Guardia, T Berry, P Berta, A Berthold, S Bethke, A Betti, A J Bevan, N K Bhalla, M Bhamjee, S Bhatta, D S Bhattacharya, P Bhattarai, K D Bhide, V S Bhopatkar, R M Bianchi, G Bianco, O Biebel, R Bielski, M Biglietti, C S Billingsley, M Bindi, A Bingul, C Bini, A Biondini, C J Birch-sykes, G A Bird, M Birman, M Biros, S Biryukov, T Bisanz, E Bisceglie, J P Biswal, D Biswas, K Bjørke, I Bloch, A Blue, U Blumenschein, J Blumenthal, V S Bobrovnikov, M Boehler, B Boehm, D Bogavac, A G Bogdanchikov, C Bohm, V Boisvert, P Bokan, T Bold, M Bomben, M Bona, M Boonekamp, C D Booth, A G Borbély, I S Bordulev, H M Borecka-Bielska, G Borissov, D Bortoletto, D Boscherini, M Bosman, J D Bossio Sola, K Bouaouda, N Bouchhar, J Boudreau, E V Bouhova-Thacker, D Boumediene, R Bouquet, A Boveia, J Boyd, D Boye, I R Boyko, J Bracinik, N Brahimi, G Brandt, O Brandt, F Braren, B Brau, J E Brau, R Brener, L Brenner, R Brenner, S Bressler, D Britton, D Britzger, I Brock, G Brooijmans, E Brost, L M Brown, L E Bruce, T L Bruckler, P A Bruckman de Renstrom, B Brüers, A Bruni, G Bruni, M Bruschi, N Bruscino, T Buanes, Q Buat, D Buchin, A G Buckley, O Bulekov, B A Bullard, S Burdin, C D Burgard, A M Burger, B Burghgrave, O Burlayenko, J T P Burr, C D Burton, J C Burzynski, E L Busch, V Büscher, P J Bussey, J M Butler, C M Buttar, J M Butterworth, W Buttinger, C J Buxo Vazquez, A R Buzykaev, S Cabrera Urbán, L Cadamuro, D Caforio, H Cai, Y Cai, Y Cai, V M M Cairo, O Cakir, N Calace, P Calafiura, G Calderini, P Calfayan, G Callea, L P Caloba, D Calvet, S Calvet, M Calvetti, R Camacho Toro, S Camarda, D Camarero Munoz, P Camarri, M T Camerlingo, D Cameron, C Camincher, M Campanelli, A Camplani, V Canale, A C Canbay, J Cantero, Y Cao, F Capocasa, M Capua, A Carbone, R Cardarelli, J C J Cardenas, F Cardillo, G Carducci, T Carli, G Carlino, J I Carlotto, B T Carlson, E M Carlson, L Carminati, A Carnelli, M Carnesale, S Caron, E Carquin, S Carrá, G Carratta, A M Carroll, T M Carter, M P Casado, M Caspar, F L Castillo, L Castillo Garcia, V Castillo Gimenez, N F Castro, A Catinaccio, J R Catmore, T Cavaliere, V Cavaliere, N Cavalli, Y C Cekmecelioglu, E Celebi, F Celli, M S Centonze, V Cepaitis, K Cerny, A S Cerqueira, A Cerri, L Cerrito, F Cerutti, B Cervato, A Cervelli, G Cesarini, S A Cetin, D Chakraborty, J Chan, W Y Chan, J D Chapman, E Chapon, B Chargeishvili, D G Charlton, M Chatterjee, C Chauhan, Y Che, S Chekanov, S V Chekulaev, G A Chelkov, A Chen, B Chen, B Chen, H Chen, H Chen, J Chen, J Chen, M Chen, S Chen, S J Chen, X Chen, X Chen, Y Chen, C L Cheng, H C Cheng, S Cheong, A Cheplakov, E Cheremushkina, E Cherepanova, R Cherkaoui El Moursli, E Cheu, K Cheung, L Chevalier, V Chiarella, G Chiarelli, N Chiedde, G Chiodini, A S Chisholm, A Chitan, M Chitishvili, M V Chizhov, K Choi, Y Chou, E Y S Chow, K L Chu, M C Chu, X Chu, J Chudoba, J J Chwastowski, D Cieri, K M Ciesla, V Cindro, A Ciocio, F Cirotto, Z H Citron, M Citterio, D A Ciubotaru, A Clark, P J Clark, C Clarry, J M Clavijo Columbie, S E Clawson, C Clement, J Clercx, Y Coadou, M Cobal, A Coccaro, R F Coelho Barrue, R Coelho Lopes De Sa, S Coelli, B Cole, J Collot, P Conde Muiño, M P Connell, S H Connell, E I Conroy, F Conventi, H G Cooke, A M Cooper-Sarkar, A Cordeiro Oudot Choi, L D Corpe, M Corradi, F Corriveau, A Cortes-Gonzalez, M J Costa, F Costanza, D Costanzo, B M Cote, G Cowan, K Cranmer, D Cremonini, S Crépé-Renaudin, F Crescioli, M Cristinziani, M Cristoforetti, V Croft, J E Crosby, G Crosetti, A Cueto, T Cuhadar Donszelmann, H Cui, Z Cui, W R Cunningham, F Curcio, P Czodrowski, M M Czurylo, M J Da Cunha Sargedas De Sousa, J V Da Fonseca Pinto, C Da Via, W Dabrowski, T Dado, S Dahbi, T Dai, D Dal Santo, C Dallapiccola, M Dam, G D’amen, V D’Amico, J Damp, J R Dandoy, M Danninger, V Dao, G Darbo, S Darmora, S J Das, S D’Auria, A D’avanzo, C David, T Davidek, B Davis-Purcell, I Dawson, H A Day-hall, K De, R De Asmundis, N De Biase, S De Castro, N De Groot, P de Jong, H De la Torre, A De Maria, A De Salvo, U De Sanctis, F De Santis, A De Santo, J B De Vivie De Regie, D V Dedovich, J Degens, A M Deiana, F Del Corso, J Del Peso, F Del Rio, L Delagrange, F Deliot, C M Delitzsch, M Della Pietra, D Della Volpe, A Dell’Acqua, L Dell’Asta, M Delmastro, P A Delsart, S Demers, M Demichev, S P Denisov, L D’Eramo, D Derendarz, F Derue, P Dervan, K Desch, C Deutsch, F A Di Bello, A Di Ciaccio, L Di Ciaccio, A Di Domenico, C Di Donato, A Di Girolamo, G Di Gregorio, A Di Luca, B Di Micco, R Di Nardo, M Diamantopoulou, F A Dias, T Dias Do Vale, M A Diaz, F G Diaz Capriles, M Didenko, E B Diehl, S Díez Cornell, C Diez Pardos, C Dimitriadi, A Dimitrievska, J Dingfelder, I-M Dinu, S J Dittmeier, F Dittus, F Djama, T Djobava, C Doglioni, A Dohnalova, J Dolejsi, Z Dolezal, K M Dona, M Donadelli, B Dong, J Donini, A D’Onofrio, M D’Onofrio, J Dopke, A Doria, N Dos Santos Fernandes, P Dougan, M T Dova, A T Doyle, M A Draguet, E Dreyer, I Drivas-koulouris, M Drnevich, M Drozdova, D Du, T A du Pree, F Dubinin, M Dubovsky, E Duchovni, G Duckeck, O A Ducu, D Duda, A Dudarev, E R Duden, M D’uffizi, L Duflot, M Dührssen, A E Dumitriu, M Dunford, S Dungs, K Dunne, A Duperrin, H Duran Yildiz, M Düren, A Durglishvili, B L Dwyer, G I Dyckes, M Dyndal, B S Dziedzic, Z O Earnshaw, G H Eberwein, B Eckerova, S Eggebrecht, E Egidio Purcino De Souza, L F Ehrke, G Eigen, K Einsweiler, T Ekelof, P A Ekman, S El Farkh, Y El Ghazali, H El Jarrari, A El Moussaouy, V Ellajosyula, M Ellert, F Ellinghaus, N Ellis, J Elmsheuser, M Elsing, D Emeliyanov, Y Enari, I Ene, S Epari, P A Erland, M Errenst, M Escalier, C Escobar, E Etzion, G Evans, H Evans, L S Evans, A Ezhilov, S Ezzarqtouni, F Fabbri, L Fabbri, G Facini, V Fadeyev, R M Fakhrutdinov, D Fakoudis, S Falciano, L F Falda Ulhoa Coelho, P J Falke, J Faltova, C Fan, Y Fan, Y Fang, M Fanti, M Faraj, Z Farazpay, A Farbin, A Farilla, T Farooque, S M Farrington, F Fassi, D Fassouliotis, M Faucci Giannelli, W J Fawcett, L Fayard, P Federic, P Federicova, O L Fedin, M Feickert, L Feligioni, D E Fellers, C Feng, M Feng, Z Feng, M J Fenton, L Ferencz, R A M Ferguson, S I Fernandez Luengo, P Fernandez Martinez, M J V Fernoux, J Ferrando, A Ferrari, P Ferrari, R Ferrari, D Ferrere, C Ferretti, F Fiedler, P Fiedler, A Filipčič, E K Filmer, F Filthaut, M C N Fiolhais, L Fiorini, W C Fisher, T Fitschen, P M Fitzhugh, I Fleck, P Fleischmann, T Flick, M Flores, L R Flores Castillo, L Flores Sanz De Acedo, F M Follega, N Fomin, J H Foo, A Formica, A C Forti, E Fortin, A W Fortman, M G Foti, L Fountas, D Fournier, H Fox, P Francavilla, S Francescato, S Franchellucci, M Franchini, S Franchino, D Francis, L Franco, V Franco Lima, L Franconi, M Franklin, G Frattari, W S Freund, Y Y Frid, J Friend, N Fritzsche, A Froch, D Froidevaux, J A Frost, Y Fu, S Fuenzalida Garrido, M Fujimoto, K Y Fung, E Furtado De Simas Filho, M Furukawa, J Fuster, A Gabrielli, A Gabrielli, P Gadow, G Gagliardi, L G Gagnon, S Galantzan, E J Gallas, B J Gallop, K K Gan, S Ganguly, Y Gao, F M Garay Walls, B Garcia, C García, A Garcia Alonso, A G Garcia Caffaro, J E García Navarro, M Garcia-Sciveres, G L Gardner, R W Gardner, N Garelli, D Garg, R B Garg, J M Gargan, C A Garner, C M Garvey, P Gaspar, V K Gassmann, G Gaudio, V Gautam, P Gauzzi, I L Gavrilenko, A Gavrilyuk, C Gay, G Gaycken, E N Gazis, A A Geanta, C M Gee, A Gekow, C Gemme, M H Genest, A D Gentry, S George, W F George, T Geralis, P Gessinger-Befurt, M E Geyik, M Ghani, M Ghneimat, K Ghorbanian, A Ghosal, A Ghosh, A Ghosh, B Giacobbe, S Giagu, T Giani, P Giannetti, A Giannini, S M Gibson, M Gignac, D T Gil, A K Gilbert, B J Gilbert, D Gillberg, G Gilles, L Ginabat, D M Gingrich, M P Giordani, P F Giraud, G Giugliarelli, D Giugni, F Giuli, I Gkialas, L K Gladilin, C Glasman, G R Gledhill, G Glemža, M Glisic, I Gnesi, Y Go, M Goblirsch-Kolb, B Gocke, D Godin, B Gokturk, S Goldfarb, T Golling, M G D Gololo, D Golubkov, J P Gombas, A Gomes, G Gomes Da Silva, A J Gomez Delegido, R Gonçalo, L Gonella, A Gongadze, F Gonnella, J L Gonski, R Y González Andana, S González de la Hoz, R Gonzalez Lopez, C Gonzalez Renteria, M V Gonzalez Rodrigues, R Gonzalez Suarez, S Gonzalez-Sevilla, G R Gonzalvo Rodriguez, L Goossens, B Gorini, E Gorini, A Gorišek, T C Gosart, A T Goshaw, M I Gostkin, S Goswami, C A Gottardo, S A Gotz, M Gouighri, V Goumarre, A G Goussiou, N Govender, I Grabowska-Bold, K Graham, E Gramstad, S Grancagnolo, C M Grant, P M Gravila, F G Gravili, H M Gray, M Greco, C Grefe, I M Gregor, P Grenier, S G Grewe, A A Grillo, K Grimm, S Grinstein, J -F Grivaz, E Gross, J Grosse-Knetter, J C Grundy, L Guan, C Gubbels, J G R Guerrero Rojas, G Guerrieri, F Guescini, R Gugel, J A M Guhit, A Guida, E Guilloton, S Guindon, F Guo, J Guo, L Guo, Y Guo, R Gupta, R Gupta, S Gurbuz, S S Gurdasani, G Gustavino, M Guth, P Gutierrez, L F Gutierrez Zagazeta, M Gutsche, C Gutschow, C Gwenlan, C B Gwilliam, E S Haaland, A Haas, M Habedank, C Haber, H K Hadavand, A Hadef, S Hadzic, A I Hagan, J J Hahn, E H Haines, M Haleem, J Haley, J J Hall, G D Hallewell, L Halser, K Hamano, M Hamer, G N Hamity, E J Hampshire, J Han, K Han, L Han, L Han, S Han, Y F Han, K Hanagaki, M Hance, D A Hangal, H Hanif, M D Hank, J B Hansen, P H Hansen, K Hara, D Harada, T Harenberg, S Harkusha, M L Harris, Y T Harris, J Harrison, N M Harrison, P F Harrison, N M Hartman, N M Hartmann, Y Hasegawa, R Hauser, C M Hawkes, R J Hawkings, Y Hayashi, S Hayashida, D Hayden, C Hayes, R L Hayes, C P Hays, J M Hays, H S Hayward, F He, M He, Y He, Y He, Y He, N B Heatley, V Hedberg, A L Heggelund, N D Hehir, C Heidegger, K K Heidegger, W D Heidorn, J Heilman, S Heim, T Heim, J G Heinlein, J J Heinrich, L Heinrich, J Hejbal, A Held, S Hellesund, C M Helling, S Hellman, R C W Henderson, L Henkelmann, A M Henriques Correia, H Herde, Y Hernández Jiménez, L M Herrmann, T Herrmann, G Herten, R Hertenberger, L Hervas, M E Hesping, N P Hessey, E Hill, S J Hillier, J R Hinds, F Hinterkeuser, M Hirose, S Hirose, D Hirschbuehl, T G Hitchings, B Hiti, J Hobbs, R Hobincu, N Hod, M C Hodgkinson, B H Hodkinson, A Hoecker, D D Hofer, J Hofer, T Holm, M Holzbock, L B A H Hommels, B P Honan, J Hong, T M Hong, B H Hooberman, W H Hopkins, Y Horii, S Hou, A S Howard, J Howarth, J Hoya, M Hrabovsky, A Hrynevich, T Hryn’ova, P J Hsu, S -C Hsu, Q Hu, S Huang, X Huang, X Huang, Y Huang, Y Huang, Z Huang, Z Hubacek, M Huebner, F Huegging, T B Huffman, C A Hugli, M Huhtinen, S K Huiberts, R Hulsken, N Huseynov, J Huston, J Huth, R Hyneman, G Iacobucci, G Iakovidis, I Ibragimov, L Iconomidou-Fayard, J P Iddon, P Iengo, R Iguchi, T Iizawa, Y Ikegami, N Ilic, H Imam, M Ince Lezki, T Ingebretsen Carlson, G Introzzi, M Iodice, V Ippolito, R K Irwin, M Ishino, W Islam, C Issever, S Istin, H Ito, R Iuppa, A Ivina, J M Izen, V Izzo, P Jacka, P Jackson, B P Jaeger, C S Jagfeld, G Jain, P Jain, K Jakobs, T Jakoubek, J Jamieson, K W Janas, M Javurkova, L Jeanty, J Jejelava, P Jenni, C E Jessiman, C Jia, J Jia, X Jia, X Jia, Z Jia, S Jiggins, J Jimenez Pena, S Jin, A Jinaru, O Jinnouchi, P Johansson, K A Johns, J W Johnson, D M Jones, E Jones, P Jones, R W L Jones, T J Jones, H L Joos, R Joshi, J Jovicevic, X Ju, J J Junggeburth, T Junkermann, A Juste Rozas, M K Juzek, S Kabana, A Kaczmarska, M Kado, H Kagan, M Kagan, A Kahn, A Kahn, C Kahra, T Kaji, E Kajomovitz, N Kakati, I Kalaitzidou, C W Kalderon, N J Kang, D Kar, K Karava, M J Kareem, E Karentzos, I Karkanias, O Karkout, S N Karpov, Z M Karpova, V Kartvelishvili, A N Karyukhin, E Kasimi, J Katzy, S Kaur, K Kawade, M P Kawale, C Kawamoto, T Kawamoto, E F Kay, F I Kaya, S Kazakos, V F Kazanin, Y Ke, J M Keaveney, R Keeler, G V Kehris, J S Keller, A S Kelly, J J Kempster, P D Kennedy, O Kepka, B P Kerridge, S Kersten, B P Kerševan, S Keshri, L Keszeghova, S Ketabchi Haghighat, R A Khan, A Khanov, A G Kharlamov, T Kharlamova, E E Khoda, M Kholodenko, T J Khoo, G Khoriauli, J Khubua, Y A R Khwaira, B Kibirige, A Kilgallon, D W Kim, Y K Kim, N Kimura, M K Kingston, A Kirchhoff, C Kirfel, F Kirfel, J Kirk, A E Kiryunin, C Kitsaki, O Kivernyk, M Klassen, C Klein, L Klein, M H Klein, S B Klein, U Klein, P Klimek, A Klimentov, T Klioutchnikova, P Kluit, S Kluth, E Kneringer, T M Knight, A Knue, R Kobayashi, D Kobylianskii, S F Koch, M Kocian, P Kodyš, D M Koeck, P T Koenig, T Koffas, O Kolay, I Koletsou, T Komarek, K Köneke, A X Y Kong, T Kono, N Konstantinidis, P Kontaxakis, B Konya, R Kopeliansky, S Koperny, K Korcyl, K Kordas, A Korn, S Korn, I Korolkov, N Korotkova, B Kortman, O Kortner, S Kortner, W H Kostecka, V V Kostyukhin, A Kotsokechagia, A Kotwal, A Koulouris, A Kourkoumeli-Charalampidi, C Kourkoumelis, E Kourlitis, O Kovanda, R Kowalewski, W Kozanecki, A S Kozhin, V A Kramarenko, G Kramberger, P Kramer, M W Krasny, A Krasznahorkay, J W Kraus, J A Kremer, T Kresse, J Kretzschmar, K Kreul, P Krieger, S Krishnamurthy, M Krivos, K Krizka, K Kroeninger, H Kroha, J Kroll, J Kroll, K S Krowpman, U Kruchonak, H Krüger, N Krumnack, M C Kruse, O Kuchinskaia, S Kuday, S Kuehn, R Kuesters, T Kuhl, V Kukhtin, Y Kulchitsky, S Kuleshov, M Kumar, N Kumari, P Kumari, A Kupco, T Kupfer, A Kupich, O Kuprash, H Kurashige, L L Kurchaninov, O Kurdysh, Y A Kurochkin, A Kurova, M Kuze, A K Kvam, J Kvita, T Kwan, N G Kyriacou, L A O Laatu, C Lacasta, F Lacava, H Lacker, D Lacour, N N Lad, E Ladygin, B Laforge, T Lagouri, F Z Lahbabi, S Lai, I K Lakomiec, N Lalloue, J E Lambert, S Lammers, W Lampl, C Lampoudis, G Lamprinoudis, A N Lancaster, E Lançon, U Landgraf, M P J Landon, V S Lang, O K B Langrekken, A J Lankford, F Lanni, K Lantzsch, A Lanza, A Lapertosa, J F Laporte, T Lari, F Lasagni Manghi, M Lassnig, V Latonova, A Laudrain, A Laurier, S D Lawlor, Z Lawrence, R Lazaridou, M Lazzaroni, B Le, E M Le Boulicaut, B Leban, A Lebedev, M LeBlanc, F Ledroit-Guillon, A C A Lee, S C Lee, S Lee, T F Lee, L L Leeuw, H P Lefebvre, M Lefebvre, C Leggett, G Lehmann Miotto, M Leigh, W A Leight, W Leinonen, A Leisos, M A L Leite, C E Leitgeb, R Leitner, K J C Leney, T Lenz, S Leone, C Leonidopoulos, A Leopold, C Leroy, R Les, C G Lester, M Levchenko, J Levêque, L J Levinson, G Levrini, M P Lewicki, D J Lewis, A Li, B Li, C Li, C-Q Li, H Li, H Li, H Li, H Li, H Li, J Li, K Li, L Li, M Li, Q Y Li, S Li, S Li, T Li, X Li, Z Li, Z Li, Z Li, S Liang, Z Liang, M Liberatore, B Liberti, K Lie, J Lieber Marin, H Lien, K Lin, R E Lindley, J H Lindon, E Lipeles, A Lipniacka, A Lister, J D Little, B Liu, B X Liu, D Liu, J B Liu, J K K Liu, K Liu, M Liu, M Y Liu, P Liu, Q Liu, X Liu, X Liu, Y Liu, Y L Liu, Y W Liu, J Llorente Merino, S L Lloyd, E M Lobodzinska, P Loch, T Lohse, K Lohwasser, E Loiacono, M Lokajicek, J D Lomas, J D Long, I Longarini, L Longo, R Longo, I Lopez Paz, A Lopez Solis, N Lorenzo Martinez, A M Lory, G Löschcke Centeno, O Loseva, X Lou, X Lou, A Lounis, P A Love, G Lu, M Lu, S Lu, Y J Lu, H J Lubatti, C Luci, F L Lucio Alves, F Luehring, I Luise, O Lukianchuk, O Lundberg, B Lund-Jensen, N A Luongo, M S Lutz, A B Lux, D Lynn, R Lysak, E Lytken, V Lyubushkin, T Lyubushkina, M M Lyukova, H Ma, K Ma, L L Ma, W Ma, Y Ma, D M Mac Donell, G Maccarrone, J C MacDonald, P C Machado De Abreu Farias, R Madar, W F Mader, T Madula, J Maeda, T Maeno, H Maguire, V Maiboroda, A Maio, K Maj, O Majersky, S Majewski, N Makovec, V Maksimovic, B Malaescu, Pa Malecki, V P Maleev, F Malek, M Mali, D Malito, U Mallik, S Maltezos, S Malyukov, J Mamuzic, G Mancini, M N Mancini, G Manco, J P Mandalia, I Mandić, L Manhaes de Andrade Filho, I M Maniatis, J Manjarres Ramos, D C Mankad, A Mann, S Manzoni, L Mao, X Mapekula, A Marantis, G Marchiori, M Marcisovsky, C Marcon, M Marinescu, S Marium, M Marjanovic, E J Marshall, Z Marshall, S Marti-Garcia, T A Martin, V J Martin, B Martin dit Latour, L Martinelli, M Martinez, P Martinez Agullo, V I Martinez Outschoorn, P Martinez Suarez, S Martin-Haugh, V S Martoiu, A C Martyniuk, A Marzin, D Mascione, L Masetti, T Mashimo, J Masik, A L Maslennikov, P Massarotti, P Mastrandrea, A Mastroberardino, T Masubuchi, T Mathisen, J Matousek, N Matsuzawa, J Maurer, B Maček, D A Maximov, R Mazini, I Maznas, M Mazza, S M Mazza, E Mazzeo, C Mc Ginn, J P Mc Gowan, S P Mc Kee, C C McCracken, E F McDonald, A E McDougall, J A Mcfayden, R P McGovern, G Mchedlidze, R P Mckenzie, T C Mclachlan, D J Mclaughlin, S J McMahon, C M Mcpartland, R A McPherson, S Mehlhase, A Mehta, D Melini, B R Mellado Garcia, A H Melo, F Meloni, A M Mendes Jacques Da Costa, H Y Meng, L Meng, S Menke, M Mentink, E Meoni, G Mercado, C Merlassino, L Merola, C Meroni, J Metcalfe, A S Mete, C Meyer, J-P Meyer, R P Middleton, L Mijović, G Mikenberg, M Mikestikova, M Mikuž, H Mildner, A Milic, D W Miller, E H Miller, L S Miller, A Milov, D A Milstead, T Min, A A Minaenko, I A Minashvili, L Mince, A I Mincer, B Mindur, M Mineev, Y Mino, L M Mir, M Miralles Lopez, M Mironova, A Mishima, M C Missio, A Mitra, V A Mitsou, Y Mitsumori, O Miu, P S Miyagawa, T Mkrtchyan, M Mlinarevic, T Mlinarevic, M Mlynarikova, S Mobius, P Mogg, M H Mohamed Farook, A F Mohammed, S Mohapatra, G Mokgatitswane, L Moleri, B Mondal, S Mondal, K Mönig, E Monnier, L Monsonis Romero, J Montejo Berlingen, M Montella, F Montereali, F Monticelli, S Monzani, N Morange, A L Moreira De Carvalho, M Moreno Llácer, C Moreno Martinez, P Morettini, S Morgenstern, M Morii, M Morinaga, F Morodei, L Morvaj, P Moschovakos, B Moser, M Mosidze, T Moskalets, P Moskvitina, J Moss, A Moussa, E J W Moyse, O Mtintsilana, S Muanza, J Mueller, D Muenstermann, R Müller, G A Mullier, A J Mullin, J J Mullin, D P Mungo, D Munoz Perez, F J Munoz Sanchez, M Murin, W J Murray, M Muškinja, C Mwewa, A G Myagkov, A J Myers, G Myers, M Myska, B P Nachman, O Nackenhorst, K Nagai, K Nagano, J L Nagle, E Nagy, A M Nairz, Y Nakahama, K Nakamura, K Nakkalil, H Nanjo, R Narayan, E A Narayanan, I Naryshkin, M Naseri, S Nasri, C Nass, G Navarro, J Navarro-Gonzalez, R Nayak, A Nayaz, P Y Nechaeva, F Nechansky, L Nedic, T J Neep, A Negri, M Negrini, C Nellist, C Nelson, K Nelson, S Nemecek, M Nessi, M S Neubauer, F Neuhaus, J Neundorf, R Newhouse, P R Newman, C W Ng, Y W Y Ng, B Ngair, H D N Nguyen, R B Nickerson, R Nicolaidou, J Nielsen, M Niemeyer, J Niermann, N Nikiforou, V Nikolaenko, I Nikolic-Audit, K Nikolopoulos, P Nilsson, I Ninca, H R Nindhito, G Ninio, A Nisati, N Nishu, R Nisius, J-E Nitschke, E K Nkadimeng, T Nobe, D L Noel, T Nommensen, M B Norfolk, R R B Norisam, B J Norman, M Noury, J Novak, T Novak, L Novotny, R Novotny, L Nozka, K Ntekas, N M J Nunes De Moura Junior, J Ocariz, A Ochi, I Ochoa, S Oerdek, J T Offermann, A Ogrodnik, A Oh, C C Ohm, H Oide, R Oishi, M L Ojeda, Y Okumura, L F Oleiro Seabra, S A Olivares Pino, D Oliveira Damazio, D Oliveira Goncalves, J L Oliver, Ö O Öncel, A P O’Neill, A Onofre, P U E Onyisi, M J Oreglia, G E Orellana, D Orestano, N Orlando, R S Orr, V O’Shea, L M Osojnak, R Ospanov, G Otero y Garzon, H Otono, P S Ott, G J Ottino, M Ouchrif, F Ould-Saada, M Owen, R E Owen, K Y Oyulmaz, V E Ozcan, F Ozturk, N Ozturk, S Ozturk, H A Pacey, A Pacheco Pages, C Padilla Aranda, G Padovano, S Pagan Griso, G Palacino, A Palazzo, J Pampel, J Pan, T Pan, D K Panchal, C E Pandini, J G Panduro Vazquez, H D Pandya, H Pang, P Pani, G Panizzo, L Panwar, L Paolozzi, S Parajuli, A Paramonov, C Paraskevopoulos, D Paredes Hernandez, A Pareti, K R Park, T H Park, M A Parker, F Parodi, E W Parrish, V A Parrish, J A Parsons, U Parzefall, B Pascual Dias, L Pascual Dominguez, E Pasqualucci, S Passaggio, F Pastore, P Patel, U M Patel, J R Pater, T Pauly, C I Pazos, J Pearkes, M Pedersen, R Pedro, S V Peleganchuk, O Penc, E A Pender, G D Penn, K E Penski, M Penzin, B S Peralva, A P Pereira Peixoto, L Pereira Sanchez, D V Perepelitsa, E Perez Codina, M Perganti, H Pernegger, O Perrin, K Peters, R F Y Peters, B A Petersen, T C Petersen, E Petit, V Petousis, C Petridou, T Petru, A Petrukhin, M Pettee, N E Pettersson, A Petukhov, K Petukhova, R Pezoa, L Pezzotti, G Pezzullo, T M Pham, T Pham, P W Phillips, G Piacquadio, E Pianori, F Piazza, R Piegaia, D Pietreanu, A D Pilkington, M Pinamonti, J L Pinfold, B C Pinheiro Pereira, A E Pinto Pinoargote, L Pintucci, K M Piper, A Pirttikoski, D A Pizzi, L Pizzimento, A Pizzini, M -A Pleier, V Plesanovs, V Pleskot, E Plotnikova, G Poddar, R Poettgen, L Poggioli, I Pokharel, S Polacek, G Polesello, A Poley, A Polini, C S Pollard, Z B Pollock, E Pompa Pacchi, D Ponomarenko, L Pontecorvo, S Popa, G A Popeneciu, A Poreba, D M Portillo Quintero, S Pospisil, M A Postill, P Postolache, K Potamianos, P A Potepa, I N Potrap, C J Potter, H Potti, T Poulsen, J Poveda, M E Pozo Astigarraga, A Prades Ibanez, J Pretel, D Price, M Primavera, M A Principe Martin, R Privara, T Procter, M L Proffitt, N Proklova, K Prokofiev, G Proto, J Proudfoot, M Przybycien, W W Przygoda, A Psallidas, J E Puddefoot, D Pudzha, D Pyatiizbyantseva, J Qian, D Qichen, Y Qin, T Qiu, A Quadt, M Queitsch-Maitland, G Quetant, R P Quinn, G Rabanal Bolanos, D Rafanoharana, F Ragusa, J L Rainbolt, J A Raine, S Rajagopalan, E Ramakoti, I A Ramirez-Berend, K Ran, N P Rapheeha, H Rasheed, V Raskina, D F Rassloff, A Rastogi, S Rave, B Ravina, I Ravinovich, M Raymond, A L Read, N P Readioff, D M Rebuzzi, G Redlinger, A S Reed, K Reeves, J A Reidelsturz, D Reikher, A Rej, C Rembser, M Renda, M B Rendel, F Renner, A G Rennie, A L Rescia, S Resconi, M Ressegotti, S Rettie, J G Reyes Rivera, E Reynolds, O L Rezanova, P Reznicek, H Riani, N Ribaric, E Ricci, R Richter, S Richter, E Richter-Was, M Ridel, S Ridouani, P Rieck, P Riedler, E M Riefel, J O Rieger, M Rijssenbeek, M Rimoldi, L Rinaldi, T T Rinn, M P Rinnagel, G Ripellino, I Riu, J C Rivera Vergara, F Rizatdinova, E Rizvi, B R Roberts, S H Robertson, D Robinson, C M Robles Gajardo, M Robles Manzano, A Robson, A Rocchi, C Roda, S Rodriguez Bosca, Y Rodriguez Garcia, A Rodriguez Rodriguez, A M Rodríguez Vera, S Roe, J T Roemer, A R Roepe-Gier, J Roggel, O Røhne, R A Rojas, C P A Roland, J Roloff, A Romaniouk, E Romano, M Romano, A C Romero Hernandez, N Rompotis, L Roos, S Rosati, B J Rosser, E Rossi, E Rossi, L P Rossi, L Rossini, R Rosten, M Rotaru, B Rottler, C Rougier, D Rousseau, D Rousso, A Roy, S Roy-Garand, A Rozanov, Z M A Rozario, Y Rozen, A Rubio Jimenez, A J Ruby, V H Ruelas Rivera, T A Ruggeri, A Ruggiero, A Ruiz-Martinez, A Rummler, Z Rurikova, N A Rusakovich, H L Russell, G Russo, J P Rutherfoord, S Rutherford Colmenares, K Rybacki, M Rybar, E B Rye, A Ryzhov, J A Sabater Iglesias, P Sabatini, H F-W Sadrozinski, F Safai Tehrani, B Safarzadeh Samani, M Safdari, S Saha, M Sahinsoy, A Saibel, M Saimpert, M Saito, T Saito, D Salamani, A Salnikov, J Salt, A Salvador Salas, D Salvatore, F Salvatore, A Salzburger, D Sammel, D Sampsonidis, D Sampsonidou, J Sánchez, V Sanchez Sebastian, H Sandaker, C O Sander, J A Sandesara, M Sandhoff, C Sandoval, D P C Sankey, T Sano, A Sansoni, L Santi, C Santoni, H Santos, A Santra, K A Saoucha, J G Saraiva, J Sardain, O Sasaki, K Sato, C Sauer, F Sauerburger, E Sauvan, P Savard, R Sawada, C Sawyer, L Sawyer, I Sayago Galvan, C Sbarra, A Sbrizzi, T Scanlon, J Schaarschmidt, U Schäfer, A C Schaffer, D Schaile, R D Schamberger, C Scharf, M M Schefer, V A Schegelsky, D Scheirich, F Schenck, M Schernau, C Scheulen, C Schiavi, M Schioppa, B Schlag, K E Schleicher, S Schlenker, J Schmeing, M A Schmidt, K Schmieden, C Schmitt, N Schmitt, S Schmitt, L Schoeffel, A Schoening, P G Scholer, E Schopf, M Schott, J Schovancova, S Schramm, T Schroer, H-C Schultz-Coulon, M Schumacher, B A Schumm, Ph Schune, A J Schuy, H R Schwartz, A Schwartzman, T A Schwarz, Ph Schwemling, R Schwienhorst, A Sciandra, G Sciolla, F Scuri, C D Sebastiani, K Sedlaczek, P Seema, S C Seidel, A Seiden, B D Seidlitz, C Seitz, J M Seixas, G Sekhniaidze, L Selem, N Semprini-Cesari, D Sengupta, V Senthilkumar, L Serin, L Serkin, M Sessa, H Severini, F Sforza, A Sfyrla, Q Sha, E Shabalina, R Shaheen, J D Shahinian, D Shaked Renous, L Y Shan, M Shapiro, A Sharma, A S Sharma, P Sharma, P B Shatalov, K Shaw, S M Shaw, A Shcherbakova, Q Shen, D J Sheppard, P Sherwood, L Shi, X Shi, C O Shimmin, J D Shinner, I P J Shipsey, S Shirabe, M Shiyakova, J Shlomi, M J Shochet, J Shojaii, D R Shope, B Shrestha, S Shrestha, E M Shrif, M J Shroff, P Sicho, A M Sickles, E Sideras Haddad, A Sidoti, F Siegert, Dj Sijacki, F Sili, J M Silva, M V Silva Oliveira, S B Silverstein, S Simion, R Simoniello, E L Simpson, H Simpson, L R Simpson, N D Simpson, S Simsek, S Sindhu, P Sinervo, S Singh, S Sinha, S Sinha, M Sioli, I Siral, E Sitnikova, J Sjölin, A Skaf, E Skorda, P Skubic, M Slawinska, V Smakhtin, B H Smart, S Yu Smirnov, Y Smirnov, L N Smirnova, O Smirnova, A C Smith, E A Smith, H A Smith, J L Smith, R Smith, M Smizanska, K Smolek, A A Snesarev, S R Snider, H L Snoek, S Snyder, R Sobie, A Soffer, C A Solans Sanchez, E Yu Soldatov, U Soldevila, A A Solodkov, S Solomon, A Soloshenko, K Solovieva, O V Solovyanov, V Solovyev, P Sommer, A Sonay, W Y Song, A Sopczak, A L Sopio, F Sopkova, J D Sorenson, I R Sotarriva Alvarez, V Sothilingam, O J Soto Sandoval, S Sottocornola, R Soualah, Z Soumaimi, D South, N Soybelman, S Spagnolo, M Spalla, D Sperlich, G Spigo, S Spinali, D P Spiteri, M Spousta, E J Staats, R Stamen, A Stampekis, M Standke, E Stanecka, M V Stange, B Stanislaus, M M Stanitzki, B Stapf, E A Starchenko, G H Stark, J Stark, P Staroba, P Starovoitov, S Stärz, R Staszewski, G Stavropoulos, J Steentoft, P Steinberg, B Stelzer, H J Stelzer, O Stelzer-Chilton, H Stenzel, T J Stevenson, G A Stewart, J R Stewart, M C Stockton, G Stoicea, M Stolarski, S Stonjek, A Straessner, J Strandberg, S Strandberg, M Stratmann, M Strauss, T Strebler, P Strizenec, R Ströhmer, D M Strom, R Stroynowski, A Strubig, S A Stucci, B Stugu, J Stupak, N A Styles, D Su, S Su, W Su, X Su, D Suchy, K Sugizaki, V V Sulin, M J Sullivan, D M S Sultan, L Sultanaliyeva, S Sultansoy, T Sumida, S Sun, S Sun, O Sunneborn Gudnadottir, N Sur, M R Sutton, H Suzuki, M Svatos, M Swiatlowski, T Swirski, I Sykora, M Sykora, T Sykora, D Ta, K Tackmann, A Taffard, R Tafirout, J S Tafoya Vargas, Y Takubo, M Talby, A A Talyshev, K C Tam, N M Tamir, A Tanaka, J Tanaka, R Tanaka, M Tanasini, Z Tao, S Tapia Araya, S Tapprogge, A Tarek Abouelfadl Mohamed, S Tarem, K Tariq, G Tarna, G F Tartarelli, P Tas, M Tasevsky, E Tassi, A C Tate, G Tateno, Y Tayalati, G N Taylor, W Taylor, A S Tee, R Teixeira De Lima, P Teixeira-Dias, J J Teoh, K Terashi, J Terron, S Terzo, M Testa, R J Teuscher, A Thaler, O Theiner, N Themistokleous, T Theveneaux-Pelzer, O Thielmann, D W Thomas, J P Thomas, E A Thompson, P D Thompson, E Thomson, Y Tian, V Tikhomirov, Yu A Tikhonov, S Timoshenko, D Timoshyn, E X L Ting, P Tipton, S H Tlou, A Tnourji, K Todome, S Todorova-Nova, S Todt, M Togawa, J Tojo, S Tokár, K Tokushuku, O Toldaiev, R Tombs, M Tomoto, L Tompkins, K W Topolnicki, E Torrence, H Torres, E Torró Pastor, M Toscani, C Tosciri, M Tost, D R Tovey, A Traeet, I S Trandafir, T Trefzger, A Tricoli, I M Trigger, S Trincaz-Duvoid, D A Trischuk, B Trocmé, L Truong, M Trzebinski, A Trzupek, F Tsai, M Tsai, A Tsiamis, P V Tsiareshka, S Tsigaridas, A Tsirigotis, V Tsiskaridze, E G Tskhadadze, M Tsopoulou, Y Tsujikawa, I I Tsukerman, V Tsulaia, S Tsuno, K Tsuri, D Tsybychev, Y Tu, A Tudorache, V Tudorache, A N Tuna, S Turchikhin, I Turk Cakir, R Turra, T Turtuvshin, P M Tuts, S Tzamarias, P Tzanis, E Tzovara, F Ukegawa, P A Ulloa Poblete, E N Umaka, G Unal, M Unal, A Undrus, G Unel, J Urban, P Urquijo, P Urrejola, G Usai, R Ushioda, M Usman, Z Uysal, V Vacek, B Vachon, K O H Vadla, T Vafeiadis, A Vaitkus, C Valderanis, E Valdes Santurio, M Valente, S Valentinetti, A Valero, E Valiente Moreno, A Vallier, J A Valls Ferrer, D R Van Arneman, T R Van Daalen, A Van Der Graaf, P Van Gemmeren, M Van Rijnbach, S Van Stroud, I Van Vulpen, M Vanadia, W Vandelli, E R Vandewall, D Vannicola, L Vannoli, R Vari, E W Varnes, C Varni, T Varol, D Varouchas, L Varriale, K E Varvell, M E Vasile, L Vaslin, G A Vasquez, A Vasyukov, R Vavricka, F Vazeille, T Vazquez Schroeder, J Veatch, V Vecchio, M J Veen, I Veliscek, L M Veloce, F Veloso, S Veneziano, A Ventura, S Ventura Gonzalez, A Verbytskyi, M Verducci, C Vergis, M Verissimo De Araujo, W Verkerke, J C Vermeulen, C Vernieri, M Vessella, M C Vetterli, A Vgenopoulos, N Viaux Maira, T Vickey, O E Vickey Boeriu, G H A Viehhauser, L Vigani, M Villa, M Villaplana Perez, E M Villhauer, E Vilucchi, M G Vincter, G S Virdee, A Vishwakarma, A Visibile, C Vittori, I Vivarelli, E Voevodina, F Vogel, J C Voigt, P Vokac, Yu Volkotrub, J Von Ahnen, E Von Toerne, B Vormwald, V Vorobel, K Vorobev, M Vos, K Voss, M Vozak, L Vozdecky, N Vranjes, M Vranjes Milosavljevic, M Vreeswijk, N K Vu, R Vuillermet, O Vujinovic, I Vukotic, S Wada, C Wagner, J M Wagner, W Wagner, S Wahdan, H Wahlberg, M Wakida, J Walder, R Walker, W Walkowiak, A Wall, E J Wallin, T Wamorkar, A Z Wang, C Wang, C Wang, H Wang, J Wang, R -J Wang, R Wang, R Wang, S M Wang, S Wang, T Wang, W T Wang, W Wang, X Wang, X Wang, X Wang, Y Wang, Y Wang, Z Wang, Z Wang, Z Wang, A Warburton, R J Ward, N Warrack, S Waterhouse, A T Watson, H Watson, M F Watson, E Watton, G Watts, B M Waugh, C Weber, H A Weber, M S Weber, S M Weber, C Wei, Y Wei, A R Weidberg, E J Weik, J Weingarten, M Weirich, C Weiser, C J Wells, T Wenaus, B Wendland, T Wengler, N S Wenke, N Wermes, M Wessels, A M Wharton, A S White, A White, M J White, D Whiteson, L Wickremasinghe, W Wiedenmann, M Wielers, C Wiglesworth, D J Wilbern, H G Wilkens, D M Williams, H H Williams, S Williams, S Willocq, B J Wilson, P J Windischhofer, F I Winkel, F Winklmeier, B T Winter, J K Winter, M Wittgen, M Wobisch, Z Wolffs, J Wollrath, M W Wolter, H Wolters, E L Woodward, S D Worm, B K Wosiek, K W Woźniak, S Wozniewski, K Wraight, C Wu, M Wu, M Wu, S L Wu, X Wu, Y Wu, Z Wu, J Wuerzinger, T R Wyatt, B M Wynne, S Xella, L Xia, M Xia, J Xiang, M Xie, X Xie, S Xin, A Xiong, J Xiong, D Xu, H Xu, L Xu, R Xu, T Xu, Y Xu, Z Xu, Z Xu, B Yabsley, S Yacoob, Y Yamaguchi, E Yamashita, H Yamauchi, T Yamazaki, Y Yamazaki, J Yan, S Yan, Z Yan, H J Yang, H T Yang, S Yang, T Yang, X Yang, X Yang, Y Yang, Y Yang, Z Yang, W-M Yao, H Ye, H Ye, J Ye, S Ye, X Ye, Y Yeh, I Yeletskikh, B K Yeo, M R Yexley, P Yin, K Yorita, S Younas, C J S Young, C Young, C Yu, Y Yu, M Yuan, R Yuan, L Yue, M Zaazoua, B Zabinski, E Zaid, Z K Zak, T Zakareishvili, N Zakharchuk, S Zambito, J A Zamora Saa, J Zang, D Zanzi, O Zaplatilek, C Zeitnitz, H Zeng, J C Zeng, D T Zenger Jr, O Zenin, T Ženiš, S Zenz, S Zerradi, D Zerwas, M Zhai, D F Zhang, J Zhang, J Zhang, K Zhang, L Zhang, P Zhang, R Zhang, S Zhang, S Zhang, T Zhang, X Zhang, X Zhang, Y Zhang, Y Zhang, Y Zhang, Z Zhang, Z Zhang, H Zhao, T Zhao, Y Zhao, Z Zhao, A Zhemchugov, J Zheng, K Zheng, X Zheng, Z Zheng, D Zhong, B Zhou, H Zhou, N Zhou, Y Zhou, Y Zhou, C G Zhu, J Zhu, Y Zhu, Y Zhu, X Zhuang, K Zhukov, N I Zimine, J Zinsser, M Ziolkowski, L Živković, A Zoccoli, K Zoch, T G Zorbas, O Zormpa, W Zou, L Zwalinski, The ATLAS Collaborationgabriela.navarro@uan.edu.co
The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta pT>500 GeV.
喷流的能量和质量测量是大型强子对撞机实验的关键任务。本文提出了一种新的校准方法,利用深度神经网络(DNN)同时校准 ATLAS 探测器测量的大半径射流的这些量。为了解决校准问题的特殊性,本文采用了特殊的损失函数和训练程序,并使用了包括特征标注和残差连接层在内的复杂网络架构。在一系列广泛的测试中,基于 DNN 的校准与标准数值方法进行了比较。结果发现,DNN 方法在几乎所有测试和大部分相关运动学相空间中的表现都要好得多。特别是,它持续提高了能量和质量分辨率,横向矩 pT>500 GeV 的能量分辨率提高了 30%。
{"title":"Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network","authors":"G Aad, E Aakvaag, B Abbott, K Abeling, N J Abicht, S H Abidi, A Aboulhorma, H Abramowicz, H Abreu, Y Abulaiti, B S Acharya, C Adam Bourdarios, L Adamczyk, S V Addepalli, M J Addison, J Adelman, A Adiguzel, T Adye, A A Affolder, Y Afik, M N Agaras, J Agarwala, A Aggarwal, C Agheorghiesei, A Ahmad, F Ahmadov, W S Ahmed, S Ahuja, X Ai, G Aielli, A Aikot, M Ait Tamlihat, B Aitbenchikh, I Aizenberg, M Akbiyik, T P A Åkesson, A V Akimov, D Akiyama, N N Akolkar, S Aktas, K Al Khoury, G L Alberghi, J Albert, P Albicocco, G L Albouy, S Alderweireldt, Z L Alegria, M Aleksa, I N Aleksandrov, C Alexa, T Alexopoulos, F Alfonsi, M Algren, M Alhroob, B Ali, H M J Ali, S Ali, S W Alibocus, M Aliev, G Alimonti, W Alkakhi, C Allaire, B M M Allbrooke, J F Allen, C A Allendes Flores, P P Allport, A Aloisio, F Alonso, C Alpigiani, M Alvarez Estevez, A Alvarez Fernandez, M Alves Cardoso, M G Alviggi, M Aly, Y Amaral Coutinho, A Ambler, C Amelung, M Amerl, C G Ames, D Amidei, S P Amor Dos Santos, K R Amos, V Ananiev, C Anastopoulos, T Andeen, J K Anders, S Y Andrean, A Andreazza, S Angelidakis, A Angerami, A V Anisenkov, A Annovi, C Antel, M T Anthony, E Antipov, M Antonelli, F Anulli, M Aoki, T Aoki, J A Aparisi Pozo, M A Aparo, L Aperio Bella, C Appelt, A Apyan, S J Arbiol Val, C Arcangeletti, A T H Arce, E Arena, J-F Arguin, S Argyropoulos, J-H Arling, O Arnaez, H Arnold, G Artoni, H Asada, K Asai, S Asai, N A Asbah, K Assamagan, R Astalos, S Atashi, R J Atkin, M Atkinson, H Atmani, P A Atmasiddha, K Augsten, S Auricchio, A D Auriol, V A Austrup, G Avolio, K Axiotis, G Azuelos, D Babal, H Bachacou, K Bachas, A Bachiu, F Backman, A Badea, T M Baer, P Bagnaia, M Bahmani, D Bahner, K Bai, A J Bailey, V R Bailey, J T Baines, L Baines, O K Baker, E Bakos, D Bakshi Gupta, V Balakrishnan, R Balasubramanian, E M Baldin, P Balek, E Ballabene, F Balli, L M Baltes, W K Balunas, J Balz, E Banas, M Bandieramonte, A Bandyopadhyay, S Bansal, L Barak, M Barakat, E L Barberio, D Barberis, M Barbero, M Z Barel, K N Barends, T Barillari, M-S Barisits, T Barklow, P Baron, D A Baron Moreno, A Baroncelli, G Barone, A J Barr, J D Barr, F Barreiro, J Barreiro Guimarães da Costa, U Barron, M G Barros Teixeira, S Barsov, F Bartels, R Bartoldus, A E Barton, P Bartos, A Basan, M Baselga, A Bassalat, M J Basso, C R Basson, R L Bates, S Batlamous, B Batool, M Battaglia, D Battulga, M Bauce, M Bauer, P Bauer, L T Bazzano Hurrell, J B Beacham, T Beau, J Y Beaucamp, P H Beauchemin, P Bechtle, H P Beck, K Becker, A J Beddall, V A Bednyakov, C P Bee, L J Beemster, T A Beermann, M Begalli, M Begel, A Behera, J K Behr, J F Beirer, F Beisiegel, M Belfkir, G Bella, L Bellagamba, A Bellerive, P Bellos, K Beloborodov, D Benchekroun, F Bendebba, Y Benhammou, K C Benkendorfer, L Beresford, M Beretta, E Bergeaas Kuutmann, N Berger, B Bergmann, J Beringer, G Bernardi, C Bernius, F U Bernlochner, F Bernon, A Berrocal Guardia, T Berry, P Berta, A Berthold, S Bethke, A Betti, A J Bevan, N K Bhalla, M Bhamjee, S Bhatta, D S Bhattacharya, P Bhattarai, K D Bhide, V S Bhopatkar, R M Bianchi, G Bianco, O Biebel, R Bielski, M Biglietti, C S Billingsley, M Bindi, A Bingul, C Bini, A Biondini, C J Birch-sykes, G A Bird, M Birman, M Biros, S Biryukov, T Bisanz, E Bisceglie, J P Biswal, D Biswas, K Bjørke, I Bloch, A Blue, U Blumenschein, J Blumenthal, V S Bobrovnikov, M Boehler, B Boehm, D Bogavac, A G Bogdanchikov, C Bohm, V Boisvert, P Bokan, T Bold, M Bomben, M Bona, M Boonekamp, C D Booth, A G Borbély, I S Bordulev, H M Borecka-Bielska, G Borissov, D Bortoletto, D Boscherini, M Bosman, J D Bossio Sola, K Bouaouda, N Bouchhar, J Boudreau, E V Bouhova-Thacker, D Boumediene, R Bouquet, A Boveia, J Boyd, D Boye, I R Boyko, J Bracinik, N Brahimi, G Brandt, O Brandt, F Braren, B Brau, J E Brau, R Brener, L Brenner, R Brenner, S Bressler, D Britton, D Britzger, I Brock, G Brooijmans, E Brost, L M Brown, L E Bruce, T L Bruckler, P A Bruckman de Renstrom, B Brüers, A Bruni, G Bruni, M Bruschi, N Bruscino, T Buanes, Q Buat, D Buchin, A G Buckley, O Bulekov, B A Bullard, S Burdin, C D Burgard, A M Burger, B Burghgrave, O Burlayenko, J T P Burr, C D Burton, J C Burzynski, E L Busch, V Büscher, P J Bussey, J M Butler, C M Buttar, J M Butterworth, W Buttinger, C J Buxo Vazquez, A R Buzykaev, S Cabrera Urbán, L Cadamuro, D Caforio, H Cai, Y Cai, Y Cai, V M M Cairo, O Cakir, N Calace, P Calafiura, G Calderini, P Calfayan, G Callea, L P Caloba, D Calvet, S Calvet, M Calvetti, R Camacho Toro, S Camarda, D Camarero Munoz, P Camarri, M T Camerlingo, D Cameron, C Camincher, M Campanelli, A Camplani, V Canale, A C Canbay, J Cantero, Y Cao, F Capocasa, M Capua, A Carbone, R Cardarelli, J C J Cardenas, F Cardillo, G Carducci, T Carli, G Carlino, J I Carlotto, B T Carlson, E M Carlson, L Carminati, A Carnelli, M Carnesale, S Caron, E Carquin, S Carrá, G Carratta, A M Carroll, T M Carter, M P Casado, M Caspar, F L Castillo, L Castillo Garcia, V Castillo Gimenez, N F Castro, A Catinaccio, J R Catmore, T Cavaliere, V Cavaliere, N Cavalli, Y C Cekmecelioglu, E Celebi, F Celli, M S Centonze, V Cepaitis, K Cerny, A S Cerqueira, A Cerri, L Cerrito, F Cerutti, B Cervato, A Cervelli, G Cesarini, S A Cetin, D Chakraborty, J Chan, W Y Chan, J D Chapman, E Chapon, B Chargeishvili, D G Charlton, M Chatterjee, C Chauhan, Y Che, S Chekanov, S V Chekulaev, G A Chelkov, A Chen, B Chen, B Chen, H Chen, H Chen, J Chen, J Chen, M Chen, S Chen, S J Chen, X Chen, X Chen, Y Chen, C L Cheng, H C Cheng, S Cheong, A Cheplakov, E Cheremushkina, E Cherepanova, R Cherkaoui El Moursli, E Cheu, K Cheung, L Chevalier, V Chiarella, G Chiarelli, N Chiedde, G Chiodini, A S Chisholm, A Chitan, M Chitishvili, M V Chizhov, K Choi, Y Chou, E Y S Chow, K L Chu, M C Chu, X Chu, J Chudoba, J J Chwastowski, D Cieri, K M Ciesla, V Cindro, A Ciocio, F Cirotto, Z H Citron, M Citterio, D A Ciubotaru, A Clark, P J Clark, C Clarry, J M Clavijo Columbie, S E Clawson, C Clement, J Clercx, Y Coadou, M Cobal, A Coccaro, R F Coelho Barrue, R Coelho Lopes De Sa, S Coelli, B Cole, J Collot, P Conde Muiño, M P Connell, S H Connell, E I Conroy, F Conventi, H G Cooke, A M Cooper-Sarkar, A Cordeiro Oudot Choi, L D Corpe, M Corradi, F Corriveau, A Cortes-Gonzalez, M J Costa, F Costanza, D Costanzo, B M Cote, G Cowan, K Cranmer, D Cremonini, S Crépé-Renaudin, F Crescioli, M Cristinziani, M Cristoforetti, V Croft, J E Crosby, G Crosetti, A Cueto, T Cuhadar Donszelmann, H Cui, Z Cui, W R Cunningham, F Curcio, P Czodrowski, M M Czurylo, M J Da Cunha Sargedas De Sousa, J V Da Fonseca Pinto, C Da Via, W Dabrowski, T Dado, S Dahbi, T Dai, D Dal Santo, C Dallapiccola, M Dam, G D’amen, V D’Amico, J Damp, J R Dandoy, M Danninger, V Dao, G Darbo, S Darmora, S J Das, S D’Auria, A D’avanzo, C David, T Davidek, B Davis-Purcell, I Dawson, H A Day-hall, K De, R De Asmundis, N De Biase, S De Castro, N De Groot, P de Jong, H De la Torre, A De Maria, A De Salvo, U De Sanctis, F De Santis, A De Santo, J B De Vivie De Regie, D V Dedovich, J Degens, A M Deiana, F Del Corso, J Del Peso, F Del Rio, L Delagrange, F Deliot, C M Delitzsch, M Della Pietra, D Della Volpe, A Dell’Acqua, L Dell’Asta, M Delmastro, P A Delsart, S Demers, M Demichev, S P Denisov, L D’Eramo, D Derendarz, F Derue, P Dervan, K Desch, C Deutsch, F A Di Bello, A Di Ciaccio, L Di Ciaccio, A Di Domenico, C Di Donato, A Di Girolamo, G Di Gregorio, A Di Luca, B Di Micco, R Di Nardo, M Diamantopoulou, F A Dias, T Dias Do Vale, M A Diaz, F G Diaz Capriles, M Didenko, E B Diehl, S Díez Cornell, C Diez Pardos, C Dimitriadi, A Dimitrievska, J Dingfelder, I-M Dinu, S J Dittmeier, F Dittus, F Djama, T Djobava, C Doglioni, A Dohnalova, J Dolejsi, Z Dolezal, K M Dona, M Donadelli, B Dong, J Donini, A D’Onofrio, M D’Onofrio, J Dopke, A Doria, N Dos Santos Fernandes, P Dougan, M T Dova, A T Doyle, M A Draguet, E Dreyer, I Drivas-koulouris, M Drnevich, M Drozdova, D Du, T A du Pree, F Dubinin, M Dubovsky, E Duchovni, G Duckeck, O A Ducu, D Duda, A Dudarev, E R Duden, M D’uffizi, L Duflot, M Dührssen, A E Dumitriu, M Dunford, S Dungs, K Dunne, A Duperrin, H Duran Yildiz, M Düren, A Durglishvili, B L Dwyer, G I Dyckes, M Dyndal, B S Dziedzic, Z O Earnshaw, G H Eberwein, B Eckerova, S Eggebrecht, E Egidio Purcino De Souza, L F Ehrke, G Eigen, K Einsweiler, T Ekelof, P A Ekman, S El Farkh, Y El Ghazali, H El Jarrari, A El Moussaouy, V Ellajosyula, M Ellert, F Ellinghaus, N Ellis, J Elmsheuser, M Elsing, D Emeliyanov, Y Enari, I Ene, S Epari, P A Erland, M Errenst, M Escalier, C Escobar, E Etzion, G Evans, H Evans, L S Evans, A Ezhilov, S Ezzarqtouni, F Fabbri, L Fabbri, G Facini, V Fadeyev, R M Fakhrutdinov, D Fakoudis, S Falciano, L F Falda Ulhoa Coelho, P J Falke, J Faltova, C Fan, Y Fan, Y Fang, M Fanti, M Faraj, Z Farazpay, A Farbin, A Farilla, T Farooque, S M Farrington, F Fassi, D Fassouliotis, M Faucci Giannelli, W J Fawcett, L Fayard, P Federic, P Federicova, O L Fedin, M Feickert, L Feligioni, D E Fellers, C Feng, M Feng, Z Feng, M J Fenton, L Ferencz, R A M Ferguson, S I Fernandez Luengo, P Fernandez Martinez, M J V Fernoux, J Ferrando, A Ferrari, P Ferrari, R Ferrari, D Ferrere, C Ferretti, F Fiedler, P Fiedler, A Filipčič, E K Filmer, F Filthaut, M C N Fiolhais, L Fiorini, W C Fisher, T Fitschen, P M Fitzhugh, I Fleck, P Fleischmann, T Flick, M Flores, L R Flores Castillo, L Flores Sanz De Acedo, F M Follega, N Fomin, J H Foo, A Formica, A C Forti, E Fortin, A W Fortman, M G Foti, L Fountas, D Fournier, H Fox, P Francavilla, S Francescato, S Franchellucci, M Franchini, S Franchino, D Francis, L Franco, V Franco Lima, L Franconi, M Franklin, G Frattari, W S Freund, Y Y Frid, J Friend, N Fritzsche, A Froch, D Froidevaux, J A Frost, Y Fu, S Fuenzalida Garrido, M Fujimoto, K Y Fung, E Furtado De Simas Filho, M Furukawa, J Fuster, A Gabrielli, A Gabrielli, P Gadow, G Gagliardi, L G Gagnon, S Galantzan, E J Gallas, B J Gallop, K K Gan, S Ganguly, Y Gao, F M Garay Walls, B Garcia, C García, A Garcia Alonso, A G Garcia Caffaro, J E García Navarro, M Garcia-Sciveres, G L Gardner, R W Gardner, N Garelli, D Garg, R B Garg, J M Gargan, C A Garner, C M Garvey, P Gaspar, V K Gassmann, G Gaudio, V Gautam, P Gauzzi, I L Gavrilenko, A Gavrilyuk, C Gay, G Gaycken, E N Gazis, A A Geanta, C M Gee, A Gekow, C Gemme, M H Genest, A D Gentry, S George, W F George, T Geralis, P Gessinger-Befurt, M E Geyik, M Ghani, M Ghneimat, K Ghorbanian, A Ghosal, A Ghosh, A Ghosh, B Giacobbe, S Giagu, T Giani, P Giannetti, A Giannini, S M Gibson, M Gignac, D T Gil, A K Gilbert, B J Gilbert, D Gillberg, G Gilles, L Ginabat, D M Gingrich, M P Giordani, P F Giraud, G Giugliarelli, D Giugni, F Giuli, I Gkialas, L K Gladilin, C Glasman, G R Gledhill, G Glemža, M Glisic, I Gnesi, Y Go, M Goblirsch-Kolb, B Gocke, D Godin, B Gokturk, S Goldfarb, T Golling, M G D Gololo, D Golubkov, J P Gombas, A Gomes, G Gomes Da Silva, A J Gomez Delegido, R Gonçalo, L Gonella, A Gongadze, F Gonnella, J L Gonski, R Y González Andana, S González de la Hoz, R Gonzalez Lopez, C Gonzalez Renteria, M V Gonzalez Rodrigues, R Gonzalez Suarez, S Gonzalez-Sevilla, G R Gonzalvo Rodriguez, L Goossens, B Gorini, E Gorini, A Gorišek, T C Gosart, A T Goshaw, M I Gostkin, S Goswami, C A Gottardo, S A Gotz, M Gouighri, V Goumarre, A G Goussiou, N Govender, I Grabowska-Bold, K Graham, E Gramstad, S Grancagnolo, C M Grant, P M Gravila, F G Gravili, H M Gray, M Greco, C Grefe, I M Gregor, P Grenier, S G Grewe, A A Grillo, K Grimm, S Grinstein, J -F Grivaz, E Gross, J Grosse-Knetter, J C Grundy, L Guan, C Gubbels, J G R Guerrero Rojas, G Guerrieri, F Guescini, R Gugel, J A M Guhit, A Guida, E Guilloton, S Guindon, F Guo, J Guo, L Guo, Y Guo, R Gupta, R Gupta, S Gurbuz, S S Gurdasani, G Gustavino, M Guth, P Gutierrez, L F Gutierrez Zagazeta, M Gutsche, C Gutschow, C Gwenlan, C B Gwilliam, E S Haaland, A Haas, M Habedank, C Haber, H K Hadavand, A Hadef, S Hadzic, A I Hagan, J J Hahn, E H Haines, M Haleem, J Haley, J J Hall, G D Hallewell, L Halser, K Hamano, M Hamer, G N Hamity, E J Hampshire, J Han, K Han, L Han, L Han, S Han, Y F Han, K Hanagaki, M Hance, D A Hangal, H Hanif, M D Hank, J B Hansen, P H Hansen, K Hara, D Harada, T Harenberg, S Harkusha, M L Harris, Y T Harris, J Harrison, N M Harrison, P F Harrison, N M Hartman, N M Hartmann, Y Hasegawa, R Hauser, C M Hawkes, R J Hawkings, Y Hayashi, S Hayashida, D Hayden, C Hayes, R L Hayes, C P Hays, J M Hays, H S Hayward, F He, M He, Y He, Y He, Y He, N B Heatley, V Hedberg, A L Heggelund, N D Hehir, C Heidegger, K K Heidegger, W D Heidorn, J Heilman, S Heim, T Heim, J G Heinlein, J J Heinrich, L Heinrich, J Hejbal, A Held, S Hellesund, C M Helling, S Hellman, R C W Henderson, L Henkelmann, A M Henriques Correia, H Herde, Y Hernández Jiménez, L M Herrmann, T Herrmann, G Herten, R Hertenberger, L Hervas, M E Hesping, N P Hessey, E Hill, S J Hillier, J R Hinds, F Hinterkeuser, M Hirose, S Hirose, D Hirschbuehl, T G Hitchings, B Hiti, J Hobbs, R Hobincu, N Hod, M C Hodgkinson, B H Hodkinson, A Hoecker, D D Hofer, J Hofer, T Holm, M Holzbock, L B A H Hommels, B P Honan, J Hong, T M Hong, B H Hooberman, W H Hopkins, Y Horii, S Hou, A S Howard, J Howarth, J Hoya, M Hrabovsky, A Hrynevich, T Hryn’ova, P J Hsu, S -C Hsu, Q Hu, S Huang, X Huang, X Huang, Y Huang, Y Huang, Z Huang, Z Hubacek, M Huebner, F Huegging, T B Huffman, C A Hugli, M Huhtinen, S K Huiberts, R Hulsken, N Huseynov, J Huston, J Huth, R Hyneman, G Iacobucci, G Iakovidis, I Ibragimov, L Iconomidou-Fayard, J P Iddon, P Iengo, R Iguchi, T Iizawa, Y Ikegami, N Ilic, H Imam, M Ince Lezki, T Ingebretsen Carlson, G Introzzi, M Iodice, V Ippolito, R K Irwin, M Ishino, W Islam, C Issever, S Istin, H Ito, R Iuppa, A Ivina, J M Izen, V Izzo, P Jacka, P Jackson, B P Jaeger, C S Jagfeld, G Jain, P Jain, K Jakobs, T Jakoubek, J Jamieson, K W Janas, M Javurkova, L Jeanty, J Jejelava, P Jenni, C E Jessiman, C Jia, J Jia, X Jia, X Jia, Z Jia, S Jiggins, J Jimenez Pena, S Jin, A Jinaru, O Jinnouchi, P Johansson, K A Johns, J W Johnson, D M Jones, E Jones, P Jones, R W L Jones, T J Jones, H L Joos, R Joshi, J Jovicevic, X Ju, J J Junggeburth, T Junkermann, A Juste Rozas, M K Juzek, S Kabana, A Kaczmarska, M Kado, H Kagan, M Kagan, A Kahn, A Kahn, C Kahra, T Kaji, E Kajomovitz, N Kakati, I Kalaitzidou, C W Kalderon, N J Kang, D Kar, K Karava, M J Kareem, E Karentzos, I Karkanias, O Karkout, S N Karpov, Z M Karpova, V Kartvelishvili, A N Karyukhin, E Kasimi, J Katzy, S Kaur, K Kawade, M P Kawale, C Kawamoto, T Kawamoto, E F Kay, F I Kaya, S Kazakos, V F Kazanin, Y Ke, J M Keaveney, R Keeler, G V Kehris, J S Keller, A S Kelly, J J Kempster, P D Kennedy, O Kepka, B P Kerridge, S Kersten, B P Kerševan, S Keshri, L Keszeghova, S Ketabchi Haghighat, R A Khan, A Khanov, A G Kharlamov, T Kharlamova, E E Khoda, M Kholodenko, T J Khoo, G Khoriauli, J Khubua, Y A R Khwaira, B Kibirige, A Kilgallon, D W Kim, Y K Kim, N Kimura, M K Kingston, A Kirchhoff, C Kirfel, F Kirfel, J Kirk, A E Kiryunin, C Kitsaki, O Kivernyk, M Klassen, C Klein, L Klein, M H Klein, S B Klein, U Klein, P Klimek, A Klimentov, T Klioutchnikova, P Kluit, S Kluth, E Kneringer, T M Knight, A Knue, R Kobayashi, D Kobylianskii, S F Koch, M Kocian, P Kodyš, D M Koeck, P T Koenig, T Koffas, O Kolay, I Koletsou, T Komarek, K Köneke, A X Y Kong, T Kono, N Konstantinidis, P Kontaxakis, B Konya, R Kopeliansky, S Koperny, K Korcyl, K Kordas, A Korn, S Korn, I Korolkov, N Korotkova, B Kortman, O Kortner, S Kortner, W H Kostecka, V V Kostyukhin, A Kotsokechagia, A Kotwal, A Koulouris, A Kourkoumeli-Charalampidi, C Kourkoumelis, E Kourlitis, O Kovanda, R Kowalewski, W Kozanecki, A S Kozhin, V A Kramarenko, G Kramberger, P Kramer, M W Krasny, A Krasznahorkay, J W Kraus, J A Kremer, T Kresse, J Kretzschmar, K Kreul, P Krieger, S Krishnamurthy, M Krivos, K Krizka, K Kroeninger, H Kroha, J Kroll, J Kroll, K S Krowpman, U Kruchonak, H Krüger, N Krumnack, M C Kruse, O Kuchinskaia, S Kuday, S Kuehn, R Kuesters, T Kuhl, V Kukhtin, Y Kulchitsky, S Kuleshov, M Kumar, N Kumari, P Kumari, A Kupco, T Kupfer, A Kupich, O Kuprash, H Kurashige, L L Kurchaninov, O Kurdysh, Y A Kurochkin, A Kurova, M Kuze, A K Kvam, J Kvita, T Kwan, N G Kyriacou, L A O Laatu, C Lacasta, F Lacava, H Lacker, D Lacour, N N Lad, E Ladygin, B Laforge, T Lagouri, F Z Lahbabi, S Lai, I K Lakomiec, N Lalloue, J E Lambert, S Lammers, W Lampl, C Lampoudis, G Lamprinoudis, A N Lancaster, E Lançon, U Landgraf, M P J Landon, V S Lang, O K B Langrekken, A J Lankford, F Lanni, K Lantzsch, A Lanza, A Lapertosa, J F Laporte, T Lari, F Lasagni Manghi, M Lassnig, V Latonova, A Laudrain, A Laurier, S D Lawlor, Z Lawrence, R Lazaridou, M Lazzaroni, B Le, E M Le Boulicaut, B Leban, A Lebedev, M LeBlanc, F Ledroit-Guillon, A C A Lee, S C Lee, S Lee, T F Lee, L L Leeuw, H P Lefebvre, M Lefebvre, C Leggett, G Lehmann Miotto, M Leigh, W A Leight, W Leinonen, A Leisos, M A L Leite, C E Leitgeb, R Leitner, K J C Leney, T Lenz, S Leone, C Leonidopoulos, A Leopold, C Leroy, R Les, C G Lester, M Levchenko, J Levêque, L J Levinson, G Levrini, M P Lewicki, D J Lewis, A Li, B Li, C Li, C-Q Li, H Li, H Li, H Li, H Li, H Li, J Li, K Li, L Li, M Li, Q Y Li, S Li, S Li, T Li, X Li, Z Li, Z Li, Z Li, S Liang, Z Liang, M Liberatore, B Liberti, K Lie, J Lieber Marin, H Lien, K Lin, R E Lindley, J H Lindon, E Lipeles, A Lipniacka, A Lister, J D Little, B Liu, B X Liu, D Liu, J B Liu, J K K Liu, K Liu, M Liu, M Y Liu, P Liu, Q Liu, X Liu, X Liu, Y Liu, Y L Liu, Y W Liu, J Llorente Merino, S L Lloyd, E M Lobodzinska, P Loch, T Lohse, K Lohwasser, E Loiacono, M Lokajicek, J D Lomas, J D Long, I Longarini, L Longo, R Longo, I Lopez Paz, A Lopez Solis, N Lorenzo Martinez, A M Lory, G Löschcke Centeno, O Loseva, X Lou, X Lou, A Lounis, P A Love, G Lu, M Lu, S Lu, Y J Lu, H J Lubatti, C Luci, F L Lucio Alves, F Luehring, I Luise, O Lukianchuk, O Lundberg, B Lund-Jensen, N A Luongo, M S Lutz, A B Lux, D Lynn, R Lysak, E Lytken, V Lyubushkin, T Lyubushkina, M M Lyukova, H Ma, K Ma, L L Ma, W Ma, Y Ma, D M Mac Donell, G Maccarrone, J C MacDonald, P C Machado De Abreu Farias, R Madar, W F Mader, T Madula, J Maeda, T Maeno, H Maguire, V Maiboroda, A Maio, K Maj, O Majersky, S Majewski, N Makovec, V Maksimovic, B Malaescu, Pa Malecki, V P Maleev, F Malek, M Mali, D Malito, U Mallik, S Maltezos, S Malyukov, J Mamuzic, G Mancini, M N Mancini, G Manco, J P Mandalia, I Mandić, L Manhaes de Andrade Filho, I M Maniatis, J Manjarres Ramos, D C Mankad, A Mann, S Manzoni, L Mao, X Mapekula, A Marantis, G Marchiori, M Marcisovsky, C Marcon, M Marinescu, S Marium, M Marjanovic, E J Marshall, Z Marshall, S Marti-Garcia, T A Martin, V J Martin, B Martin dit Latour, L Martinelli, M Martinez, P Martinez Agullo, V I Martinez Outschoorn, P Martinez Suarez, S Martin-Haugh, V S Martoiu, A C Martyniuk, A Marzin, D Mascione, L Masetti, T Mashimo, J Masik, A L Maslennikov, P Massarotti, P Mastrandrea, A Mastroberardino, T Masubuchi, T Mathisen, J Matousek, N Matsuzawa, J Maurer, B Maček, D A Maximov, R Mazini, I Maznas, M Mazza, S M Mazza, E Mazzeo, C Mc Ginn, J P Mc Gowan, S P Mc Kee, C C McCracken, E F McDonald, A E McDougall, J A Mcfayden, R P McGovern, G Mchedlidze, R P Mckenzie, T C Mclachlan, D J Mclaughlin, S J McMahon, C M Mcpartland, R A McPherson, S Mehlhase, A Mehta, D Melini, B R Mellado Garcia, A H Melo, F Meloni, A M Mendes Jacques Da Costa, H Y Meng, L Meng, S Menke, M Mentink, E Meoni, G Mercado, C Merlassino, L Merola, C Meroni, J Metcalfe, A S Mete, C Meyer, J-P Meyer, R P Middleton, L Mijović, G Mikenberg, M Mikestikova, M Mikuž, H Mildner, A Milic, D W Miller, E H Miller, L S Miller, A Milov, D A Milstead, T Min, A A Minaenko, I A Minashvili, L Mince, A I Mincer, B Mindur, M Mineev, Y Mino, L M Mir, M Miralles Lopez, M Mironova, A Mishima, M C Missio, A Mitra, V A Mitsou, Y Mitsumori, O Miu, P S Miyagawa, T Mkrtchyan, M Mlinarevic, T Mlinarevic, M Mlynarikova, S Mobius, P Mogg, M H Mohamed Farook, A F Mohammed, S Mohapatra, G Mokgatitswane, L Moleri, B Mondal, S Mondal, K Mönig, E Monnier, L Monsonis Romero, J Montejo Berlingen, M Montella, F Montereali, F Monticelli, S Monzani, N Morange, A L Moreira De Carvalho, M Moreno Llácer, C Moreno Martinez, P Morettini, S Morgenstern, M Morii, M Morinaga, F Morodei, L Morvaj, P Moschovakos, B Moser, M Mosidze, T Moskalets, P Moskvitina, J Moss, A Moussa, E J W Moyse, O Mtintsilana, S Muanza, J Mueller, D Muenstermann, R Müller, G A Mullier, A J Mullin, J J Mullin, D P Mungo, D Munoz Perez, F J Munoz Sanchez, M Murin, W J Murray, M Muškinja, C Mwewa, A G Myagkov, A J Myers, G Myers, M Myska, B P Nachman, O Nackenhorst, K Nagai, K Nagano, J L Nagle, E Nagy, A M Nairz, Y Nakahama, K Nakamura, K Nakkalil, H Nanjo, R Narayan, E A Narayanan, I Naryshkin, M Naseri, S Nasri, C Nass, G Navarro, J Navarro-Gonzalez, R Nayak, A Nayaz, P Y Nechaeva, F Nechansky, L Nedic, T J Neep, A Negri, M Negrini, C Nellist, C Nelson, K Nelson, S Nemecek, M Nessi, M S Neubauer, F Neuhaus, J Neundorf, R Newhouse, P R Newman, C W Ng, Y W Y Ng, B Ngair, H D N Nguyen, R B Nickerson, R Nicolaidou, J Nielsen, M Niemeyer, J Niermann, N Nikiforou, V Nikolaenko, I Nikolic-Audit, K Nikolopoulos, P Nilsson, I Ninca, H R Nindhito, G Ninio, A Nisati, N Nishu, R Nisius, J-E Nitschke, E K Nkadimeng, T Nobe, D L Noel, T Nommensen, M B Norfolk, R R B Norisam, B J Norman, M Noury, J Novak, T Novak, L Novotny, R Novotny, L Nozka, K Ntekas, N M J Nunes De Moura Junior, J Ocariz, A Ochi, I Ochoa, S Oerdek, J T Offermann, A Ogrodnik, A Oh, C C Ohm, H Oide, R Oishi, M L Ojeda, Y Okumura, L F Oleiro Seabra, S A Olivares Pino, D Oliveira Damazio, D Oliveira Goncalves, J L Oliver, Ö O Öncel, A P O’Neill, A Onofre, P U E Onyisi, M J Oreglia, G E Orellana, D Orestano, N Orlando, R S Orr, V O’Shea, L M Osojnak, R Ospanov, G Otero y Garzon, H Otono, P S Ott, G J Ottino, M Ouchrif, F Ould-Saada, M Owen, R E Owen, K Y Oyulmaz, V E Ozcan, F Ozturk, N Ozturk, S Ozturk, H A Pacey, A Pacheco Pages, C Padilla Aranda, G Padovano, S Pagan Griso, G Palacino, A Palazzo, J Pampel, J Pan, T Pan, D K Panchal, C E Pandini, J G Panduro Vazquez, H D Pandya, H Pang, P Pani, G Panizzo, L Panwar, L Paolozzi, S Parajuli, A Paramonov, C Paraskevopoulos, D Paredes Hernandez, A Pareti, K R Park, T H Park, M A Parker, F Parodi, E W Parrish, V A Parrish, J A Parsons, U Parzefall, B Pascual Dias, L Pascual Dominguez, E Pasqualucci, S Passaggio, F Pastore, P Patel, U M Patel, J R Pater, T Pauly, C I Pazos, J Pearkes, M Pedersen, R Pedro, S V Peleganchuk, O Penc, E A Pender, G D Penn, K E Penski, M Penzin, B S Peralva, A P Pereira Peixoto, L Pereira Sanchez, D V Perepelitsa, E Perez Codina, M Perganti, H Pernegger, O Perrin, K Peters, R F Y Peters, B A Petersen, T C Petersen, E Petit, V Petousis, C Petridou, T Petru, A Petrukhin, M Pettee, N E Pettersson, A Petukhov, K Petukhova, R Pezoa, L Pezzotti, G Pezzullo, T M Pham, T Pham, P W Phillips, G Piacquadio, E Pianori, F Piazza, R Piegaia, D Pietreanu, A D Pilkington, M Pinamonti, J L Pinfold, B C Pinheiro Pereira, A E Pinto Pinoargote, L Pintucci, K M Piper, A Pirttikoski, D A Pizzi, L Pizzimento, A Pizzini, M -A Pleier, V Plesanovs, V Pleskot, E Plotnikova, G Poddar, R Poettgen, L Poggioli, I Pokharel, S Polacek, G Polesello, A Poley, A Polini, C S Pollard, Z B Pollock, E Pompa Pacchi, D Ponomarenko, L Pontecorvo, S Popa, G A Popeneciu, A Poreba, D M Portillo Quintero, S Pospisil, M A Postill, P Postolache, K Potamianos, P A Potepa, I N Potrap, C J Potter, H Potti, T Poulsen, J Poveda, M E Pozo Astigarraga, A Prades Ibanez, J Pretel, D Price, M Primavera, M A Principe Martin, R Privara, T Procter, M L Proffitt, N Proklova, K Prokofiev, G Proto, J Proudfoot, M Przybycien, W W Przygoda, A Psallidas, J E Puddefoot, D Pudzha, D Pyatiizbyantseva, J Qian, D Qichen, Y Qin, T Qiu, A Quadt, M Queitsch-Maitland, G Quetant, R P Quinn, G Rabanal Bolanos, D Rafanoharana, F Ragusa, J L Rainbolt, J A Raine, S Rajagopalan, E Ramakoti, I A Ramirez-Berend, K Ran, N P Rapheeha, H Rasheed, V Raskina, D F Rassloff, A Rastogi, S Rave, B Ravina, I Ravinovich, M Raymond, A L Read, N P Readioff, D M Rebuzzi, G Redlinger, A S Reed, K Reeves, J A Reidelsturz, D Reikher, A Rej, C Rembser, M Renda, M B Rendel, F Renner, A G Rennie, A L Rescia, S Resconi, M Ressegotti, S Rettie, J G Reyes Rivera, E Reynolds, O L Rezanova, P Reznicek, H Riani, N Ribaric, E Ricci, R Richter, S Richter, E Richter-Was, M Ridel, S Ridouani, P Rieck, P Riedler, E M Riefel, J O Rieger, M Rijssenbeek, M Rimoldi, L Rinaldi, T T Rinn, M P Rinnagel, G Ripellino, I Riu, J C Rivera Vergara, F Rizatdinova, E Rizvi, B R Roberts, S H Robertson, D Robinson, C M Robles Gajardo, M Robles Manzano, A Robson, A Rocchi, C Roda, S Rodriguez Bosca, Y Rodriguez Garcia, A Rodriguez Rodriguez, A M Rodríguez Vera, S Roe, J T Roemer, A R Roepe-Gier, J Roggel, O Røhne, R A Rojas, C P A Roland, J Roloff, A Romaniouk, E Romano, M Romano, A C Romero Hernandez, N Rompotis, L Roos, S Rosati, B J Rosser, E Rossi, E Rossi, L P Rossi, L Rossini, R Rosten, M Rotaru, B Rottler, C Rougier, D Rousseau, D Rousso, A Roy, S Roy-Garand, A Rozanov, Z M A Rozario, Y Rozen, A Rubio Jimenez, A J Ruby, V H Ruelas Rivera, T A Ruggeri, A Ruggiero, A Ruiz-Martinez, A Rummler, Z Rurikova, N A Rusakovich, H L Russell, G Russo, J P Rutherfoord, S Rutherford Colmenares, K Rybacki, M Rybar, E B Rye, A Ryzhov, J A Sabater Iglesias, P Sabatini, H F-W Sadrozinski, F Safai Tehrani, B Safarzadeh Samani, M Safdari, S Saha, M Sahinsoy, A Saibel, M Saimpert, M Saito, T Saito, D Salamani, A Salnikov, J Salt, A Salvador Salas, D Salvatore, F Salvatore, A Salzburger, D Sammel, D Sampsonidis, D Sampsonidou, J Sánchez, V Sanchez Sebastian, H Sandaker, C O Sander, J A Sandesara, M Sandhoff, C Sandoval, D P C Sankey, T Sano, A Sansoni, L Santi, C Santoni, H Santos, A Santra, K A Saoucha, J G Saraiva, J Sardain, O Sasaki, K Sato, C Sauer, F Sauerburger, E Sauvan, P Savard, R Sawada, C Sawyer, L Sawyer, I Sayago Galvan, C Sbarra, A Sbrizzi, T Scanlon, J Schaarschmidt, U Schäfer, A C Schaffer, D Schaile, R D Schamberger, C Scharf, M M Schefer, V A Schegelsky, D Scheirich, F Schenck, M Schernau, C Scheulen, C Schiavi, M Schioppa, B Schlag, K E Schleicher, S Schlenker, J Schmeing, M A Schmidt, K Schmieden, C Schmitt, N Schmitt, S Schmitt, L Schoeffel, A Schoening, P G Scholer, E Schopf, M Schott, J Schovancova, S Schramm, T Schroer, H-C Schultz-Coulon, M Schumacher, B A Schumm, Ph Schune, A J Schuy, H R Schwartz, A Schwartzman, T A Schwarz, Ph Schwemling, R Schwienhorst, A Sciandra, G Sciolla, F Scuri, C D Sebastiani, K Sedlaczek, P Seema, S C Seidel, A Seiden, B D Seidlitz, C Seitz, J M Seixas, G Sekhniaidze, L Selem, N Semprini-Cesari, D Sengupta, V Senthilkumar, L Serin, L Serkin, M Sessa, H Severini, F Sforza, A Sfyrla, Q Sha, E Shabalina, R Shaheen, J D Shahinian, D Shaked Renous, L Y Shan, M Shapiro, A Sharma, A S Sharma, P Sharma, P B Shatalov, K Shaw, S M Shaw, A Shcherbakova, Q Shen, D J Sheppard, P Sherwood, L Shi, X Shi, C O Shimmin, J D Shinner, I P J Shipsey, S Shirabe, M Shiyakova, J Shlomi, M J Shochet, J Shojaii, D R Shope, B Shrestha, S Shrestha, E M Shrif, M J Shroff, P Sicho, A M Sickles, E Sideras Haddad, A Sidoti, F Siegert, Dj Sijacki, F Sili, J M Silva, M V Silva Oliveira, S B Silverstein, S Simion, R Simoniello, E L Simpson, H Simpson, L R Simpson, N D Simpson, S Simsek, S Sindhu, P Sinervo, S Singh, S Sinha, S Sinha, M Sioli, I Siral, E Sitnikova, J Sjölin, A Skaf, E Skorda, P Skubic, M Slawinska, V Smakhtin, B H Smart, S Yu Smirnov, Y Smirnov, L N Smirnova, O Smirnova, A C Smith, E A Smith, H A Smith, J L Smith, R Smith, M Smizanska, K Smolek, A A Snesarev, S R Snider, H L Snoek, S Snyder, R Sobie, A Soffer, C A Solans Sanchez, E Yu Soldatov, U Soldevila, A A Solodkov, S Solomon, A Soloshenko, K Solovieva, O V Solovyanov, V Solovyev, P Sommer, A Sonay, W Y Song, A Sopczak, A L Sopio, F Sopkova, J D Sorenson, I R Sotarriva Alvarez, V Sothilingam, O J Soto Sandoval, S Sottocornola, R Soualah, Z Soumaimi, D South, N Soybelman, S Spagnolo, M Spalla, D Sperlich, G Spigo, S Spinali, D P Spiteri, M Spousta, E J Staats, R Stamen, A Stampekis, M Standke, E Stanecka, M V Stange, B Stanislaus, M M Stanitzki, B Stapf, E A Starchenko, G H Stark, J Stark, P Staroba, P Starovoitov, S Stärz, R Staszewski, G Stavropoulos, J Steentoft, P Steinberg, B Stelzer, H J Stelzer, O Stelzer-Chilton, H Stenzel, T J Stevenson, G A Stewart, J R Stewart, M C Stockton, G Stoicea, M Stolarski, S Stonjek, A Straessner, J Strandberg, S Strandberg, M Stratmann, M Strauss, T Strebler, P Strizenec, R Ströhmer, D M Strom, R Stroynowski, A Strubig, S A Stucci, B Stugu, J Stupak, N A Styles, D Su, S Su, W Su, X Su, D Suchy, K Sugizaki, V V Sulin, M J Sullivan, D M S Sultan, L Sultanaliyeva, S Sultansoy, T Sumida, S Sun, S Sun, O Sunneborn Gudnadottir, N Sur, M R Sutton, H Suzuki, M Svatos, M Swiatlowski, T Swirski, I Sykora, M Sykora, T Sykora, D Ta, K Tackmann, A Taffard, R Tafirout, J S Tafoya Vargas, Y Takubo, M Talby, A A Talyshev, K C Tam, N M Tamir, A Tanaka, J Tanaka, R Tanaka, M Tanasini, Z Tao, S Tapia Araya, S Tapprogge, A Tarek Abouelfadl Mohamed, S Tarem, K Tariq, G Tarna, G F Tartarelli, P Tas, M Tasevsky, E Tassi, A C Tate, G Tateno, Y Tayalati, G N Taylor, W Taylor, A S Tee, R Teixeira De Lima, P Teixeira-Dias, J J Teoh, K Terashi, J Terron, S Terzo, M Testa, R J Teuscher, A Thaler, O Theiner, N Themistokleous, T Theveneaux-Pelzer, O Thielmann, D W Thomas, J P Thomas, E A Thompson, P D Thompson, E Thomson, Y Tian, V Tikhomirov, Yu A Tikhonov, S Timoshenko, D Timoshyn, E X L Ting, P Tipton, S H Tlou, A Tnourji, K Todome, S Todorova-Nova, S Todt, M Togawa, J Tojo, S Tokár, K Tokushuku, O Toldaiev, R Tombs, M Tomoto, L Tompkins, K W Topolnicki, E Torrence, H Torres, E Torró Pastor, M Toscani, C Tosciri, M Tost, D R Tovey, A Traeet, I S Trandafir, T Trefzger, A Tricoli, I M Trigger, S Trincaz-Duvoid, D A Trischuk, B Trocmé, L Truong, M Trzebinski, A Trzupek, F Tsai, M Tsai, A Tsiamis, P V Tsiareshka, S Tsigaridas, A Tsirigotis, V Tsiskaridze, E G Tskhadadze, M Tsopoulou, Y Tsujikawa, I I Tsukerman, V Tsulaia, S Tsuno, K Tsuri, D Tsybychev, Y Tu, A Tudorache, V Tudorache, A N Tuna, S Turchikhin, I Turk Cakir, R Turra, T Turtuvshin, P M Tuts, S Tzamarias, P Tzanis, E Tzovara, F Ukegawa, P A Ulloa Poblete, E N Umaka, G Unal, M Unal, A Undrus, G Unel, J Urban, P Urquijo, P Urrejola, G Usai, R Ushioda, M Usman, Z Uysal, V Vacek, B Vachon, K O H Vadla, T Vafeiadis, A Vaitkus, C Valderanis, E Valdes Santurio, M Valente, S Valentinetti, A Valero, E Valiente Moreno, A Vallier, J A Valls Ferrer, D R Van Arneman, T R Van Daalen, A Van Der Graaf, P Van Gemmeren, M Van Rijnbach, S Van Stroud, I Van Vulpen, M Vanadia, W Vandelli, E R Vandewall, D Vannicola, L Vannoli, R Vari, E W Varnes, C Varni, T Varol, D Varouchas, L Varriale, K E Varvell, M E Vasile, L Vaslin, G A Vasquez, A Vasyukov, R Vavricka, F Vazeille, T Vazquez Schroeder, J Veatch, V Vecchio, M J Veen, I Veliscek, L M Veloce, F Veloso, S Veneziano, A Ventura, S Ventura Gonzalez, A Verbytskyi, M Verducci, C Vergis, M Verissimo De Araujo, W Verkerke, J C Vermeulen, C Vernieri, M Vessella, M C Vetterli, A Vgenopoulos, N Viaux Maira, T Vickey, O E Vickey Boeriu, G H A Viehhauser, L Vigani, M Villa, M Villaplana Perez, E M Villhauer, E Vilucchi, M G Vincter, G S Virdee, A Vishwakarma, A Visibile, C Vittori, I Vivarelli, E Voevodina, F Vogel, J C Voigt, P Vokac, Yu Volkotrub, J Von Ahnen, E Von Toerne, B Vormwald, V Vorobel, K Vorobev, M Vos, K Voss, M Vozak, L Vozdecky, N Vranjes, M Vranjes Milosavljevic, M Vreeswijk, N K Vu, R Vuillermet, O Vujinovic, I Vukotic, S Wada, C Wagner, J M Wagner, W Wagner, S Wahdan, H Wahlberg, M Wakida, J Walder, R Walker, W Walkowiak, A Wall, E J Wallin, T Wamorkar, A Z Wang, C Wang, C Wang, H Wang, J Wang, R -J Wang, R Wang, R Wang, S M Wang, S Wang, T Wang, W T Wang, W Wang, X Wang, X Wang, X Wang, Y Wang, Y Wang, Z Wang, Z Wang, Z Wang, A Warburton, R J Ward, N Warrack, S Waterhouse, A T Watson, H Watson, M F Watson, E Watton, G Watts, B M Waugh, C Weber, H A Weber, M S Weber, S M Weber, C Wei, Y Wei, A R Weidberg, E J Weik, J Weingarten, M Weirich, C Weiser, C J Wells, T Wenaus, B Wendland, T Wengler, N S Wenke, N Wermes, M Wessels, A M Wharton, A S White, A White, M J White, D Whiteson, L Wickremasinghe, W Wiedenmann, M Wielers, C Wiglesworth, D J Wilbern, H G Wilkens, D M Williams, H H Williams, S Williams, S Willocq, B J Wilson, P J Windischhofer, F I Winkel, F Winklmeier, B T Winter, J K Winter, M Wittgen, M Wobisch, Z Wolffs, J Wollrath, M W Wolter, H Wolters, E L Woodward, S D Worm, B K Wosiek, K W Woźniak, S Wozniewski, K Wraight, C Wu, M Wu, M Wu, S L Wu, X Wu, Y Wu, Z Wu, J Wuerzinger, T R Wyatt, B M Wynne, S Xella, L Xia, M Xia, J Xiang, M Xie, X Xie, S Xin, A Xiong, J Xiong, D Xu, H Xu, L Xu, R Xu, T Xu, Y Xu, Z Xu, Z Xu, B Yabsley, S Yacoob, Y Yamaguchi, E Yamashita, H Yamauchi, T Yamazaki, Y Yamazaki, J Yan, S Yan, Z Yan, H J Yang, H T Yang, S Yang, T Yang, X Yang, X Yang, Y Yang, Y Yang, Z Yang, W-M Yao, H Ye, H Ye, J Ye, S Ye, X Ye, Y Yeh, I Yeletskikh, B K Yeo, M R Yexley, P Yin, K Yorita, S Younas, C J S Young, C Young, C Yu, Y Yu, M Yuan, R Yuan, L Yue, M Zaazoua, B Zabinski, E Zaid, Z K Zak, T Zakareishvili, N Zakharchuk, S Zambito, J A Zamora Saa, J Zang, D Zanzi, O Zaplatilek, C Zeitnitz, H Zeng, J C Zeng, D T Zenger Jr, O Zenin, T Ženiš, S Zenz, S Zerradi, D Zerwas, M Zhai, D F Zhang, J Zhang, J Zhang, K Zhang, L Zhang, P Zhang, R Zhang, S Zhang, S Zhang, T Zhang, X Zhang, X Zhang, Y Zhang, Y Zhang, Y Zhang, Z Zhang, Z Zhang, H Zhao, T Zhao, Y Zhao, Z Zhao, A Zhemchugov, J Zheng, K Zheng, X Zheng, Z Zheng, D Zhong, B Zhou, H Zhou, N Zhou, Y Zhou, Y Zhou, C G Zhu, J Zhu, Y Zhu, Y Zhu, X Zhuang, K Zhukov, N I Zimine, J Zinsser, M Ziolkowski, L Živković, A Zoccoli, K Zoch, T G Zorbas, O Zormpa, W Zou, L Zwalinski, The ATLAS Collaborationgabriela.navarro@uan.edu.co","doi":"10.1088/2632-2153/ad611e","DOIUrl":"https://doi.org/10.1088/2632-2153/ad611e","url":null,"abstract":"The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta <inline-formula>\u0000<tex-math><?CDATA $p_{text{T}}gt 500$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>p</mml:mi><mml:mrow><mml:mtext>T</mml:mtext></mml:mrow></mml:msub><mml:mo>&gt;</mml:mo><mml:mn>500</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad611eieqn1.gif\"></inline-graphic></inline-formula> GeV.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SemiH: DFT Hamiltonian neural network training with semi-supervised learning SemiH:采用半监督学习的 DFT 汉密尔顿神经网络训练
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-02 DOI: 10.1088/2632-2153/ad7227
Yucheol Cho, Guenseok Choi, Gyeongdo Ham, Mincheol Shin, Daeshik Kim
Over the past decades, density functional theory (DFT) calculations have been utilized in various fields such as materials science and semiconductor devices. However, due to the inherent nature of DFT calculations, which rigorously consider interactions between atoms, they require significant computational cost. To address this, extensive research has recently focused on training neural networks to replace DFT calculations. However, previous methods for training neural networks necessitated an extensive number of DFT simulations to acquire the ground truth (Hamiltonians). Conversely, when dealing with a limited amount of training data, deep learning models often display increased errors in predicting Hamiltonians and band structures for testing data. This phenomenon poses the potential risk of generating inaccurate physical interpretations, including the emergence of unphysical branches within band structures. To tackle this challenge, we propose a novel deep learning-based method for calculating DFT Hamiltonians, specifically tailored to produce accurate results with limited training data. Our framework not only employs supervised learning with the calculated Hamiltonian but also generates pseudo Hamiltonians (targets for unlabeled data) and trains the neural networks on unlabeled data. Particularly, our approach, which leverages unlabeled data, is noteworthy as it marks the first attempt in the field of neural network Hamiltonians. Our framework showcases the superior performance of our framework compared to the state-of-the-art approach across various datasets, such as MoS2, Bi2Te3, HfO2, and InGaAs. Moreover, our framework demonstrates enhanced generalization performance by effectively utilizing unlabeled data, achieving noteworthy results when evaluated on data more complex than the training set, such as configurations with more atoms and temperature ranges outside the training data.
过去几十年来,密度泛函理论(DFT)计算被广泛应用于材料科学和半导体器件等各个领域。然而,由于密度泛函理论计算严格考虑了原子间的相互作用,其固有的性质决定了计算成本非常高。为了解决这个问题,最近的大量研究集中于训练神经网络来取代 DFT 计算。然而,以前的神经网络训练方法需要进行大量的 DFT 模拟来获取基本事实(哈密顿)。相反,在处理有限的训练数据时,深度学习模型在预测测试数据的哈密顿和带状结构时往往会显示出更大的误差。这种现象带来了产生不准确物理解释的潜在风险,包括在带状结构中出现非物理分支。为了应对这一挑战,我们提出了一种新颖的基于深度学习的 DFT 哈密顿方程计算方法,专门用于在有限的训练数据下得出准确的结果。我们的框架不仅利用计算出的哈密顿数进行监督学习,还生成伪哈密顿数(未标记数据的目标),并在未标记数据上训练神经网络。尤其值得注意的是,我们的方法利用了无标记数据,这标志着神经网络哈密顿方法领域的首次尝试。在 MoS2、Bi2Te3、HfO2 和 InGaAs 等各种数据集上,我们的框架展示了与最先进方法相比的卓越性能。此外,我们的框架通过有效利用未标记数据,提高了泛化性能,在对比训练集更复杂的数据(如训练数据以外的更多原子和温度范围的配置)进行评估时,取得了显著的结果。
{"title":"SemiH: DFT Hamiltonian neural network training with semi-supervised learning","authors":"Yucheol Cho, Guenseok Choi, Gyeongdo Ham, Mincheol Shin, Daeshik Kim","doi":"10.1088/2632-2153/ad7227","DOIUrl":"https://doi.org/10.1088/2632-2153/ad7227","url":null,"abstract":"Over the past decades, density functional theory (DFT) calculations have been utilized in various fields such as materials science and semiconductor devices. However, due to the inherent nature of DFT calculations, which rigorously consider interactions between atoms, they require significant computational cost. To address this, extensive research has recently focused on training neural networks to replace DFT calculations. However, previous methods for training neural networks necessitated an extensive number of DFT simulations to acquire the ground truth (Hamiltonians). Conversely, when dealing with a limited amount of training data, deep learning models often display increased errors in predicting Hamiltonians and band structures for testing data. This phenomenon poses the potential risk of generating inaccurate physical interpretations, including the emergence of unphysical branches within band structures. To tackle this challenge, we propose a novel deep learning-based method for calculating DFT Hamiltonians, specifically tailored to produce accurate results with limited training data. Our framework not only employs supervised learning with the calculated Hamiltonian but also generates pseudo Hamiltonians (targets for unlabeled data) and trains the neural networks on unlabeled data. Particularly, our approach, which leverages unlabeled data, is noteworthy as it marks the first attempt in the field of neural network Hamiltonians. Our framework showcases the superior performance of our framework compared to the state-of-the-art approach across various datasets, such as MoS<sub>2</sub>, Bi<sub>2</sub>Te<sub>3</sub>, HfO<sub>2</sub>, and InGaAs. Moreover, our framework demonstrates enhanced generalization performance by effectively utilizing unlabeled data, achieving noteworthy results when evaluated on data more complex than the training set, such as configurations with more atoms and temperature ranges outside the training data.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating cell growth and hypoxic regions of 3D spheroids via a machine learning approach 通过机器学习方法评估三维球体的细胞生长和缺氧区域
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-02 DOI: 10.1088/2632-2153/ad718e
Jaekak Yoo, Jae Won Choi, Eunha Kim, Eun-Jung Park, Ahruem Baek, Jaeseok Kim, Mun Seok Jeong, Youngwoo Cho, Tae Geol Lee, Min Beom Heo
This study investigated the applicability of the area of spheroids and hypoxic regions for efficient evaluation of drug efficacy using machine learning (ML). We initially developed a high-throughput detection method to obtain the area of spheroids and hypoxic regions that can handle over 10 000 images per hour with an error rate of 2%–3%. The ML models were trained using cell growth of six cell lines (i.e. HepG2, A549, Hep3B, BEAS-2B, HT-29, and HCT116) and hypoxic region variations of two cell lines (i.e. HepG2 and BEAS-2B); our model can predict the area of spheroids and hypoxic region of certain growth date with high precision. To demonstrate the applicability, HepG2 spheroids were treated with sorafenib, and the efficacy of the drug was evaluated through a comparison of differences in areas of cell size and hypoxic regions with the predicted results. Furthermore, our ML approach has been shown to be applicable to provide the model-driven evaluative criterion for toxicity and drug efficacy using spheroids.
本研究利用机器学习(ML)研究了球形和缺氧区域面积在高效评估药物疗效方面的适用性。我们最初开发了一种高通量检测方法来获取球形区和缺氧区的面积,该方法每小时可处理 10,000 多张图像,误差率为 2%-3%。我们使用六种细胞系(即 HepG2、A549、Hep3B、BEAS-2B、HT-29 和 HCT116)的细胞生长和两种细胞系(即 HepG2 和 BEAS-2B)的缺氧区域变化训练了 ML 模型;我们的模型可以高精度地预测特定生长日期的球形面积和缺氧区域。为了证明其适用性,我们用索拉非尼处理了 HepG2 球形细胞,并通过比较细胞大小和缺氧区域面积与预测结果的差异来评估药物的疗效。此外,我们的 ML 方法已被证明适用于为使用球形细胞的毒性和药物疗效提供模型驱动的评估标准。
{"title":"Evaluating cell growth and hypoxic regions of 3D spheroids via a machine learning approach","authors":"Jaekak Yoo, Jae Won Choi, Eunha Kim, Eun-Jung Park, Ahruem Baek, Jaeseok Kim, Mun Seok Jeong, Youngwoo Cho, Tae Geol Lee, Min Beom Heo","doi":"10.1088/2632-2153/ad718e","DOIUrl":"https://doi.org/10.1088/2632-2153/ad718e","url":null,"abstract":"This study investigated the applicability of the area of spheroids and hypoxic regions for efficient evaluation of drug efficacy using machine learning (ML). We initially developed a high-throughput detection method to obtain the area of spheroids and hypoxic regions that can handle over 10 000 images per hour with an error rate of 2%–3%. The ML models were trained using cell growth of six cell lines (<italic toggle=\"yes\">i.e.</italic> HepG2, A549, Hep3B, BEAS-2B, HT-29, and HCT116) and hypoxic region variations of two cell lines (<italic toggle=\"yes\">i.e.</italic> HepG2 and BEAS-2B); our model can predict the area of spheroids and hypoxic region of certain growth date with high precision. To demonstrate the applicability, HepG2 spheroids were treated with sorafenib, and the efficacy of the drug was evaluated through a comparison of differences in areas of cell size and hypoxic regions with the predicted results. Furthermore, our ML approach has been shown to be applicable to provide the model-driven evaluative criterion for toxicity and drug efficacy using spheroids.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging normalizing flows for orbital-free density functional theory 利用归一化流实现无轨道密度泛函理论
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-02 DOI: 10.1088/2632-2153/ad7226
Alexandre de Camargo, Ricky T Q Chen, Rodrigo A Vargas-Hernández
Orbital-free density functional theory (OF-DFT) for real-space systems has historically depended on Lagrange optimization techniques, primarily due to the inability of previously proposed electron density approaches to ensure the normalization constraint. This study illustrates how leveraging contemporary generative models, notably normalizing flows (NFs), can surmount this challenge. We develop a Lagrangian-free optimization framework by employing these machine learning models for the electron density. This diverse approach also integrates cutting-edge variational inference techniques and equivariant deep learning models, offering an innovative reformulation to the OF-DFT problem. We demonstrate the versatility of our framework by simulating a one-dimensional diatomic system, LiH, and comprehensive simulations of hydrogen, lithium hydride, water, and four hydrocarbon molecules. The inherent flexibility of NFs facilitates initialization with promolecular densities, markedly enhancing the efficiency of the optimization process.
用于实空间系统的无轨道密度泛函理论(OF-DFT)历来依赖于拉格朗日优化技术,这主要是由于之前提出的电子密度方法无法确保归一化约束。本研究说明了如何利用当代生成模型,特别是归一化流(NF)来克服这一挑战。我们开发了一种无拉格朗日优化框架,将这些机器学习模型用于电子密度。这种多样化的方法还整合了最前沿的变分推理技术和等变深度学习模型,为 OF-DFT 问题提供了一种创新的重构方法。我们通过模拟一维二原子系统 LiH 以及氢、氢化锂、水和四种碳氢化合物分子的综合模拟,展示了我们框架的多功能性。NFs 固有的灵活性为初始化原分子密度提供了便利,显著提高了优化过程的效率。
{"title":"Leveraging normalizing flows for orbital-free density functional theory","authors":"Alexandre de Camargo, Ricky T Q Chen, Rodrigo A Vargas-Hernández","doi":"10.1088/2632-2153/ad7226","DOIUrl":"https://doi.org/10.1088/2632-2153/ad7226","url":null,"abstract":"Orbital-free density functional theory (OF-DFT) for real-space systems has historically depended on Lagrange optimization techniques, primarily due to the inability of previously proposed electron density approaches to ensure the normalization constraint. This study illustrates how leveraging contemporary generative models, notably normalizing flows (NFs), can surmount this challenge. We develop a Lagrangian-free optimization framework by employing these machine learning models for the electron density. This diverse approach also integrates cutting-edge variational inference techniques and equivariant deep learning models, offering an innovative reformulation to the OF-DFT problem. We demonstrate the versatility of our framework by simulating a one-dimensional diatomic system, LiH, and comprehensive simulations of hydrogen, lithium hydride, water, and four hydrocarbon molecules. The inherent flexibility of NFs facilitates initialization with promolecular densities, markedly enhancing the efficiency of the optimization process.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural force functional for non-equilibrium many-body colloidal systems 非平衡多体胶体系统的神经力函数
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-02 DOI: 10.1088/2632-2153/ad7191
Toni Zimmermann, Florian Sammüller, Sophie Hermann, Matthias Schmidt, Daniel de las Heras
We combine power functional theory and machine learning to study non-equilibrium overdamped many-body systems of colloidal particles at the level of one-body fields. We first sample in steady state the one-body fields relevant for the dynamics from computer simulations of Brownian particles under the influence of randomly generated external fields. A neural network is then trained with this data to represent locally in space the formally exact functional mapping from the one-body density and velocity profiles to the one-body internal force field. The trained network is used to analyse the non-equilibrium superadiabatic force field and the transport coefficients such as shear and bulk viscosities. Due to the local learning approach, the network can be applied to systems much larger than the original simulation box in which the one-body fields are sampled. Complemented with the exact non-equilibrium one-body force balance equation and a continuity equation, the network yields viable predictions of the dynamics in time-dependent situations. Even though training is based on steady states only, the predicted dynamics is in good agreement with simulation results. A neural dynamical density functional theory can be straightforwardly implemented as a limiting case in which the internal force field is that of an equilibrium system. The framework is general and directly applicable to other many-body systems of interacting particles following Brownian dynamics.
我们结合幂函数理论和机器学习,在单体场水平上研究胶体粒子的非平衡过阻尼多体系统。我们首先在稳态下对布朗粒子在随机产生的外部场影响下的动力学相关单体场进行计算机模拟采样。然后利用这些数据训练神经网络,以在空间局部表示从单体密度和速度剖面到单体内力场的形式上精确的函数映射。训练后的网络用于分析非平衡超绝热力场以及剪切粘度和体积粘度等传输系数。由于采用了局部学习方法,该网络可应用于比单体场采样的原始模拟箱更大的系统。辅以精确的非平衡单体力平衡方程和连续性方程,该网络可在随时间变化的情况下对动力学进行可行的预测。尽管训练仅基于稳定状态,但预测的动力学结果与模拟结果非常吻合。神经动力学密度泛函理论可以作为平衡系统内力场的极限情况直接实现。该框架具有通用性,可直接应用于其他遵循布朗动力学的相互作用粒子多体系统。
{"title":"Neural force functional for non-equilibrium many-body colloidal systems","authors":"Toni Zimmermann, Florian Sammüller, Sophie Hermann, Matthias Schmidt, Daniel de las Heras","doi":"10.1088/2632-2153/ad7191","DOIUrl":"https://doi.org/10.1088/2632-2153/ad7191","url":null,"abstract":"We combine power functional theory and machine learning to study non-equilibrium overdamped many-body systems of colloidal particles at the level of one-body fields. We first sample in steady state the one-body fields relevant for the dynamics from computer simulations of Brownian particles under the influence of randomly generated external fields. A neural network is then trained with this data to represent locally in space the formally exact functional mapping from the one-body density and velocity profiles to the one-body internal force field. The trained network is used to analyse the non-equilibrium superadiabatic force field and the transport coefficients such as shear and bulk viscosities. Due to the local learning approach, the network can be applied to systems much larger than the original simulation box in which the one-body fields are sampled. Complemented with the exact non-equilibrium one-body force balance equation and a continuity equation, the network yields viable predictions of the dynamics in time-dependent situations. Even though training is based on steady states only, the predicted dynamics is in good agreement with simulation results. A neural dynamical density functional theory can be straightforwardly implemented as a limiting case in which the internal force field is that of an equilibrium system. The framework is general and directly applicable to other many-body systems of interacting particles following Brownian dynamics.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triggering dark showers with conditional dual auto-encoders 利用有条件的双自动编码器触发暗阵雨
IF 6.8 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-02 DOI: 10.1088/2632-2153/ad652b
Luca Anzalone, Simranjit Singh Chhibra, Benedikt Maier, Nadezda Chernyavskaya, Maurizio Pierini
We present a family of conditional dual auto-encoders (CoDAEs) for generic and model-independent new physics searches at colliders. New physics signals, which arise from new types of particles and interactions, are considered in our study as anomalies causing deviations in data with respect to expected background events. In this work, we perform a normal-only anomaly detection, which employs only background samples, to search for manifestations of a dark version of strong force applying (variational) auto-encoders on raw detector images, which are large and highly sparse, without leveraging any physics-based pre-processing or strong assumption on the signals. The proposed CoDAE has a dual-encoder design, which is general and can learn an auxiliary yet compact latent space through spatial conditioning, showing a neat improvement over competitive physics-based baselines and related approaches, therefore also reducing the gap with fully supervised models. It is the first time an unsupervised model is shown to exhibit excellent discrimination against multiple dark shower models, illustrating the suitability of this method as an accurate, fast, model-independent algorithm to deploy, e.g. in the real-time event triggering systems of large hadron collider experiments such as ATLAS and CMS.
我们提出了一系列条件双自动编码器(CoDAEs),用于在对撞机上进行与模型无关的通用新物理搜索。在我们的研究中,由新型粒子和相互作用产生的新物理信号被视为导致数据偏离预期背景事件的异常现象。在这项工作中,我们只利用背景样本进行正常异常检测,在原始探测器图像上应用(变异)自动编码器搜索暗版强作用力的表现,原始图像大且高度稀疏,无需利用任何基于物理的预处理或对信号的强假设。所提出的 CoDAE 采用双编码器设计,具有通用性,能通过空间调节学习一个辅助但紧凑的潜空间,与基于物理的竞争基线和相关方法相比有明显改善,因此也缩小了与完全监督模型的差距。这是第一次证明无监督模型对多种暗雨模型具有出色的辨别能力,说明这种方法适合作为一种精确、快速、独立于模型的算法来部署,例如在 ATLAS 和 CMS 等大型强子对撞机实验的实时事件触发系统中部署。
{"title":"Triggering dark showers with conditional dual auto-encoders","authors":"Luca Anzalone, Simranjit Singh Chhibra, Benedikt Maier, Nadezda Chernyavskaya, Maurizio Pierini","doi":"10.1088/2632-2153/ad652b","DOIUrl":"https://doi.org/10.1088/2632-2153/ad652b","url":null,"abstract":"We present a family of conditional dual auto-encoders (CoDAEs) for generic and model-independent new physics searches at colliders. New physics signals, which arise from new types of particles and interactions, are considered in our study as anomalies causing deviations in data with respect to expected background events. In this work, we perform a normal-only anomaly detection, which employs only background samples, to search for manifestations of a dark version of strong force applying (variational) auto-encoders on raw detector images, which are large and highly sparse, without leveraging any physics-based pre-processing or strong assumption on the signals. The proposed CoDAE has a dual-encoder design, which is general and can learn an auxiliary yet compact latent space through spatial conditioning, showing a neat improvement over competitive physics-based baselines and related approaches, therefore also reducing the gap with fully supervised models. It is the first time an unsupervised model is shown to exhibit excellent discrimination against multiple dark shower models, illustrating the suitability of this method as an accurate, fast, model-independent algorithm to deploy, e.g. in the real-time event triggering systems of large hadron collider experiments such as ATLAS and CMS.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Machine Learning Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1