Pub Date : 2024-09-05DOI: 10.1088/2632-2153/ad743f
Jinyang Sun, Xi Chen, Xiumei Wang, Dandan Zhu, Xingping Zhou
The concept of photonic modes is the cornerstone in optics and photonics, which can describe the propagation of the light. The Maxwell’s equations play the role in calculating the mode field based on the structure information, while this process needs a great deal of computations, especially in the handle with a three-dimensional model. To overcome this obstacle, we introduce the multi-modal diffusion model to predict the photonic modes in one certain structure. The Contrastive Language–Image Pre-training (CLIP) model is used to build the connections between photonic structures and the corresponding modes. Then we exemplify Stable Diffusion (SD) model to realize the function of optical fields generation from structure information. Our work introduces multi-modal deep learning to construct complex mapping between structural information and optical field as high-dimensional vectors, and generates optical field images based on this mapping.
{"title":"Photonic modes prediction via multi-modal diffusion model","authors":"Jinyang Sun, Xi Chen, Xiumei Wang, Dandan Zhu, Xingping Zhou","doi":"10.1088/2632-2153/ad743f","DOIUrl":"https://doi.org/10.1088/2632-2153/ad743f","url":null,"abstract":"The concept of photonic modes is the cornerstone in optics and photonics, which can describe the propagation of the light. The Maxwell’s equations play the role in calculating the mode field based on the structure information, while this process needs a great deal of computations, especially in the handle with a three-dimensional model. To overcome this obstacle, we introduce the multi-modal diffusion model to predict the photonic modes in one certain structure. The Contrastive Language–Image Pre-training (CLIP) model is used to build the connections between photonic structures and the corresponding modes. Then we exemplify Stable Diffusion (SD) model to realize the function of optical fields generation from structure information. Our work introduces multi-modal deep learning to construct complex mapping between structural information and optical field as high-dimensional vectors, and generates optical field images based on this mapping.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142197713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1088/2632-2153/ad7457
Aiden R Rosebush, Alexander C B Greenwood, Brian T Kirby, Li Qian
We propose a support vector machine (SVM) based approach for generating an entanglement witness that requires exponentially less training data than previously proposed methods. SVMs generate hyperplanes represented by a weighted sum of expectation values of local observables whose coefficients are optimized to sum to a positive number for all separable states and a negative number for as many entangled states as possible near a specific target state. Previous SVM-based approaches for entanglement witness generation used large amounts of randomly generated separable states to perform training, a task with considerable computational overhead. Here, we propose a method for orienting the witness hyperplane using only the significantly smaller set of states consisting of the eigenstates of the generalized Pauli matrices and a set of entangled states near the target entangled states. With the orientation of the witness hyperplane set by the SVM, we tune the plane’s placement using a differential program that ensures perfect classification accuracy on a limited test set as well as maximal noise tolerance. For N qubits, the SVM portion of this approach requires only