Trust is essential in the digital world. It is a critical task to build digital trust for the ongoing digital engineering transformation. Aiming at developing a blockchain-based digital trust mechanism for Cloud Manufacturing or Manufacturing-as-a-Service (MaaS), in this paper, we use the manufacturing of low dead space (LDS) medical syringes through Cloud Manufacturing as a motivating scenario to develop a basic framework. To meet the need of optimally saving Covid-19 vaccine doses to save more lives, the medical device manufacturing community needs to make a swift move to meet the surged need for LDS syringes. Cloud Manufacturing is a form of emerging Digital Manufacturing facilitated with Cloud/Edge Computing, the Internet of Things, and other digital technologies. Cloud manufacturing allows quickly establishing a digital virtual enterprise that pools together various manufacturing resources worldwide to meet the surged needs of products and save cost and time. Trusting the product quality and safety is a significant challenge when using Cloud Manufacturing to manufacture the products. This paper proposes a schema of blockchain-based digital trust mechanisms with examples of using Cloud Manufacturing of medical LDS syringes for the urgent needs of catering Covid-19 vaccination.
{"title":"Blockchain-based digital trust mechanism: a use case of cloud manufacturing of LDS syringes for COVID-19 vaccination","authors":"Trupti Rane, Jingwei Huang","doi":"10.3233/jid-210021","DOIUrl":"https://doi.org/10.3233/jid-210021","url":null,"abstract":"Trust is essential in the digital world. It is a critical task to build digital trust for the ongoing digital engineering transformation. Aiming at developing a blockchain-based digital trust mechanism for Cloud Manufacturing or Manufacturing-as-a-Service (MaaS), in this paper, we use the manufacturing of low dead space (LDS) medical syringes through Cloud Manufacturing as a motivating scenario to develop a basic framework. To meet the need of optimally saving Covid-19 vaccine doses to save more lives, the medical device manufacturing community needs to make a swift move to meet the surged need for LDS syringes. Cloud Manufacturing is a form of emerging Digital Manufacturing facilitated with Cloud/Edge Computing, the Internet of Things, and other digital technologies. Cloud manufacturing allows quickly establishing a digital virtual enterprise that pools together various manufacturing resources worldwide to meet the surged needs of products and save cost and time. Trusting the product quality and safety is a significant challenge when using Cloud Manufacturing to manufacture the products. This paper proposes a schema of blockchain-based digital trust mechanisms with examples of using Cloud Manufacturing of medical LDS syringes for the urgent needs of catering Covid-19 vaccination.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133973003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vehicular Ad hoc Networks (VANETs) facilitate the timely dissemination of road traffic information, including early warnings related to road conditions, weather updates, traffic congestion and collisions. The information exchanged in VANETs is crucial for maintaining uninterrupted traffic flow, minimizing road mishaps, expediting emergency services and analyzing potential detours in case of congestion. In order to ensure the legitimacy of the interchanged messages and to preserve confidentiality, it is essential to establish secure authenticated channels among the communicating automotive nodes. Considering the highly dynamic nature of VANETs and the diversity of the participating vehicular nodes, Identity based Authenticated Key Agreement (ID-AKA) protocol in the multiple Private Key Generator (PKG) setting, is an ideal cryptographic technique for securing inter-vehicular communications. We cryptanalyze the existing pairing-free multiple PKG compatible ID-AKA (mPKG-ID-AKA) protocol designed for securing VANETs and prove that the protocol lacks weak Perfect Forward Secrecy (wPFS). Our investigations also reveal that previous attempts to model mPKG-ID-AKA protocols are computation-intensive and provide weaker security guarantees. To this end, we propose an efficient eCK secure mPKG-ID-AKA protocol based on the gap Diffie-Hellman assumption. Experimental analysis suggests that the proposed protocol attains the highest computation efficiency, when compared to the existing mPKG-ID-AKA schemes and is therefore highly suitable for securing inter-vehicular communications.
{"title":"A Provably Secure Identity Based Authenticated Key Agreement Protocol with Multiple PKG Compatibility for Inter-Vehicular Ad hoc Networks","authors":"Renu Mary Daniel, Anitha Thomas","doi":"10.3233/jid-200014","DOIUrl":"https://doi.org/10.3233/jid-200014","url":null,"abstract":"Vehicular Ad hoc Networks (VANETs) facilitate the timely dissemination of road traffic information, including early warnings related to road conditions, weather updates, traffic congestion and collisions. The information exchanged in VANETs is crucial for maintaining uninterrupted traffic flow, minimizing road mishaps, expediting emergency services and analyzing potential detours in case of congestion. In order to ensure the legitimacy of the interchanged messages and to preserve confidentiality, it is essential to establish secure authenticated channels among the communicating automotive nodes. Considering the highly dynamic nature of VANETs and the diversity of the participating vehicular nodes, Identity based Authenticated Key Agreement (ID-AKA) protocol in the multiple Private Key Generator (PKG) setting, is an ideal cryptographic technique for securing inter-vehicular communications. We cryptanalyze the existing pairing-free multiple PKG compatible ID-AKA (mPKG-ID-AKA) protocol designed for securing VANETs and prove that the protocol lacks weak Perfect Forward Secrecy (wPFS). Our investigations also reveal that previous attempts to model mPKG-ID-AKA protocols are computation-intensive and provide weaker security guarantees. To this end, we propose an efficient eCK secure mPKG-ID-AKA protocol based on the gap Diffie-Hellman assumption. Experimental analysis suggests that the proposed protocol attains the highest computation efficiency, when compared to the existing mPKG-ID-AKA schemes and is therefore highly suitable for securing inter-vehicular communications.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127612015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Salinesi, A. Achtaich, N. Souissi, R. Mazo, O. Roudiès, Ángela Villota
Existing formal languages for the specification of self-adaptive cyber-physical systems focus on re-configuring the system-to-be depending on its current context, to satisfy the user’s requirements, that is by dynamically composing the software’s structure and behavior. While these approaches specify context-sensitive requirements, they rarely consider their run-time dynamic and scalable nature. The State-Constraint Transition (SCT) modeling language, introduced in this paper, provides an answer to the problems linked to the specification of dynamic requirements by introducing the concept of configuration states, in which requirements are translated into constraints. The expressiveness of existing approaches is thus extended, combining the ease of use of well-established notations, notably those based on characteristics, and those based on Finite-state Machines (FSM), with the computational power and expressiveness of the constraint programming approach. The paper briefly presents the results of the preliminary evaluation, which assesses the expressiveness, scalability, and domain independence of the SCT language.
{"title":"State-Constraint Transition: A Language for the Formal Specification of Dynamic Cyber-System Requirements","authors":"C. Salinesi, A. Achtaich, N. Souissi, R. Mazo, O. Roudiès, Ángela Villota","doi":"10.3233/jid-210027","DOIUrl":"https://doi.org/10.3233/jid-210027","url":null,"abstract":"Existing formal languages for the specification of self-adaptive cyber-physical systems focus on re-configuring the system-to-be depending on its current context, to satisfy the user’s requirements, that is by dynamically composing the software’s structure and behavior. While these approaches specify context-sensitive requirements, they rarely consider their run-time dynamic and scalable nature. The State-Constraint Transition (SCT) modeling language, introduced in this paper, provides an answer to the problems linked to the specification of dynamic requirements by introducing the concept of configuration states, in which requirements are translated into constraints. The expressiveness of existing approaches is thus extended, combining the ease of use of well-established notations, notably those based on characteristics, and those based on Finite-state Machines (FSM), with the computational power and expressiveness of the constraint programming approach. The paper briefly presents the results of the preliminary evaluation, which assesses the expressiveness, scalability, and domain independence of the SCT language.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133307341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sustainability is the capacity to enable the co-existence of both earth's biosphere and human civilization. The basic premise of sustainability is that the earth's resources cannot be used, depleted, or damaged indefinitely (Portney 2015). Sustainability concerns with three major domains: environment, society, and economy (EPA 2015). Sub-domains of sustainability are cultural, technological, and political (James et al. 2014; Magee et al. 2013). The current strategies for achieving sustainability can generally be divided into three categories: population, affluence, and technology (Holdren, J. P., & Ehrlich 1974). The most promising path to sustainability is to develop new technologies that address the relationships among the environment, society, and economy, including the design, making, transporting, use, and disposal of the product. al. and titled Adaptation of to Sustainable analysis named
可持续性是使地球生物圈和人类文明共存的能力。可持续性的基本前提是地球的资源不能被无限地使用、耗尽或破坏(Portney 2015)。可持续发展涉及三个主要领域:环境、社会和经济(EPA 2015)。可持续性的子领域包括文化、技术和政治(James et al. 2014;Magee et al. 2013)。目前实现可持续发展的战略一般可以分为三类:人口、财富和技术(Holdren, j.p., & Ehrlich 1974)。实现可持续发展最有希望的途径是开发新技术,解决环境、社会和经济之间的关系,包括产品的设计、制造、运输、使用和处置。等,题为适应可持续分析命名
{"title":"Sustainability: Design, Making, and Technologies","authors":"Jiami Yang, Yong Zeng","doi":"10.3233/jid200021","DOIUrl":"https://doi.org/10.3233/jid200021","url":null,"abstract":"Sustainability is the capacity to enable the co-existence of both earth's biosphere and human civilization. The basic premise of sustainability is that the earth's resources cannot be used, depleted, or damaged indefinitely (Portney 2015). Sustainability concerns with three major domains: environment, society, and economy (EPA 2015). Sub-domains of sustainability are cultural, technological, and political (James et al. 2014; Magee et al. 2013). The current strategies for achieving sustainability can generally be divided into three categories: population, affluence, and technology (Holdren, J. P., & Ehrlich 1974). The most promising path to sustainability is to develop new technologies that address the relationships among the environment, society, and economy, including the design, making, transporting, use, and disposal of the product. al. and titled Adaptation of to Sustainable analysis named","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134560783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajad Shahsavari, Mohammed Rabah, E. Immonen, M. Haghbayan, J. Plosila
We propose an adaptive run-time failure recovery control system for quadcopter drones, based on remote real-time processing of measurement data streams. Particularly, the measured RPM values of the quadcopter motors are transmitted to a remote machine which hosts failure detection algorithms and performs recovery procedure. The proposed control system consists of three distinct parts: (1) A set of computationally simple PID controllers locally onboard the drone, (2) a set of computationally more demanding remotely hosted algorithms for real-time drone state detection, and (3) a digital twin co-execution software platform — the ModelConductor-eXtended — for two-way signal data exchange between the former two. The local on-board control system is responsible for maneuvering the drone in all conditions: path tracking under normal operation and safe landing in a failure state. The remote control system, on the other hand, is responsible for detecting the state of the drone and communicating the corresponding control commands and controller parameters to the drone in real time. The proposed control system concept is demonstrated via simulations in which a drone is represented by the widely studied Quad-Sim six degrees-of-freedom Simulink model. Results show that the trained failure detection binary classifier achieves a high level of performance with F1-score of 96.03%. Additionally, time analysis shows that the proposed remote control system, with average execution time of 0.49 milliseconds and total latency of 6.92 milliseconds in two-way data communication link, meets the real-time constraints of the problem. The potential practical applications for the presented approach are in drone operation in complex environments such as factories (indoor) or forests (outdoor).
{"title":"Remote Run-Time Failure Detection and Recovery Control For Quadcopters","authors":"Sajad Shahsavari, Mohammed Rabah, E. Immonen, M. Haghbayan, J. Plosila","doi":"10.3233/jid-210017","DOIUrl":"https://doi.org/10.3233/jid-210017","url":null,"abstract":"We propose an adaptive run-time failure recovery control system for quadcopter drones, based on remote real-time processing of measurement data streams. Particularly, the measured RPM values of the quadcopter motors are transmitted to a remote machine which hosts failure detection algorithms and performs recovery procedure. The proposed control system consists of three distinct parts: (1) A set of computationally simple PID controllers locally onboard the drone, (2) a set of computationally more demanding remotely hosted algorithms for real-time drone state detection, and (3) a digital twin co-execution software platform — the ModelConductor-eXtended — for two-way signal data exchange between the former two. The local on-board control system is responsible for maneuvering the drone in all conditions: path tracking under normal operation and safe landing in a failure state. The remote control system, on the other hand, is responsible for detecting the state of the drone and communicating the corresponding control commands and controller parameters to the drone in real time. The proposed control system concept is demonstrated via simulations in which a drone is represented by the widely studied Quad-Sim six degrees-of-freedom Simulink model. Results show that the trained failure detection binary classifier achieves a high level of performance with F1-score of 96.03%. Additionally, time analysis shows that the proposed remote control system, with average execution time of 0.49 milliseconds and total latency of 6.92 milliseconds in two-way data communication link, meets the real-time constraints of the problem. The potential practical applications for the presented approach are in drone operation in complex environments such as factories (indoor) or forests (outdoor).","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129030137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper aims at presenting 4D printing as a research-intensive technology from a critical external perspective. It provides a comprehensive discussion on the possible future of this emerging domain and also highlights weaknesses and strengths of applying a disruptive or incremental research strategy. Most scientific research efforts in 4D printing contribute to developing the spectrum of possible changes by investigating stimulus/smart materials combinations with additive manufacturing technologies. Although the current results are spectacular, the performances are still far from the basic requirements expected in the industry. The paper highlights the current limitations and trends towards incremental research strategies and argues in favor of risk-taking and the disruptive nature of research to make leaps that benefit society. Even if transgressive promises are associated with this technology with high growth potential in academic research, where creativity is involved and related invention derived, targeted applications are far from being achieved leading to a risk of the slow death of the field and unsatisfactory innovation. Based on this assessment, it appears that close fields in a situation of possible disciplinary porosity can – with a little openness and some creativity – move away from the current highly self-centered work to try to rekindle 4D printing, provided that risk-taking in interdisciplinary research is better supported. If creativity and interdisciplinary project management for innovation are to be promoted, the organizational context must be conducive to risk-taking for this redeployment.
{"title":"Research Strategy in 4D Printing: Disruptive vs Incremental?","authors":"Frédéric Demoly, Jean-Claude André","doi":"10.3233/jid200020","DOIUrl":"https://doi.org/10.3233/jid200020","url":null,"abstract":"The paper aims at presenting 4D printing as a research-intensive technology from a critical external perspective. It provides a comprehensive discussion on the possible future of this emerging domain and also highlights weaknesses and strengths of applying a disruptive or incremental research strategy. Most scientific research efforts in 4D printing contribute to developing the spectrum of possible changes by investigating stimulus/smart materials combinations with additive manufacturing technologies. Although the current results are spectacular, the performances are still far from the basic requirements expected in the industry. The paper highlights the current limitations and trends towards incremental research strategies and argues in favor of risk-taking and the disruptive nature of research to make leaps that benefit society. Even if transgressive promises are associated with this technology with high growth potential in academic research, where creativity is involved and related invention derived, targeted applications are far from being achieved leading to a risk of the slow death of the field and unsatisfactory innovation. Based on this assessment, it appears that close fields in a situation of possible disciplinary porosity can – with a little openness and some creativity – move away from the current highly self-centered work to try to rekindle 4D printing, provided that risk-taking in interdisciplinary research is better supported. If creativity and interdisciplinary project management for innovation are to be promoted, the organizational context must be conducive to risk-taking for this redeployment.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128357627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reliability allocation is a very important problem during early design and development phases of a system. There are several reliability allocation techniques which are used to achieve the target reliability. The feasibility of objectives (FOO) technique is one of them that is widely used to perform system reliability allocation. But this technique has two fundamental shortcomings. The first is the measurement scale and the second is that it does not consider the order weight of the reliability allocation factors. The prioritization of the factors is also an important topic in decision making. Practically, all factors in multi-criteria decision making (MCDM) are not in the same priority level. Hence, in decision making situation, it is usual for decision makers to consider different priority factors. So, considering the prioritization of the factors, a reliability allocation method is proposed here to overcome the shortcomings of the FOO technique. Also, a case study on reliability allocation in airborne radar system is considered here to verify the efficiency of the proposed approach. Finally, the results are calculated in different optimistic and pessimistic view point and compared with the FOO technique. This comparison exhibits the advantages and supremacy of the proposed approach.
{"title":"A prioritized decision making method for reliability allocation: In optimistic and pessimistic view","authors":"Aniruddha Samanta, K. Basu","doi":"10.3233/jid200013","DOIUrl":"https://doi.org/10.3233/jid200013","url":null,"abstract":"Reliability allocation is a very important problem during early design and development phases of a system. There are several reliability allocation techniques which are used to achieve the target reliability. The feasibility of objectives (FOO) technique is one of them that is widely used to perform system reliability allocation. But this technique has two fundamental shortcomings. The first is the measurement scale and the second is that it does not consider the order weight of the reliability allocation factors. The prioritization of the factors is also an important topic in decision making. Practically, all factors in multi-criteria decision making (MCDM) are not in the same priority level. Hence, in decision making situation, it is usual for decision makers to consider different priority factors. So, considering the prioritization of the factors, a reliability allocation method is proposed here to overcome the shortcomings of the FOO technique. Also, a case study on reliability allocation in airborne radar system is considered here to verify the efficiency of the proposed approach. Finally, the results are calculated in different optimistic and pessimistic view point and compared with the FOO technique. This comparison exhibits the advantages and supremacy of the proposed approach.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"48 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125725152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.
{"title":"One-of-a-kind Production in Cyber-Physical Production Systems Considering Machine Failures","authors":"Guido Vinci Carlavan, D. Rossit","doi":"10.3233/jid-210016","DOIUrl":"https://doi.org/10.3233/jid-210016","url":null,"abstract":"Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123077508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.
{"title":"Towards Accuracy Enhancement of Age Group Classification Using Generative Adversarial Networks","authors":"Khaled ELKarazle, V. Raman, P. Then","doi":"10.3233/jid-210019","DOIUrl":"https://doi.org/10.3233/jid-210019","url":null,"abstract":"Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126030049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Altavilla, N. Becattini, Lorenzo Fiorineschi, F. Rotini
Working under constrained conditions can boost or kill creativity, depending on the nature of the constraints (organizational, personal or task-related). However, a design process without clearly identified constraints, which set the project objectives, could lead to inefficiencies and unfruitful iterations. Some of the most acknowledged procedures to support requirement definition are focused on the use of specific checklists. However, notwithstanding the importance of the task, little attention was dedicated to the verification of the effectiveness of these tools. In such a context, the paper presents an investigation aimed at assessing the performance of three checklists that exploit different strategies to elicit requirements. To that purpose, a sample of fifty engineering students was asked to use the checklists to define the requirements for a specific design case. The outcomes of the experiment were assessed according to well-acknowledged effectiveness metrics, i.e. quantity, operationality, validity, non-redundancy, and completeness. The result of the assessment highlights that checklists based on more general questions or abstract stimuli can better support novice designers in making explicit internally felt design constraints that can potentially lead to more innovative design.
{"title":"Effectiveness of different requirements checklists for novice designers","authors":"S. Altavilla, N. Becattini, Lorenzo Fiorineschi, F. Rotini","doi":"10.3233/jid-210015","DOIUrl":"https://doi.org/10.3233/jid-210015","url":null,"abstract":"Working under constrained conditions can boost or kill creativity, depending on the nature of the constraints (organizational, personal or task-related). However, a design process without clearly identified constraints, which set the project objectives, could lead to inefficiencies and unfruitful iterations. Some of the most acknowledged procedures to support requirement definition are focused on the use of specific checklists. However, notwithstanding the importance of the task, little attention was dedicated to the verification of the effectiveness of these tools. In such a context, the paper presents an investigation aimed at assessing the performance of three checklists that exploit different strategies to elicit requirements. To that purpose, a sample of fifty engineering students was asked to use the checklists to define the requirements for a specific design case. The outcomes of the experiment were assessed according to well-acknowledged effectiveness metrics, i.e. quantity, operationality, validity, non-redundancy, and completeness. The result of the assessment highlights that checklists based on more general questions or abstract stimuli can better support novice designers in making explicit internally felt design constraints that can potentially lead to more innovative design.","PeriodicalId":342559,"journal":{"name":"J. Integr. Des. Process. Sci.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122293798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}