首页 > 最新文献

Current Research in Insect Science最新文献

英文 中文
Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens 凤仙花Dufour腺信号生物合成的差异基因表达
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100056
Nathan Derstine, David Galbraith, Gabriel Villar, Etya Amsalem

Pheromones regulating social behavior are one of the most explored phenomena in social insects. However, compound identity, biosynthesis and their genetic basis are known in only a handful of species. Here we examined the gene expression associated with pheromone biosynthesis of two main chemical classes: esters and terpenes, using the social bee Bombus impatiens. We conducted chemical and RNA-seq analyses of the Dufour's gland, an exocrine gland producing a plethora of pheromones regulating social behavior in hymenopteran species. The Dufour's gland contains mostly long-chained hydrocarbons, terpenes and esters that signal reproductive and social status in several bee species. In bumble bees, the Dufour's gland contains queen- and worker-specific esters, in addition to terpenes and terpene-esters only found in gynes and queens. These compounds are assumed to be synthesized de novo in the gland, however, their genetic basis is unknown. A whole transcriptome gene expression analysis of the gland in queens, gynes, queenless and queenright workers showed distinct transcriptomic profiles, with thousands of differentially expressed genes between the groups. Workers and queens express genes associated with key enzymes in the biosynthesis of wax esters, while queens and gynes preferentially express key genes in terpene biosynthesis. Overall, our data demonstrate gland-specific regulation of chemical signals associated with social behavior and identifies candidate genes and pathways regulating caste-specific chemical signals in social insects.

信息素调节社会行为是社会昆虫研究最多的现象之一。然而,只有少数物种知道化合物的身份、生物合成及其遗传基础。在这里,我们使用社会蜜蜂凤仙花来检测与两个主要化学类别的信息素生物合成相关的基因表达:酯类和萜烯。我们对杜夫腺进行了化学和RNA-seq分析,杜夫腺是一种外分泌腺,产生大量调节处女膜物种社会行为的信息素。杜福尔腺主要含有长链碳氢化合物、萜烯和酯类,这些物质标志着几种蜜蜂的生殖和社会地位。在大黄蜂中,杜福尔腺含有蜂王和工蜂特有的酯类,此外还有仅在雌蜂和蜂王中发现的萜烯和萜烯酯类。这些化合物被认为是在腺体中从头合成的,然而,它们的遗传基础尚不清楚。对女王、雌虫、无女王和女王光工作者的腺体进行的全转录组基因表达分析显示出不同的转录组特征,各组之间有数千个差异表达的基因。工蚁和雌蚁表达与蜡酯生物合成中的关键酶相关的基因,而雌蚁和雌蛛优先表达萜烯生物合成中的重要基因。总体而言,我们的数据证明了腺体对与社会行为相关的化学信号的特异性调节,并确定了调节社会昆虫种姓特异性化学信号的候选基因和途径。
{"title":"Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens","authors":"Nathan Derstine,&nbsp;David Galbraith,&nbsp;Gabriel Villar,&nbsp;Etya Amsalem","doi":"10.1016/j.cris.2023.100056","DOIUrl":"https://doi.org/10.1016/j.cris.2023.100056","url":null,"abstract":"<div><p>Pheromones regulating social behavior are one of the most explored phenomena in social insects. However, compound identity, biosynthesis and their genetic basis are known in only a handful of species. Here we examined the gene expression associated with pheromone biosynthesis of two main chemical classes: esters and terpenes, using the social bee <em>Bombus impatiens</em>. We conducted chemical and RNA-seq analyses of the Dufour's gland, an exocrine gland producing a plethora of pheromones regulating social behavior in hymenopteran species. The Dufour's gland contains mostly long-chained hydrocarbons, terpenes and esters that signal reproductive and social status in several bee species. In bumble bees, the Dufour's gland contains queen- and worker-specific esters, in addition to terpenes and terpene-esters only found in gynes and queens. These compounds are assumed to be synthesized de novo in the gland, however, their genetic basis is unknown. A whole transcriptome gene expression analysis of the gland in queens, gynes, queenless and queenright workers showed distinct transcriptomic profiles, with thousands of differentially expressed genes between the groups. Workers and queens express genes associated with key enzymes in the biosynthesis of wax esters, while queens and gynes preferentially express key genes in terpene biosynthesis. Overall, our data demonstrate gland-specific regulation of chemical signals associated with social behavior and identifies candidate genes and pathways regulating caste-specific chemical signals in social insects.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"3 ","pages":"Article 100056"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49815440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure of an antennally-expressed carboxylesterase suggests lepidopteran odorant degrading enzymes are broadly tuned 触角表达的羧酸酯酶的结构表明鳞翅目气味降解酶被广泛调节
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100062
Jacob A. Corcoran , Cyril Hamiaux , Nicoletta Faraone , Christer Löfstedt , Colm Carraher

Insects rely on the detection of chemical cues present in the environment to guide their foraging and reproductive behaviour. As such, insects have evolved a sophisticated chemical processing system in their antennae comprised of several types of olfactory proteins. Of these proteins, odorant degrading enzymes are responsible for metabolising the chemical cues within the antennae, thereby maintaining olfactory system function. Members of the carboxyl/cholinesterase gene family are known to degrade odorant molecules with acetate-ester moieties that function as host recognition cues or sex pheromones, however, their specificity for these compounds remains unclear. Here, we evaluate expression levels of this gene family in the light-brown apple moth, Epiphyas postvittana, via RNAseq and identify putative odorant degrading enzymes. We then solve the apo-structure for EposCCE24 by X-ray crystallography to a resolution of 2.43 Å and infer substrate specificity based on structural characteristics of the enzyme's binding pocket. The specificity of EposCCE24 was validated by testing its ability to degrade biologically relevant and non-relevant sex pheromone components and plant volatiles using GC–MS. We found that EposCCE24 is neither capable of discriminating between linear acetate-ester odorant molecules of varying chain length, nor between molecules with varying double bond positions. EposCCE24 efficiently degraded both plant volatiles and sex pheromone components containing acetate-ester functional groups, confirming its role as a broadly-tuned odorant degrading enzyme in the moth olfactory organ.

昆虫依靠检测环境中存在的化学线索来指导它们的觅食和繁殖行为。因此,昆虫在触角上进化出了一个复杂的化学处理系统,该系统由几种类型的嗅觉蛋白组成。在这些蛋白质中,气味降解酶负责代谢触角内的化学线索,从而维持嗅觉系统的功能。众所周知,羧基/胆碱酯酶基因家族的成员可以降解具有醋酸酯部分的气味分子,醋酸酯部分起到宿主识别线索或性信息素的作用,然而,它们对这些化合物的特异性尚不清楚。在这里,我们通过RNAseq评估了该基因家族在浅棕色苹果蛾Epiphyas postvittana中的表达水平,并鉴定了推定的气味降解酶。然后,我们通过X射线晶体学将EposCCE24的apo结构解析为2.43Å的分辨率,并根据酶结合口袋的结构特征推断底物特异性。EposCCE24的特异性通过GC–MS测试其降解生物相关和非相关性信息素成分和植物挥发物的能力来验证。我们发现EposCCE24既不能区分不同链长的线性乙酸酯气味剂分子,也不能区分具有不同双键位置的分子。EposCCE24有效降解了植物挥发物和含有乙酸酯官能团的性信息素成分,证实了其在蛾嗅觉器官中作为一种广泛调节的气味降解酶的作用。
{"title":"Structure of an antennally-expressed carboxylesterase suggests lepidopteran odorant degrading enzymes are broadly tuned","authors":"Jacob A. Corcoran ,&nbsp;Cyril Hamiaux ,&nbsp;Nicoletta Faraone ,&nbsp;Christer Löfstedt ,&nbsp;Colm Carraher","doi":"10.1016/j.cris.2023.100062","DOIUrl":"10.1016/j.cris.2023.100062","url":null,"abstract":"<div><p>Insects rely on the detection of chemical cues present in the environment to guide their foraging and reproductive behaviour. As such, insects have evolved a sophisticated chemical processing system in their antennae comprised of several types of olfactory proteins. Of these proteins, odorant degrading enzymes are responsible for metabolising the chemical cues within the antennae, thereby maintaining olfactory system function. Members of the carboxyl/cholinesterase gene family are known to degrade odorant molecules with acetate-ester moieties that function as host recognition cues or sex pheromones, however, their specificity for these compounds remains unclear. Here, we evaluate expression levels of this gene family in the light-brown apple moth, <em>Epiphyas postvittana,</em> via RNAseq and identify putative odorant degrading enzymes. We then solve the apo-structure for EposCCE24 by X-ray crystallography to a resolution of 2.43 Å and infer substrate specificity based on structural characteristics of the enzyme's binding pocket. The specificity of EposCCE24 was validated by testing its ability to degrade biologically relevant and non-relevant sex pheromone components and plant volatiles using GC–MS. We found that EposCCE24 is neither capable of discriminating between linear acetate-ester odorant molecules of varying chain length, nor between molecules with varying double bond positions. EposCCE24 efficiently degraded both plant volatiles and sex pheromone components containing acetate-ester functional groups, confirming its role as a broadly-tuned odorant degrading enzyme in the moth olfactory organ.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"3 ","pages":"Article 100062"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/c9/main.PMC10313914.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9802093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the swede midge, Contarinia nasturtii, first instar larval salivary gland transcriptome 瑞典蠓一龄幼虫唾液腺转录组的研究
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100064
Boyd A. Mori , Cathy Coutu , Martin A. Erlandson , Dwayne D. Hegedus

Proteins in saliva of gall-forming insect larvae govern insect-host plant interactions. Contarinia nasturtii, the swede midge, is a pest of brassicaceous vegetables (cabbage, cauliflower, broccoli) and canola. We examined the salivary gland (SG) transcriptome of first instar larvae reared on Brassica napus and catalogued genes encoding secreted proteins that may contribute to the initial stages of larval establishment, the synthesis of plant growth hormones, extra-oral digestion and evasion of host defenses. A significant portion of the secreted proteins with unknown functions were unique to C. nasturtii and were often members of larger gene families organized in genomic clusters with conservation patterns suggesting that they are undergoing selection.

形成胆汁的昆虫幼虫唾液中的蛋白质控制昆虫-宿主-植物的相互作用。旱金莲是一种瑞典侏儒,是芸苔类蔬菜(卷心菜、花椰菜、西兰花)和油菜籽的害虫。我们检测了在甘蓝型油菜上饲养的一龄幼虫的唾液腺(SG)转录组,并对编码分泌蛋白的基因进行了编目,这些分泌蛋白可能有助于幼虫建立的初始阶段、植物生长激素的合成、口外消化和逃避宿主防御。具有未知功能的分泌蛋白中有很大一部分是旱金莲特有的,并且通常是基因组簇中组织的较大基因家族的成员,其保护模式表明它们正在进行选择。
{"title":"Characterization of the swede midge, Contarinia nasturtii, first instar larval salivary gland transcriptome","authors":"Boyd A. Mori ,&nbsp;Cathy Coutu ,&nbsp;Martin A. Erlandson ,&nbsp;Dwayne D. Hegedus","doi":"10.1016/j.cris.2023.100064","DOIUrl":"https://doi.org/10.1016/j.cris.2023.100064","url":null,"abstract":"<div><p>Proteins in saliva of gall-forming insect larvae govern insect-host plant interactions. <em>Contarinia nasturtii</em>, the swede midge, is a pest of brassicaceous vegetables (cabbage, cauliflower, broccoli) and canola. We examined the salivary gland (SG) transcriptome of first instar larvae reared on <em>Brassica napus</em> and catalogued genes encoding secreted proteins that may contribute to the initial stages of larval establishment, the synthesis of plant growth hormones, extra-oral digestion and evasion of host defenses. A significant portion of the secreted proteins with unknown functions were unique to <em>C. nasturtii</em> and were often members of larger gene families organized in genomic clusters with conservation patterns suggesting that they are undergoing selection.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"4 ","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49775617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced maternal age has negative multigenerational impacts during Drosophila melanogaster embryogenesis 高龄母亲对黑腹果蝇胚胎发生有负向的多代影响
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100068
Halie Ostberg , Laura Boehm Vock , Margaret C. Bloch-Qazi

Increasing maternal age is commonly accompanied by decreased fitness in offspring. In Drosophila melanogaster, maternal senescence negatively affects multiple facets of offspring phenotype and fitness. These maternal effects are particularly large on embryonic viability. Identifying which embryonic stages are disrupted can indicate mechanisms of maternal effect senescence. Some maternal effects can also carry-over to subsequent generations. We examined potential multi- and transgenerational effects maternal senescence on embryonic development in two laboratory strains of D. melanogaster. We categorized the developmental stages of embryos from every combination of old and young mother, grandmother and great grandmother. We then modelled embryonic survival across the stages and compared these models among the multigenerational maternal age groups in order to identify which developmental processes were most sensitive to the effects of maternal effect senescence. Maternal effect senescence has negative multigenerational effects on multiple embryonic stages, indicating that maternal provisioning and, possibly epigenetics, but not mutation accumulation, contribute to decreased offspring survival. This study shows the large, early and multi-faceted nature of maternal effects senescence in an insect population.

母亲年龄的增加通常伴随着后代健康状况的下降。在黑腹果蝇中,母体衰老对后代表型和适应性的多个方面产生负面影响。这些母体效应对胚胎活力的影响尤其大。识别哪些胚胎阶段被破坏可以表明母体效应衰老的机制。一些母亲的影响也可以延续到下一代。我们在两个实验室品系的黑腹果蝇中检测了母体衰老对胚胎发育的潜在多代和转基因影响。我们对年老和年幼的母亲、祖母和曾祖母的每一个组合的胚胎发育阶段进行了分类。然后,我们对不同阶段的胚胎存活进行了建模,并在多代母体年龄组中比较了这些模型,以确定哪些发育过程对母体效应衰老的影响最敏感。母体效应衰老对多个胚胎阶段具有负面的多代效应,这表明母体供应和可能的表观遗传学,但不是突变积累,会导致后代存活率下降。这项研究表明,母体对昆虫种群衰老的影响具有广泛、早期和多方面的性质。
{"title":"Advanced maternal age has negative multigenerational impacts during Drosophila melanogaster embryogenesis","authors":"Halie Ostberg ,&nbsp;Laura Boehm Vock ,&nbsp;Margaret C. Bloch-Qazi","doi":"10.1016/j.cris.2023.100068","DOIUrl":"https://doi.org/10.1016/j.cris.2023.100068","url":null,"abstract":"<div><p>Increasing maternal age is commonly accompanied by decreased fitness in offspring. In <em>Drosophila melanogaster</em>, maternal senescence negatively affects multiple facets of offspring phenotype and fitness. These maternal effects are particularly large on embryonic viability. Identifying which embryonic stages are disrupted can indicate mechanisms of maternal effect senescence. Some maternal effects can also carry-over to subsequent generations. We examined potential multi- and transgenerational effects maternal senescence on embryonic development in two laboratory strains of <em>D. melanogaster</em>. We categorized the developmental stages of embryos from every combination of old and young mother, grandmother and great grandmother. We then modelled embryonic survival across the stages and compared these models among the multigenerational maternal age groups in order to identify which developmental processes were most sensitive to the effects of maternal effect senescence. Maternal effect senescence has negative multigenerational effects on multiple embryonic stages, indicating that maternal provisioning and, possibly epigenetics, but not mutation accumulation, contribute to decreased offspring survival. This study shows the large, early and multi-faceted nature of maternal effects senescence in an insect population.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"4 ","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49775635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Many parasitoids lack adult fat accumulation, despite fatty acid synthesis: A discussion of concepts and considerations for future research 许多拟寄生物缺乏成体脂肪积累,尽管脂肪酸合成:概念的讨论和对未来研究的考虑
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100055
Bertanne Visser , Cécile Le Lann , Daniel A. Hahn , Mark Lammers , Caroline M. Nieberding , Hans T. Alborn , Thomas Enriquez , Mathilde Scheifler , Jeffrey A. Harvey , Jacintha Ellers

Fat reserves, specifically the accumulation of triacylglycerols, are a major energy source and play a key role for life histories. Fat accumulation is a conserved metabolic pattern across most insects, yet in most parasitoid species adults do not gain fat mass, even when nutrients are readily available and provided ad libitum. This extraordinary physiological phenotype has evolved repeatedly in phylogenetically dispersed parasitoid species. This poses a conundrum because it could lead to significant constraints on energy allocation toward key adult functions such as survival and reproduction. Recent work on the underlying genetic and biochemical mechanisms has spurred a debate on fat accumulation versus fat production, because of incongruent interpretation of results obtained using different methodologies. This debate is in part due to semantics, highlighting the need for a synthetic perspective on fat accumulation that reconciles previous debates and provides new insights and terminology. In this paper, we propose updated, unambiguous terminology for future research in the field, including “fatty acid synthesis” and “lack of adult fat accumulation”, and describe the distinct metabolic pathways involved in the complex process of lipogenesis. We then discuss the benefits and drawbacks of the main methods available to measure fatty acid synthesis and adult fat accumulation. Most importantly, gravimetric/colorimetric and isotope tracking methods give complementary information, provided that they are applied with appropriate controls and interpreted correctly. We also compiled a comprehensive list of fat accumulation studies performed during the last 25 years. We present avenues for future research that combine chemistry, ecology, and evolution into an integrative approach, which we think is needed to understand the dynamics of fat accumulation in parasitoids.

脂肪储备,特别是三酰甘油的积累,是一种主要的能量来源,在生活史中起着关键作用。脂肪积累是大多数昆虫的一种保守代谢模式,但在大多数寄生蜂物种中,即使营养物质随时可用并随意提供,成虫也不会增加脂肪量。这种特殊的生理表型在系统发育上分散的寄生蜂物种中反复进化。这带来了一个难题,因为它可能会导致对关键成年功能(如生存和繁殖)的能量分配产生重大限制。由于对使用不同方法获得的结果的解释不一致,最近关于潜在遗传和生化机制的研究引发了关于脂肪积累与脂肪产生的争论。这场辩论在一定程度上是由于语义,强调了对脂肪积累的综合观点的必要性,该观点与之前的辩论相一致,并提供了新的见解和术语。在这篇论文中,我们为该领域未来的研究提出了更新、明确的术语,包括“脂肪酸合成”和“缺乏成人脂肪积累”,并描述了脂肪生成复杂过程中涉及的不同代谢途径。然后,我们讨论了可用于测量脂肪酸合成和成人脂肪积累的主要方法的优点和缺点。最重要的是,重量/比色法和同位素追踪方法提供了补充信息,前提是它们得到了适当的控制并得到了正确的解释。我们还编制了一份在过去25年中进行的脂肪积累研究的综合清单。我们为未来的研究提供了途径,将化学、生态学和进化结合成一种综合方法,我们认为这是了解寄生蜂脂肪积累动态所必需的。
{"title":"Many parasitoids lack adult fat accumulation, despite fatty acid synthesis: A discussion of concepts and considerations for future research","authors":"Bertanne Visser ,&nbsp;Cécile Le Lann ,&nbsp;Daniel A. Hahn ,&nbsp;Mark Lammers ,&nbsp;Caroline M. Nieberding ,&nbsp;Hans T. Alborn ,&nbsp;Thomas Enriquez ,&nbsp;Mathilde Scheifler ,&nbsp;Jeffrey A. Harvey ,&nbsp;Jacintha Ellers","doi":"10.1016/j.cris.2023.100055","DOIUrl":"10.1016/j.cris.2023.100055","url":null,"abstract":"<div><p>Fat reserves, specifically the accumulation of triacylglycerols, are a major energy source and play a key role for life histories. Fat accumulation is a conserved metabolic pattern across most insects, yet in most parasitoid species adults do not gain fat mass, even when nutrients are readily available and provided <em>ad libitum</em>. This extraordinary physiological phenotype has evolved repeatedly in phylogenetically dispersed parasitoid species. This poses a conundrum because it could lead to significant constraints on energy allocation toward key adult functions such as survival and reproduction. Recent work on the underlying genetic and biochemical mechanisms has spurred a debate on fat accumulation versus fat production, because of incongruent interpretation of results obtained using different methodologies. This debate is in part due to semantics, highlighting the need for a synthetic perspective on fat accumulation that reconciles previous debates and provides new insights and terminology. In this paper, we propose updated, unambiguous terminology for future research in the field, including “fatty acid synthesis” and “lack of adult fat accumulation”, and describe the distinct metabolic pathways involved in the complex process of lipogenesis. We then discuss the benefits and drawbacks of the main methods available to measure fatty acid synthesis and adult fat accumulation. Most importantly, gravimetric/colorimetric and isotope tracking methods give complementary information, provided that they are applied with appropriate controls and interpreted correctly. We also compiled a comprehensive list of fat accumulation studies performed during the last 25 years. We present avenues for future research that combine chemistry, ecology, and evolution into an integrative approach, which we think is needed to understand the dynamics of fat accumulation in parasitoids.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"3 ","pages":"Article 100055"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/32/main.PMC10139962.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9399055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Behavioural differences in predator aware and predator naïve Wellington tree wētā, Hemideina crassidens. 捕食者意识和捕食者的行为差异naïve威灵顿树wētā,海棠。
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100058
Meg Kelly , Priscilla M Wehi , Sheri L Johnson

Insects have evolved a wide range of behavioural traits to avoid predation, with anti-predator behaviours emerging as important adaptive responses to the specific strategies employed by predators. These responses may become ineffective, however, when a species is introduced to a novel predator type. When individuals cannot recognise an introduced predator for instance, they may respond in ways that mean they fail to avoid, escape, or neutralize a predator encounter. New Zealand's endemic insect fauna evolved in the absence of terrestrial mammalian predators for millions of years, resulting in the evolution of unique fauna like the large, flightless Orthopteran, the wētā. Here we investigate how experience with introduced mammalian predators might influence anti-predator behaviours by comparing behaviours in a group of Wellington tree wētā (Hemideina crassidens) living in an ecosanctuary, Zealandia, protected from non-native mammalian predators, and a group living in adjacent sites without mammalian predator control. We used behavioural phenotyping assays with both groups to examine rates of activity and defensive aggression shortly after capture, and again after a period of acclimation. We found that wētā living in protected areas were more active shortly after capture than wētā in non-protected habitats where mammalian predators were present. Male wētā living in non-protected areas tended to be less aggressive than any other group. These results suggest that lifetime experience with differing predator arrays may influence the expression of antipredator behaviour in tree wētā. Disentangling innate and experiential drivers of these behavioural responses further will have important implications for insect populations in rapidly changing environments.

昆虫进化出了广泛的行为特征来避免捕食,反捕食者行为成为对捕食者使用的特定策略的重要适应性反应。然而,当一个物种被引入一种新型捕食者时,这些反应可能会变得无效。例如,当个体无法识别引入的捕食者时,它们的反应可能意味着它们无法避免、逃脱或抵消捕食者的遭遇。数百万年来,新西兰特有的昆虫区系在没有陆生哺乳动物捕食者的情况下进化而来,导致了独特的动物群的进化,如大型、不会飞的直翅目昆虫wātā。在这里,我们通过比较生活在新西兰生态保护区的一组威灵顿树wātā(Hemidina crassidens)和生活在没有哺乳动物捕食者控制的邻近地区的一组行为,来研究引入哺乳动物捕食者的经验如何影响反捕食者行为。我们对两组进行了行为表型分析,以检查捕获后不久以及一段时间的适应后的活动率和防御攻击性。我们发现,生活在保护区的wātā在被捕获后不久比生活在有哺乳动物捕食者的非保护栖息地的wītā更活跃。生活在非保护区的男性wātā往往比任何其他群体都不那么好斗。这些结果表明,不同捕食者阵列的一生经历可能会影响树wātā中反捕食者行为的表达。进一步解开这些行为反应的内在和经验驱动因素,将对快速变化环境中的昆虫种群产生重要影响。
{"title":"Behavioural differences in predator aware and predator naïve Wellington tree wētā, Hemideina crassidens.","authors":"Meg Kelly ,&nbsp;Priscilla M Wehi ,&nbsp;Sheri L Johnson","doi":"10.1016/j.cris.2023.100058","DOIUrl":"https://doi.org/10.1016/j.cris.2023.100058","url":null,"abstract":"<div><p>Insects have evolved a wide range of behavioural traits to avoid predation, with anti-predator behaviours emerging as important adaptive responses to the specific strategies employed by predators. These responses may become ineffective, however, when a species is introduced to a novel predator type. When individuals cannot recognise an introduced predator for instance, they may respond in ways that mean they fail to avoid, escape, or neutralize a predator encounter. New Zealand's endemic insect fauna evolved in the absence of terrestrial mammalian predators for millions of years, resulting in the evolution of unique fauna like the large, flightless Orthopteran, the wētā. Here we investigate how experience with introduced mammalian predators might influence anti-predator behaviours by comparing behaviours in a group of Wellington tree wētā (<em>Hemideina crassidens</em>) living in an ecosanctuary, Zealandia, protected from non-native mammalian predators, and a group living in adjacent sites without mammalian predator control. We used behavioural phenotyping assays with both groups to examine rates of activity and defensive aggression shortly after capture, and again after a period of acclimation. We found that wētā living in protected areas were more active shortly after capture than wētā in non-protected habitats where mammalian predators were present. Male wētā living in non-protected areas tended to be less aggressive than any other group. These results suggest that lifetime experience with differing predator arrays may influence the expression of antipredator behaviour in tree wētā. Disentangling innate and experiential drivers of these behavioural responses further will have important implications for insect populations in rapidly changing environments.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"3 ","pages":"Article 100058"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49774046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Noxious chemical discrimination by Tribolium castaneum TRPA1 channel in the HEK293 cell expression system 在HEK293细胞表达系统中,蓖麻TRPA1通道对有害化学物质的鉴别
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100066
Kenji Shimomura , Hinoki Oikawa , Kosuke Yamamoto , Takehito Terajima , Shunsuke Yajima , Motohiro Tomizawa

Nociception is the sensory perception of noxious chemical stimuli. Repellent behavior to avoid noxious stimuli is indispensable for survival, and this mechanism has been evolutionarily conserved across a wide range of species, from mammals to insects. The transient receptor potential ankyrin 1 (TRPA1) channel is one of the most conserved noxious chemical sensors. Here, we describe the heterologous stable expression of Tribolium castaneum TRPA1 (TcTRPA1) in human embryonic kidney (HEK293) cells. The intracellular Ca2+ influx was measured when two compounds, citronellal and l-menthol, derived from plant essential oils, were applied in vitro using a fluorescence assay. The analysis revealed that citronellal evoked Ca2+ influx dose-dependently for TcTRPA1, whereas l-menthol did not. In combination with our present and previous results of the avoidance-behavioral assay at the organism level, we suggest that TcTRPA1 discriminates between these two toxic compounds, and diversification in the chemical nociception selectivity has occurred in TRPA1 channel among insect taxa.

伤害感受是对有害化学刺激的感觉。躲避有害刺激的排斥行为对生存是必不可少的,从哺乳动物到昆虫,这种机制在进化上已经在广泛的物种中得到了保护。瞬时受体电位锚蛋白1(TRPA1)通道是最保守的有毒化学传感器之一。在这里,我们描述了谷草Tribolium castaneum TRPA1(TcTRPA1)在人类胚胎肾(HEK293)细胞中的异源稳定表达。当两种来源于植物精油的化合物香茅醛和l-薄荷醇在体外使用荧光测定法时,测量细胞内Ca2+内流。分析表明,香茅醛对TcTRPA1的Ca2+内流具有剂量依赖性,而l-薄荷醇则没有。结合我们目前和以前在生物体水平上的回避行为测定结果,我们认为TcTRPA1区分这两种有毒化合物,并且昆虫分类群中TRPA1通道的化学伤害选择性发生了多样化。
{"title":"Noxious chemical discrimination by Tribolium castaneum TRPA1 channel in the HEK293 cell expression system","authors":"Kenji Shimomura ,&nbsp;Hinoki Oikawa ,&nbsp;Kosuke Yamamoto ,&nbsp;Takehito Terajima ,&nbsp;Shunsuke Yajima ,&nbsp;Motohiro Tomizawa","doi":"10.1016/j.cris.2023.100066","DOIUrl":"https://doi.org/10.1016/j.cris.2023.100066","url":null,"abstract":"<div><p>Nociception is the sensory perception of noxious chemical stimuli. Repellent behavior to avoid noxious stimuli is indispensable for survival, and this mechanism has been evolutionarily conserved across a wide range of species, from mammals to insects. The transient receptor potential ankyrin 1 (TRPA1) channel is one of the most conserved noxious chemical sensors. Here, we describe the heterologous stable expression of <em>Tribolium castaneum</em> TRPA1 (TcTRPA1) in human embryonic kidney (HEK293) cells. The intracellular Ca<sup>2+</sup> influx was measured when two compounds, citronellal and <em><span>l</span></em>-menthol, derived from plant essential oils, were applied <em>in vitro</em> using a fluorescence assay. The analysis revealed that citronellal evoked Ca<sup>2+</sup> influx dose-dependently for TcTRPA1, whereas <em><span>l</span></em>-menthol did not. In combination with our present and previous results of the avoidance-behavioral assay at the organism level, we suggest that TcTRPA1 discriminates between these two toxic compounds, and diversification in the chemical nociception selectivity has occurred in TRPA1 channel among insect taxa.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"4 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49775616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress 静止不动:兼性共生体向蚜虫宿主提供的热保护对反复的热应激具有弹性
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100061
Kévin Tougeron , Corentin Iltis , Eliott Rampnoux , Alexandre Goerlinger , Linda Dhondt , Thierry Hance

Insects have evolved diverse strategies to resist extreme high temperatures (EHT). The adaptive value of such strategies has to be evaluated when organisms experience multiple EHT events during their lifetime, as predicted in a changing climate. This is particularly the case for associations with facultative microbial partners involved in insect heat tolerance, the resilience of which to repeated heat stress has never been studied. We compared two artificial lines of the pea aphid (Acyrthosiphon pisum) differing by the absence or presence of the heat-protective facultative bacterium Serratia symbiotica. We exposed insect nymphs to a varying number of EHT events (between 0 and 3), and recorded fitness parameters. Except survival traits, fitness estimates were affected by the interaction between aphid infection status (absence/presence of S. symbiotica) and thermal treatment (number of heat shocks applied). Costs of bacterial infection were detected in the absence of thermal stress: symbiont-hosting aphids incurred longer development, decreased fecundity and body size. However, symbiotic infection turned neutral, and even beneficial for some traits (development and body size), as the number of heat shocks increased, and compared to the aposymbiotic strain. Conversely, symbiotic infection mediated aphid response to heat shock(s): fitness decreased only in the uninfected group. These findings suggest that (i) the facultative symbiont may alternatively act as a pathogen, commensal or mutualist depending on thermal environment, and (ii) the heat protection it delivered to its host persists under frequent EHT. We discuss eco-evolutionary implications and the role of potentially confounding factors (stage-specific effects, genetic polymorphism displayed by the obligate symbiont).

昆虫进化出了多种抵御极端高温的策略。当生物体在其一生中经历多个EHT事件时,必须评估这种策略的适应性价值,正如在气候变化中预测的那样。与参与昆虫耐热性的兼性微生物伴侣的关系尤其如此,昆虫对反复热应激的恢复力从未被研究过。我们比较了豌豆蚜的两个人工品系(豌豆蚜),它们因不存在或存在耐热兼性细菌沙雷氏共生菌而不同。我们将若虫暴露于不同数量的EHT事件(在0到3之间),并记录适应度参数。除了生存特征外,适应度估计还受到蚜虫感染状态(不存在/存在S.symbiotica)和热处理(施加热冲击的次数)之间的相互作用的影响。细菌感染的代价是在没有热应激的情况下检测到的:寄主蚜虫的共生体发育时间更长,繁殖力和体型降低。然而,与非共生菌株相比,随着热休克次数的增加,共生感染变得中性,甚至对某些性状(发育和体型)有利。相反,共生感染介导的蚜虫对热休克的反应:适应度仅在未感染组中降低。这些发现表明,(i)根据热环境的不同,兼性共生体可以作为病原体、共生体或互惠体,以及(ii)它向宿主提供的热保护在频繁的EHT下持续存在。我们讨论了生态进化的含义和潜在混杂因素的作用(阶段特异性效应,专性共生体表现出的遗传多态性)。
{"title":"Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress","authors":"Kévin Tougeron ,&nbsp;Corentin Iltis ,&nbsp;Eliott Rampnoux ,&nbsp;Alexandre Goerlinger ,&nbsp;Linda Dhondt ,&nbsp;Thierry Hance","doi":"10.1016/j.cris.2023.100061","DOIUrl":"10.1016/j.cris.2023.100061","url":null,"abstract":"<div><p>Insects have evolved diverse strategies to resist extreme high temperatures (EHT). The adaptive value of such strategies has to be evaluated when organisms experience multiple EHT events during their lifetime, as predicted in a changing climate. This is particularly the case for associations with facultative microbial partners involved in insect heat tolerance, the resilience of which to repeated heat stress has never been studied. We compared two artificial lines of the pea aphid (<em>Acyrthosiphon pisum</em>) differing by the absence or presence of the heat-protective facultative bacterium <em>Serratia symbiotica</em>. We exposed insect nymphs to a varying number of EHT events (between 0 and 3), and recorded fitness parameters. Except survival traits, fitness estimates were affected by the interaction between aphid infection status (absence/presence of <em>S. symbiotica</em>) and thermal treatment (number of heat shocks applied). Costs of bacterial infection were detected in the absence of thermal stress: symbiont-hosting aphids incurred longer development, decreased fecundity and body size. However, symbiotic infection turned neutral, and even beneficial for some traits (development and body size), as the number of heat shocks increased, and compared to the aposymbiotic strain. Conversely, symbiotic infection mediated aphid response to heat shock(s): fitness decreased only in the uninfected group. These findings suggest that (i) the facultative symbiont may alternatively act as a pathogen, commensal or mutualist depending on thermal environment, and (ii) the heat protection it delivered to its host persists under frequent EHT. We discuss eco-evolutionary implications and the role of potentially confounding factors (stage-specific effects, genetic polymorphism displayed by the obligate symbiont).</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"3 ","pages":"Article 100061"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/74/30/main.PMC10250925.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9611778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The specific expression patterns of sensory neuron membrane proteins are retained throughout the development of the desert locust Schistocerca gregaria 荒漠蝗感觉神经元膜蛋白的特定表达模式在整个发育过程中保持不变
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100053
Sina Cassau , Angelina Degen , Stephanie Krüger , Jürgen Krieger

The desert locust Schistocerca gregaria detects odorants through olfactory sensory neurons (OSNs) that are surrounded by non-neuronal support cells (SCs). OSNs and SCs are housed in cuticle structures, named sensilla found abundantly on the antenna in all developmental stages of the hemimetabolic insect. In insects, multiple proteins expressed by OSNs and SCs are indicated to play a pivotal role in the detection of odorants. This includes insect-specific members of the CD36 family of lipid receptors and transporters called sensory neuron membrane proteins (SNMPs). While the distribution pattern of the SNMP1 and SNMP2 subtypes in OSNs and SCs across different sensilla types has been elucidated for the adult S. gregaria antenna, their localization in cells and sensilla of different developmental stages is unclear. Here, we determined the SNMP1 and SNMP2 expression topography on the antenna of the first, third and fifth instar nymphs. Through FIHC experiments we found that in all developmental stages SNMP1 is expressed in OSNs and SCs of the trichoid and basiconic sensilla while SNMP2 is restricted to the SCs of the basiconic and coeloconic sensilla thus resembling the adult arrangement. Our results demonstrate that both SNMP types have defined cell- and sensilla-specific distribution patterns established already in the first instar nymphs and retained into the adult stage. This conserved expression topography underlines the importance of SNMP1 and SNMP2 in olfactory processes throughout the development of the desert locust.

沙漠蝗通过被非神经元支持细胞(SCs)包围的嗅觉感觉神经元(OSNs)检测气味。在半代谢昆虫的所有发育阶段,被称为触角上大量发现的感受器的表皮结构中安置着osn和SCs。在昆虫中,由osn和SCs表达的多种蛋白质在气味检测中起着关键作用。这包括CD36脂质受体和转运体家族的昆虫特异性成员,称为感觉神经元膜蛋白(snp)。虽然已经阐明了成年S. gregaria天线的SNMP1和SNMP2亚型在不同感受器类型的osn和SCs中的分布模式,但它们在不同发育阶段的细胞和感受器中的定位尚不清楚。在这里,我们确定了SNMP1和SNMP2在1、3和5龄若虫天线上的表达图谱。通过FIHC实验,我们发现在所有发育阶段,SNMP1都在毛状和基状感受器的osn和SCs中表达,而SNMP2则局限于基状和锥状感受器的SCs中表达,因此类似于成体的排列。我们的研究结果表明,这两种SNMP类型已经确定了细胞和感受器特异性分布模式,这些分布模式已经在一龄若虫中建立并保留到成虫阶段。这种保守的表达图谱强调了SNMP1和SNMP2在整个沙漠蝗虫发育过程中的嗅觉过程中的重要性。
{"title":"The specific expression patterns of sensory neuron membrane proteins are retained throughout the development of the desert locust Schistocerca gregaria","authors":"Sina Cassau ,&nbsp;Angelina Degen ,&nbsp;Stephanie Krüger ,&nbsp;Jürgen Krieger","doi":"10.1016/j.cris.2023.100053","DOIUrl":"https://doi.org/10.1016/j.cris.2023.100053","url":null,"abstract":"<div><p>The desert locust <em>Schistocerca gregaria</em> detects odorants through olfactory sensory neurons (OSNs) that are surrounded by non-neuronal support cells (SCs). OSNs and SCs are housed in cuticle structures, named sensilla found abundantly on the antenna in all developmental stages of the hemimetabolic insect. In insects, multiple proteins expressed by OSNs and SCs are indicated to play a pivotal role in the detection of odorants. This includes insect-specific members of the CD36 family of lipid receptors and transporters called sensory neuron membrane proteins (SNMPs). While the distribution pattern of the SNMP1 and SNMP2 subtypes in OSNs and SCs across different sensilla types has been elucidated for the adult <em>S. gregaria</em> antenna, their localization in cells and sensilla of different developmental stages is unclear. Here, we determined the SNMP1 and SNMP2 expression topography on the antenna of the first, third and fifth instar nymphs. Through FIHC experiments we found that in all developmental stages SNMP1 is expressed in OSNs and SCs of the trichoid and basiconic sensilla while SNMP2 is restricted to the SCs of the basiconic and coeloconic sensilla thus resembling the adult arrangement. Our results demonstrate that both SNMP types have defined cell- and sensilla-specific distribution patterns established already in the first instar nymphs and retained into the adult stage. This conserved expression topography underlines the importance of SNMP1 and SNMP2 in olfactory processes throughout the development of the desert locust.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"3 ","pages":"Article 100053"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49856838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, Aedes albopictus 延长的秋季和冬季热浪对滞育病媒白纹伊蚊越冬适宜性的对比影响
Q1 ENTOMOLOGY Pub Date : 2023-01-01 DOI: 10.1016/j.cris.2023.100067
Samantha L. Sturiale, Peter A. Armbruster

Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species’ overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, Aedes albopictus. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species’ overall overwintering success.

气候变化预计将极大地改变许多温带地区的秋冬状况。然而,有限的数据可以准确地预测这些变化将如何影响物种的越冬生存和冬后适应性。在这里,我们确定了更长、更温暖的秋季和冬季热浪如何影响入侵蚊子载体白纹伊蚊的越冬适应性和冬后表现。我们发现,较长的、较暖的秋季(代表早期进入滞育)并不影响越冬存活,但确实导致多个性状的越冬后表现下降。具体来说,与短时间低温处理的个体相比,经历更长、更温暖的低温条件的滞育胚胎幼虫表现出更低的滞育后饥饿耐受性,更高的滞育后幼虫死亡率,以及更长的滞育后幼虫发育。这些消极的滞育后适合度效应可能是由于更大的能量需求和/或在更温暖、更长的秋季期间遭受的伤害。相比之下,暴露在冬季热浪中增加了越冬存活率,可能是通过让滞育胚胎逃脱或修复寒冷的伤害。最后,秋季处理和冬季热浪对雄性发育时间有交互影响,而对雌雄蛹质量没有影响。总之,我们的研究结果强调,未能测量滞育后适合度的实验可能大大低估了气候变化对冬后表现的影响。此外,我们的研究结果强调,考虑气候变化的不同方面对物种整体越冬成功的潜在冲突影响是至关重要的。
{"title":"Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, Aedes albopictus","authors":"Samantha L. Sturiale,&nbsp;Peter A. Armbruster","doi":"10.1016/j.cris.2023.100067","DOIUrl":"10.1016/j.cris.2023.100067","url":null,"abstract":"<div><p>Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species’ overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, <em>Aedes albopictus</em>. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species’ overall overwintering success.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"4 ","pages":"Article 100067"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45949754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Research in Insect Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1