首页 > 最新文献

JISKA Jurnal Informatika Sunan Kalijaga最新文献

英文 中文
Diagnosa Penyakit Demam Berdarah Dengue (DBD) menggunakan Metode Learning Vector Quantization (LVQ)
Pub Date : 2020-02-21 DOI: 10.14421/JISKA.2020.43-07
Firman Tawakal, Ahmedika Azkiya
Dengue Hemorrhagic Fever is a disease that is carried and transmitted through the mosquito Aedes aegypti and Aedes albopictus which is commonly found in tropical and subtropical regions such as in Indonesia to Northern Australia. in 2013 there are 2.35 million reported cases, which is 37,687 case is heavy cases of DHF. DHF’s symthoms have a similarity with typhoid fever, it often occur wrong handling. Therefore we need a system that is able to diagnose the disease suffered by patients, so that they can recognize whether the patient has DHF or Typhoid. The system will be built using Neural Network Learning Vector Quantization (LVQ) based on the best training results. This research is to diagnose Dengue Hemorrhagic Fever using LVQ with input parameters are hemoglobin, leukocytes, platelets, and heritrocytes. Based on result, the best accuracy is 97,14% with Mean Square Error (MSE) is 0.028571 with 84 train data and 36 test data. Conclution from the research is LVQ method can diagnose DHF Keywords: Dengue Hemorrhagic Fever; Learning Vector Quantization; classification; Neural Network;
登革出血热是一种通过埃及伊蚊和白纹伊蚊携带和传播的疾病,这两种蚊子常见于热带和亚热带地区,如印度尼西亚和北澳大利亚。2013年有235万例报告病例,即37687例为登革出血热重症病例。登革出血热的症状与伤寒有相似之处,常发生处理不当的情况。因此,我们需要一种能够诊断患者所患疾病的系统,以便他们能够识别患者是否患有登革出血热或伤寒。该系统将基于最佳训练结果,使用神经网络学习向量量化(LVQ)来构建。本研究是利用输入参数为血红蛋白、白细胞、血小板和遗传细胞的LVQ诊断登革出血热。结果表明,该方法在84组训练数据和36组测试数据的基础上,准确率达到97.14%,均方误差(MSE)为0.028571。结论:LVQ法可诊断登革出血热;学习向量量化;分类;神经网络;
{"title":"Diagnosa Penyakit Demam Berdarah Dengue (DBD) menggunakan Metode Learning Vector Quantization (LVQ)","authors":"Firman Tawakal, Ahmedika Azkiya","doi":"10.14421/JISKA.2020.43-07","DOIUrl":"https://doi.org/10.14421/JISKA.2020.43-07","url":null,"abstract":"Dengue Hemorrhagic Fever is a disease that is carried and transmitted through the mosquito Aedes aegypti and Aedes albopictus which is commonly found in tropical and subtropical regions such as in Indonesia to Northern Australia. in 2013 there are 2.35 million reported cases, which is 37,687 case is heavy cases of DHF. DHF’s symthoms have a similarity with typhoid fever, it often occur wrong handling. Therefore we need a system that is able to diagnose the disease suffered by patients, so that they can recognize whether the patient has DHF or Typhoid. The system will be built using Neural Network Learning Vector Quantization (LVQ) based on the best training results. This research is to diagnose Dengue Hemorrhagic Fever using LVQ with input parameters are hemoglobin, leukocytes, platelets, and heritrocytes. Based on result, the best accuracy is 97,14% with Mean Square Error (MSE) is 0.028571 with 84 train data and 36 test data. Conclution from the research is LVQ method can diagnose DHF Keywords: Dengue Hemorrhagic Fever; Learning Vector Quantization; classification; Neural Network;","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44122065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Implementasi Algoritma Advanced Encryption Standard (AES) pada Layanan SMS Desa
Pub Date : 2020-02-01 DOI: 10.14421/jiska.2020.53-03
Intan Fitriani, Aryo Baskoro Utomo
Along with the development of technology, Short Message Service (SMS) has begun to be used to communicate between someone and the system in an agency. But in some cases, the security of messages sent through the SMS application has not been well protected. To improve data security and confidentiality, cryptographic algorithms with Advanced Encryption Standard (AES) can be done. The method used is the Waterfall method. AES encryption testing is done by comparing the manual calculations and the results of the encryption on the system. Blackbox test, CrackStation test, and Avalanche Effect (AE) test were also carried out. Brute force test results using CrackStation software that ciphertext cannot be solved. And in the avalanche effect (AE) test, the AE value of each 128-bit AES key is 44.53%, 192-bit is 48.44%, and 256-bit is 56.25%. Therefore, 192-bit and 256-bit AES keys are recommended for use because AE values are in the range of 45% - 60%.
随着技术的发展,短消息服务(SMS)已经开始用于在机构中的人和系统之间进行通信。但在某些情况下,通过短信应用程序发送的消息的安全性没有得到很好的保护。为了提高数据的安全性和机密性,可以使用高级加密标准(AES)的加密算法。使用的方法是瀑布法。AES加密测试是通过比较手动计算和系统加密结果来完成的。还进行了黑盒试验、CrackStation试验和雪崩效应(AE)试验。使用CrackStation软件进行的强力测试结果表明,密文无法解决。在雪崩效应(AE)测试中,每个128位AES密钥的AE值为44.53%,192位为48.44%,256位为56.25%。因此,建议使用192位和256位AES密钥,因为AE值在45%-60%的范围内。
{"title":"Implementasi Algoritma Advanced Encryption Standard (AES) pada Layanan SMS Desa","authors":"Intan Fitriani, Aryo Baskoro Utomo","doi":"10.14421/jiska.2020.53-03","DOIUrl":"https://doi.org/10.14421/jiska.2020.53-03","url":null,"abstract":"Along with the development of technology, Short Message Service (SMS) has begun to be used to communicate between someone and the system in an agency. But in some cases, the security of messages sent through the SMS application has not been well protected. To improve data security and confidentiality, cryptographic algorithms with Advanced Encryption Standard (AES) can be done. The method used is the Waterfall method. AES encryption testing is done by comparing the manual calculations and the results of the encryption on the system. Blackbox test, CrackStation test, and Avalanche Effect (AE) test were also carried out. Brute force test results using CrackStation software that ciphertext cannot be solved. And in the avalanche effect (AE) test, the AE value of each 128-bit AES key is 44.53%, 192-bit is 48.44%, and 256-bit is 56.25%. Therefore, 192-bit and 256-bit AES keys are recommended for use because AE values are in the range of 45% - 60%.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43843105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Sistem Pakar Diagnosa Penyakit Pohon Karet dengan Metode Certainty Factor 系统专家通过认证方法诊断橡胶树疾病
Pub Date : 2019-12-13 DOI: 10.14421/JISKA.2019.42-03
Anita Sindar Sinaga
The low production of smallholder rubber is caused by various factors, one of the causes is interference from various diseases. Building a system (computer) that is intelligent to analyze problems, observe the work system of an expert or expert. Expertise comes from the development of knowledge of someone who is competent and directly provides instructions to solve a problem. Certainty Factor is a method to prove whether a fact is certain or not certain in the form of metrics that are usually used in expert systems. This method is very suitable for expert systems that diagnose something that is uncertain. To apply the Certainty Factor method to the expert system, data is needed that will be input into the system, processed and display the results of the diagnosis of rubber plant diseases.  Input: rubber plant disease type data and disease symptom data. Process: carry out analysis and calculation to get the diagnosis results using the Certainty Factor method. Output: information on the diagnosis of rubber plant diseases and percentage of confidence level in the diagnosis results in accordance with the rules of the Certainty Factor method. Keywords : Rubber Disease, Symptoms Diagnosis, Value Combination, Certainty Factor   
小农橡胶的低产量是由多种因素造成的,其中一个原因是各种疾病的干扰。建立一个系统(计算机),它是智能的分析问题,观察专家或专家的工作系统。专业知识来自于某个人的知识发展,他有能力并直接提供解决问题的指导。确定性因子是一种以度量形式证明事实是否确定的方法,通常用于专家系统。这种方法非常适用于诊断不确定事物的专家系统。为了将确定性因子方法应用到专家系统中,需要将数据输入系统,对其进行处理并显示橡胶植物病害的诊断结果。输入:橡胶植物病害类型数据和病害症状数据。过程:利用确定性因子法进行分析计算,得到诊断结果。输出:根据确定性因子方法的规则,橡胶植物病害诊断的信息和诊断结果的置信水平的百分比。关键词:橡胶病;症状诊断;价值组合
{"title":"Sistem Pakar Diagnosa Penyakit Pohon Karet dengan Metode Certainty Factor","authors":"Anita Sindar Sinaga","doi":"10.14421/JISKA.2019.42-03","DOIUrl":"https://doi.org/10.14421/JISKA.2019.42-03","url":null,"abstract":"The low production of smallholder rubber is caused by various factors, one of the causes is interference from various diseases. Building a system (computer) that is intelligent to analyze problems, observe the work system of an expert or expert. Expertise comes from the development of knowledge of someone who is competent and directly provides instructions to solve a problem. Certainty Factor is a method to prove whether a fact is certain or not certain in the form of metrics that are usually used in expert systems. This method is very suitable for expert systems that diagnose something that is uncertain. To apply the Certainty Factor method to the expert system, data is needed that will be input into the system, processed and display the results of the diagnosis of rubber plant diseases.  Input: rubber plant disease type data and disease symptom data. Process: carry out analysis and calculation to get the diagnosis results using the Certainty Factor method. Output: information on the diagnosis of rubber plant diseases and percentage of confidence level in the diagnosis results in accordance with the rules of the Certainty Factor method. Keywords : Rubber Disease, Symptoms Diagnosis, Value Combination, Certainty Factor   ","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46163867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Perbandingan Sensitivitas AHP dan WP dalam Pemilihan Biro Perjalanan Umrah di Yogyakarta 敏感性AHP和WP在日惹老龄化旅游办公室选举中的比较分析
Pub Date : 2019-08-30 DOI: 10.14421/JISKA.2019.33-04
Annisa Khodista Syaka, Agus Mulyanto
Jumlah jemaah umrah yang semakin meningkat mempengaruhi munculnya banyak perusahaan jasa perjalanan umrah khususnya di Daerah Istimewa Yogyakarta. Hal ini mengakibatkan calon jemaah umrah kesulitan menemukan biro perjalanan umrah yang sesuai dengan keinginannya, sehingga membutuhkan proses pemilihan biro perjalanan umrah dengan metode pengambilan keputusan yang relevan. Penelitian ini menganalisis tingkat sensitivitas metode Analytical Hierarchy Process (AHP) dan metode Weighted Product (WP) dalam pemilihan biro perjalanan umrah. Mengacu pada hasil analisis sensitivitas yang peneliti lakukan pada 6 percobaan dengan jumlah kriteria yang berbeda, metode AHP menghasilkan jumlah perubahan rangking sebesar 881 dan jumlah presentase sensitivitas sebesar 17.898%, sedangkan metode WP menghasilkan jumlah perubahan rangking sebesar 836 dan jumlah presentase sensitivitas sebesar 16.901%. Berdasarkan pada jumlah perubahan rangking dan presentase sensitivitas, dapat disimpulkan bahwa metode AHP merupakan metode yang relevan dalam pemilihan biro perjalanan umrah di Daerah Istimewa Yogyakarta.
umrah教堂的不断增加影响了许多umrah旅游公司的出现,尤其是在日惹特别地区。这导致umrah的候选人找到符合他们意愿的umrah旅游局,因此需要umrah旅行局的选择过程和相关的决策方法。本研究分析了层次分析法(AHP)和加权乘积法(WP)在编号旅游局选择中的敏感性水平。基于研究人员在6项不同标准的试验中进行的灵敏度分析,AHP方法产生了881的范围变化和17898%的灵敏度表示,而WP方法产生了836个排名变化和16901%的敏感性陈述。基于排名变化和敏感性陈述的数量,可以得出结论,AHP方法是选择日惹特区编号旅游局的相关方法。
{"title":"Analisis Perbandingan Sensitivitas AHP dan WP dalam Pemilihan Biro Perjalanan Umrah di Yogyakarta","authors":"Annisa Khodista Syaka, Agus Mulyanto","doi":"10.14421/JISKA.2019.33-04","DOIUrl":"https://doi.org/10.14421/JISKA.2019.33-04","url":null,"abstract":"Jumlah jemaah umrah yang semakin meningkat mempengaruhi munculnya banyak perusahaan jasa perjalanan umrah khususnya di Daerah Istimewa Yogyakarta. Hal ini mengakibatkan calon jemaah umrah kesulitan menemukan biro perjalanan umrah yang sesuai dengan keinginannya, sehingga membutuhkan proses pemilihan biro perjalanan umrah dengan metode pengambilan keputusan yang relevan. Penelitian ini menganalisis tingkat sensitivitas metode Analytical Hierarchy Process (AHP) dan metode Weighted Product (WP) dalam pemilihan biro perjalanan umrah. Mengacu pada hasil analisis sensitivitas yang peneliti lakukan pada 6 percobaan dengan jumlah kriteria yang berbeda, metode AHP menghasilkan jumlah perubahan rangking sebesar 881 dan jumlah presentase sensitivitas sebesar 17.898%, sedangkan metode WP menghasilkan jumlah perubahan rangking sebesar 836 dan jumlah presentase sensitivitas sebesar 16.901%. Berdasarkan pada jumlah perubahan rangking dan presentase sensitivitas, dapat disimpulkan bahwa metode AHP merupakan metode yang relevan dalam pemilihan biro perjalanan umrah di Daerah Istimewa Yogyakarta.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41816745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
SURVEY MODEL-MODEL PENCARIAN INFORMASI REKAM MEDIK ELEKTRONIK 电子医疗记录信息搜索模型
Pub Date : 2019-08-30 DOI: 10.14421/JISKA.2019.33-01
Muhammad Mustakim, Retantyo Wardoyo
Pertumbuhan jumlah data rekam medik yang pesat, menjadi masalah tersediri yang harus diantisipasi. Untuk menangani fenomena information overload dalam informasi rekam medis,  perlu studi yang mendalam untuk dapat mengembangkan model filtering informasi rekam medik yang secara efektif mendukung peningkatan kualitas rekomendasi proses pencarian informasi. Berbagai penelitian terkait pencarian informasi medis telah banyak dilakukan, diantaranya mengembangkan penelitian dengan konsentrasi pada kebaruan dan keberagaman, menggunakan fuzzy ontology, berbasis factor tensor, memepertimbangkan niatan/intention pengguna ketika melakukan pencarian serta pendekatan dengan menggabungkan pencarian berbasis frasa dengan alat pemetaan konsep yang ada menggunakan MetaMap dan sumber data ULMS Metathesaurus.
随着医疗记录数据的迅速增长,这成为一个预期中的自我保护问题。要处理医疗记录信息中信息过载现象,需要进行深入的研究,才能开发有效地促进信息搜索过程推荐质量的分析模型。相关研究做了很多医疗信息搜索,其中发展的研究关注的是新奇和多样性,利用模糊ontology驱动因子-张量,memepertimbangkan意图的意图当用户搜索和基于短语搜索方法结合使用MetaMap现有概念映射工具和数据来源ULMS Metathesaurus。
{"title":"SURVEY MODEL-MODEL PENCARIAN INFORMASI REKAM MEDIK ELEKTRONIK","authors":"Muhammad Mustakim, Retantyo Wardoyo","doi":"10.14421/JISKA.2019.33-01","DOIUrl":"https://doi.org/10.14421/JISKA.2019.33-01","url":null,"abstract":"Pertumbuhan jumlah data rekam medik yang pesat, menjadi masalah tersediri yang harus diantisipasi. Untuk menangani fenomena information overload dalam informasi rekam medis,  perlu studi yang mendalam untuk dapat mengembangkan model filtering informasi rekam medik yang secara efektif mendukung peningkatan kualitas rekomendasi proses pencarian informasi. Berbagai penelitian terkait pencarian informasi medis telah banyak dilakukan, diantaranya mengembangkan penelitian dengan konsentrasi pada kebaruan dan keberagaman, menggunakan fuzzy ontology, berbasis factor tensor, memepertimbangkan niatan/intention pengguna ketika melakukan pencarian serta pendekatan dengan menggabungkan pencarian berbasis frasa dengan alat pemetaan konsep yang ada menggunakan MetaMap dan sumber data ULMS Metathesaurus.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45251584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APLIKASI PREDIKSI KELAYAKAN CALON ANGGOTA KREDIT PADA KSPPS BMT ARTA JIWA MANDIRI WONOGIRI MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR 对CALON的预测应用WONOGIRI MANDIRI制造K近邻算法对KSPPS-BMT的赞扬
Pub Date : 2019-06-11 DOI: 10.14421/JISKA.2018.32-03
Y. Kurniawan, Farida Angguntina
An economy that tends to be unstable causes many people to make loans at banks and cooperatives to meet their increasing daily needs. But there are some people who cannot return the loan in a timely manner. These problems can be created or developed by an application that is used to predict whether the people who apply for loans can return loans smoothly, smoothly and stall. Use of attributes such as gender, age, type of work, number of loans, term of return, collateral and income and use the K-Nearest Neighbor algorithm to make predictions. From the research results obtained in the form of accuracy value of 80%, recall of 91% and preciison of 85%. Thus this application can be used to help the pinjman savings cooperative in considering prospective savings and loan credit members who deserve a capital loan. Keywords: data mining, K Nearest Neighbor, cooperatives, savings and loans.
经济往往不稳定,导致许多人向银行和合作社贷款,以满足他们日益增长的日常需求。但也有一些人无法及时归还贷款。这些问题可以通过一个应用程序来产生或发展,该应用程序用于预测申请贷款的人是否能够顺利、顺利和拖延地归还贷款。使用性别、年龄、工作类型、贷款数量、回报期限、抵押品和收入等属性,并使用K-近邻算法进行预测。从研究结果来看,准确率值为80%,召回率为91%,准确率为85%。因此,该申请可用于帮助pinjman储蓄合作社考虑有资格获得资本贷款的潜在储蓄和贷款信贷成员。关键词:数据挖掘,K近邻,合作社,储蓄和贷款。
{"title":"APLIKASI PREDIKSI KELAYAKAN CALON ANGGOTA KREDIT PADA KSPPS BMT ARTA JIWA MANDIRI WONOGIRI MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR","authors":"Y. Kurniawan, Farida Angguntina","doi":"10.14421/JISKA.2018.32-03","DOIUrl":"https://doi.org/10.14421/JISKA.2018.32-03","url":null,"abstract":"An economy that tends to be unstable causes many people to make loans at banks and cooperatives to meet their increasing daily needs. But there are some people who cannot return the loan in a timely manner. These problems can be created or developed by an application that is used to predict whether the people who apply for loans can return loans smoothly, smoothly and stall. Use of attributes such as gender, age, type of work, number of loans, term of return, collateral and income and use the K-Nearest Neighbor algorithm to make predictions. From the research results obtained in the form of accuracy value of 80%, recall of 91% and preciison of 85%. Thus this application can be used to help the pinjman savings cooperative in considering prospective savings and loan credit members who deserve a capital loan. Keywords: data mining, K Nearest Neighbor, cooperatives, savings and loans.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49101464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of Cosine Similarity in an automatic classifier for comments 余弦相似度在注释自动分类器中的实现
Pub Date : 2019-06-11 DOI: 10.14421/JISKA.2018.32-05
Muhammad Habibi
Classification of text with a large amount is needed to extract the information contained in it. Student comments containing suggestions and criticisms about the lecturer and the lecture process on the learning evaluation system are not well classified, resulting in a difficult assessment process. So from that, we need a classification model that can classify comments automatically into classification categories. The method used is the Cosine Similarity method, which is a method for calculating similarities between two objects expressed in two vectors. The data used in this study were 1,630 comment data with several different categories. The test in this study uses k-fold cross-validation with k = 10. The results showed that the percentage accuracy of the classification model was 80.87%.
需要对量大的文本进行分类,提取其中包含的信息。学生对讲师和授课过程的意见没有很好地分类,导致评估过程困难。因此,我们需要一个分类模型,可以自动将评论分类到分类类别中。使用的方法是余弦相似度法,这是一种计算用两个向量表示的两个对象之间的相似度的方法。本研究使用的数据是1630个不同类别的评论数据。本研究采用k-fold交叉验证,k = 10。结果表明,该分类模型的准确率为80.87%。
{"title":"Implementation of Cosine Similarity in an automatic classifier for comments","authors":"Muhammad Habibi","doi":"10.14421/JISKA.2018.32-05","DOIUrl":"https://doi.org/10.14421/JISKA.2018.32-05","url":null,"abstract":"Classification of text with a large amount is needed to extract the information contained in it. Student comments containing suggestions and criticisms about the lecturer and the lecture process on the learning evaluation system are not well classified, resulting in a difficult assessment process. So from that, we need a classification model that can classify comments automatically into classification categories. The method used is the Cosine Similarity method, which is a method for calculating similarities between two objects expressed in two vectors. The data used in this study were 1,630 comment data with several different categories. The test in this study uses k-fold cross-validation with k = 10. The results showed that the percentage accuracy of the classification model was 80.87%.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48926924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Sistem Pendukung Keputusan Menentukan Karyawan Terbaik Dengan Metode AHP 决策支持系统采用AHP法确定最佳员工
Pub Date : 2019-06-11 DOI: 10.14421/JISKA.2018.32-06
A. S. Sinaga
Giving the best employee nicknames to spur other employees competing to provide the best, especially service to customers. Many things affect productivity and quality and comfort in the working environment. Then there needs to be clear and objective criteria in determining the best employees, not just based on qualitative values. In order to award the right target, the method for decision support systems can be applied in determining the best employees. The Analytical Hearachy Process (AHP) method requires criteria in making a decision so that the best employees can be chosen more quickly and objectively. There are 4 criteria: Attitude, Attendance, Performance and Work Period. of the 4 alternatives (4 employees) obtained by SRI RAHAYU: 0.419 or 41.9%, most deserve to be the best employee.
给最好的员工起绰号,以激励其他员工竞争提供最好的服务,尤其是为客户提供服务。许多因素会影响工作环境中的生产力、质量和舒适度。然后,在确定最佳员工时,需要有明确客观的标准,而不仅仅是基于定性的价值观。为了奖励正确的目标,决策支持系统的方法可以用于确定最佳员工。分析听力过程(AHP)方法需要制定决策标准,以便更快、更客观地选择最优秀的员工。有4个标准:态度、出勤率、绩效和工作周期。在SRI RAHAYU获得的4个备选方案(4名员工)中:0.419人,占41.9%,最值得成为最佳员工。
{"title":"Sistem Pendukung Keputusan Menentukan Karyawan Terbaik Dengan Metode AHP","authors":"A. S. Sinaga","doi":"10.14421/JISKA.2018.32-06","DOIUrl":"https://doi.org/10.14421/JISKA.2018.32-06","url":null,"abstract":"Giving the best employee nicknames to spur other employees competing to provide the best, especially service to customers. Many things affect productivity and quality and comfort in the working environment. Then there needs to be clear and objective criteria in determining the best employees, not just based on qualitative values. In order to award the right target, the method for decision support systems can be applied in determining the best employees. The Analytical Hearachy Process (AHP) method requires criteria in making a decision so that the best employees can be chosen more quickly and objectively. There are 4 criteria: Attitude, Attendance, Performance and Work Period. of the 4 alternatives (4 employees) obtained by SRI RAHAYU: 0.419 or 41.9%, most deserve to be the best employee.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44667169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
PENGUKURAN DAN KUALITAS PERANGKAT LUNAK WEBSITE “LINKEDIN” MENGGUNAKAN METODE FUNCTION POINT ANALYSIS LINKEDIN网站软件的测量和质量采用了有趣的分析方法
Pub Date : 2019-06-11 DOI: 10.14421/JISKA.2018.32-02
Cataryana Lenny Dwi Rizka, F. Dewi, S. Wicaksono
Penelitian ini dilakukan agar mengetahui ukuran kemajuan teknologi website LinkedIn yang merupakan salah satu jejaring sosial untuk kepentingan korporasi. LinkedIn merupakan tempat bagi sarjana untuk menemukan pekerjaan terbaik sesuai pendidikan yang telah ditekuni. Dalam penelitian ini digunakan teori dari Allan Albrecht yang tetap dikembangkan oleh International Function Point User Goup (IFPUG) dan akan menggunakan metode pengukuran terkenal yaitu Function Point Analysis (FPA) sebagai cara untuk menghitung serta memperkirakan hasil pengukuran dari website LinkedIn. Pengukuran ini dilakukan sebagai bentuk partisipasi pengembangan pada website LinkedIn yang merupakan sebuah website besar dan sangat banyak diminati oleh pengguna internet. Di hasil akhir penelitian diharapkan dapat mengetahui angka kemudahan akses pemakaian website LinkedIn terhadap pengguna dengan menggunakan rumus Crude Function Points (CFP), mengetahui bagaimana dan seberapa besar kompleksitas dari website LinkedIn dengan menggunakan rumus Relative Complexity Adjustment Factor (RCAF), yang kemudian hasil dari perhitungan rumus CFP dan RCAF  akan langsung diimplementasikan pada rumus pengukuran FPA.
本研究旨在了解领英网站技术的进步程度,领英网站是企业利益的社交网络之一。领英是一个让学生根据被窃取的教育找到最好工作的地方。本研究使用了国际功能点用户Goup(IFPUG)开发的Allan Albrecht理论,并将使用著名的测量方法功能点分析(FPA)来计算和计算LinkedIn网站上的测量结果。这项测量是作为一种参与LinkedIn网站开发的形式进行的,LinkedIn网站是一个大型且受到互联网用户高度要求的网站。研究结果预计将使用粗函数点(CFP)公式了解用户对领英网站的易访问号码,使用相对复杂度调整因子(RCAF)公式了解领英网站是如何以及有多复杂,CFP和RCAF的复杂计算结果将直接在FPA测量复合体上实现。
{"title":"PENGUKURAN DAN KUALITAS PERANGKAT LUNAK WEBSITE “LINKEDIN” MENGGUNAKAN METODE FUNCTION POINT ANALYSIS","authors":"Cataryana Lenny Dwi Rizka, F. Dewi, S. Wicaksono","doi":"10.14421/JISKA.2018.32-02","DOIUrl":"https://doi.org/10.14421/JISKA.2018.32-02","url":null,"abstract":"Penelitian ini dilakukan agar mengetahui ukuran kemajuan teknologi website LinkedIn yang merupakan salah satu jejaring sosial untuk kepentingan korporasi. LinkedIn merupakan tempat bagi sarjana untuk menemukan pekerjaan terbaik sesuai pendidikan yang telah ditekuni. Dalam penelitian ini digunakan teori dari Allan Albrecht yang tetap dikembangkan oleh International Function Point User Goup (IFPUG) dan akan menggunakan metode pengukuran terkenal yaitu Function Point Analysis (FPA) sebagai cara untuk menghitung serta memperkirakan hasil pengukuran dari website LinkedIn. Pengukuran ini dilakukan sebagai bentuk partisipasi pengembangan pada website LinkedIn yang merupakan sebuah website besar dan sangat banyak diminati oleh pengguna internet. Di hasil akhir penelitian diharapkan dapat mengetahui angka kemudahan akses pemakaian website LinkedIn terhadap pengguna dengan menggunakan rumus Crude Function Points (CFP), mengetahui bagaimana dan seberapa besar kompleksitas dari website LinkedIn dengan menggunakan rumus Relative Complexity Adjustment Factor (RCAF), yang kemudian hasil dari perhitungan rumus CFP dan RCAF  akan langsung diimplementasikan pada rumus pengukuran FPA.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45834803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sistem Otomatisasi Kumbung Jamur Berbasis Raspberry PI 我称之为“树莓派”的自动化连接系统
Pub Date : 2019-06-11 DOI: 10.14421/JISKA.2018.32-01
Dadang Iskandar
Budidaya jamur mempunyai kesulitan tersendiri yaitu harus menjaga suhu dan kelembaban pada rentang tertentu. Ruang hidup ideal bagi pertumbuhan jamur yaitu pada suhu 28-30 derajat Celcius dan kelembaban berkisan 80 – 90 %. Untuk menjaga dalam kondisi ideal diperlukan suatu peralatan yang bias memonitor suhu dan kelembaban ruang serta mengkondisikan supaya terus terjaga pada kondisi ideal.Sistem otomatisasi kumbung berfungsi untuk menjaga kondisi kumbung selalu berada pada kondisi ideal. Untuk membaca kondisi ruang menggunakan sensor kelembaban dan dikendalikan oleh raspberry Pi yang menggerakan actuator berupa pompa kabut.
蘑菇养殖有一个独特的困难,即在特定的范围内保持温度和水分。蘑菇生长的理想环境是28-30摄氏度,湿度闪烁80 - 90%。为了保持理想的状态,需要一种设备有偏差地监测房间的温度和湿度,并对理想条件进行调节。我连载自动化系统的功能是保持同步状态。使用湿度传感器读取空间状况,并受到树莓Pi的控制,树莓Pi是一种喷雾动器。
{"title":"Sistem Otomatisasi Kumbung Jamur Berbasis Raspberry PI","authors":"Dadang Iskandar","doi":"10.14421/JISKA.2018.32-01","DOIUrl":"https://doi.org/10.14421/JISKA.2018.32-01","url":null,"abstract":"Budidaya jamur mempunyai kesulitan tersendiri yaitu harus menjaga suhu dan kelembaban pada rentang tertentu. Ruang hidup ideal bagi pertumbuhan jamur yaitu pada suhu 28-30 derajat Celcius dan kelembaban berkisan 80 – 90 %. Untuk menjaga dalam kondisi ideal diperlukan suatu peralatan yang bias memonitor suhu dan kelembaban ruang serta mengkondisikan supaya terus terjaga pada kondisi ideal.Sistem otomatisasi kumbung berfungsi untuk menjaga kondisi kumbung selalu berada pada kondisi ideal. Untuk membaca kondisi ruang menggunakan sensor kelembaban dan dikendalikan oleh raspberry Pi yang menggerakan actuator berupa pompa kabut.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47742815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JISKA Jurnal Informatika Sunan Kalijaga
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1