Coastal marsh wetlands experience variations in vertical gains and losses through time, which have allowed them to infill relict topography and record variations in drivers. The stratigraphic unit associated with the development of the marsh also reflects the long-term importance of key ecosystem services supplied by the marsh environment, including carbon storage and storm mitigation. Mapping these coastal wetland sediments and the marsh unit thickness is challenging as traditional coastal geophysical tools are not easily deployable (acoustic methods) or are unreliable in saline-soil environments (e.g., ground-penetrating radar), leaving core-based methods the most viable mapping method. In the present study, we utilized prior information on the geologic architecture of the region to select spatial and physical metrics that likely persisted throughout evolution of the marsh during the late Holocene. We then assessed the individual and collective power of these metrics to predict marsh thickness observed from cores. Employing regressive predictive models powered by these data, we improve the quantification of marsh thickness for a coastal fringing marsh within the Grand Bay estuary in Mississippi and Alabama (USA). The information gained from this approach yields improved estimates of the carbon stocks in this environment. Additionally, the stored sediment masses reflect the past, and potential future, persistence of the Grand Bay marsh under historical and present marsh-estuarine sediment exchange fluxes. Such improvements to both the sediment budget of recent marsh stratigraphic units and the spatial extent provide new resources for comparison with large-scale landscape models, the latter of which may be used, when validated, to predict future change and ecosystem transformations.