Detecting seismic events in real-time for prompt alerts and responses is a challenging task that requires accurately capturing P-wave arrivals. This task becomes even more challenging in regions like Indonesia, where widely spaced seismic stations exist. The wide station spacing makes associating the seismic signals with specific even more difficult. This paper proposes a novel deep learning-based model with three convolutional layers, enriched with dual attention mechanisms—Squeeze, Excitation, and Transformer Encoder (CNN-SE-T) —to refine feature extraction and improve detection sensitivity. We have integrated several post-processing techniques to further bolster the model's robustness against noise. We conducted comprehensive evaluations of our method using three diverse datasets: local earthquake data from East Java, the publicly available Seismic Waveform Data (STEAD), and a continuous waveform dataset spanning 12 h from multiple Indonesian seismic stations. The performance of the CNN-SE-T P-wave detection model yielded exceptionally high F1 scores of 99.10% for East Java, 92.64% for STEAD, and 80% for the 12-h continuous waveforms across Indonesia's network, demonstrating the model's effectiveness and potential for real-world application in earthquake early warning systems.
The flood hazards in the southwest coastal region of India in 2018 and 2020 resulted in numerous casualties and the displacement of over a million people from their homes. In order to mitigate the loss of life and resources caused by recurrent major and minor flood events, it is imperative to develop a comprehensive spatial flood zonation map of the entire area. Therefore, the main aim of the present study is to prepare a flood susceptible map of the southwest coastal region of India using synthetic-aperture radar (SAR) data and robust machine learning algorithms. Accurate flood and non-flood locations have been identified from the multi-temporal Sentinel-1 images. These flood locations are correlated with sixteen flood conditioning geo-environmental variables. The Boruta algorithm has been applied to determine the importance of each flood conditioning parameter. Six efficient machine learning models, namely support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (ANN), random forest (RF), partial least squares (PLS) and penalized discriminant analysis (PDA) have been applied to delineate the flood susceptible areas of the study region. The performance of the models has been evaluated using several statistical criteria, including area under curve (AUC), overall accuracy, specificity, sensitivity and kappa index. The results have revealed that all models have performed more than 90% of AUC due to the high precision of radar data. However, the RF and SVM models have outperformed other models in terms of all statistical parameters. The findings have identified approximately 13% of the study region as highly vulnerable to flood hazards, emphasizing the need for proper planning and management in these areas.
Accurate detection and characterization of seafloor morphologies are crucial for marine researchers and industries involved in underwater mapping, environmental monitoring, or resource exploration. Although their detection has relied on visual inspection of detailed bathymetries, few efforts to automate the process can be found in the literature. This study presents a novel MatLab computer code called POSIT (Feature Signature Detection) based on the convolution and correlation with a structural element containing the shape to search for. POSIT is successfully tested on both synthetic and real datasets, encompassing marine and terrestrial digital elevation models of different resolution and on a digital image. The centroids of submarine pockmarks and mounds, terrestrial volcanic craters and lunar craters are calculated with zero dispersion and perfect location, and their geometric parameters and confidence are provided.
Accurate segmentation of 3D micro CT scans is a key step in the process of analysis of the microstructure of porous materials. In polar ice core studies, the environmental effects on the firn column could be detected if the microstructure is digitized accurately. The most challenging task is to obtain the microstructure parameters of the bubbly ice section. To identify the minimum, necessary resolution, the bubbly ice micro CT scans with different resolutions (120, 60, 30, 12 ) were compared object-wise via a region pairing algorithm. When the minimum resolution was found to be 60 , for generating the training/validation dataset, 4 ice core samples from a depth range of 96 to 108 meters (bubbly ice) were scanned with 120 (input images) and another time with 4 times higher resolution (30 ) to build ground truth. A specific pipeline was designed with non-rigid image registration to create an accurate ground truth from 4 times higher resolution scans. Then, two SOTA deep learning models (3D-Unet and FCN) were trained and later validated to perform super-resolution segmentation by taking input of resolution data and giving the output of binary segmented with two times higher resolution (). Finally, the outputs of CNN models were compared with traditional rule-based and unsupervised methods on blind test data. It is observed the 3D-Unet can segment low-resolution scans with an accuracy of 96% and an f1-score of 80.8% while preserving microstructure having less than 2% error in porosity and SSA.