Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100071
Patrice Zemko Ngatsi , Bekolo Ndongo , Zachée Ambang , Pierre Eke , William Norbert Tueguem Kuate , Sylvere Landry Lontsi Dida , Jude Ndjaga Manga , Champlain Djiéto-Lordon
Cassava is mostly grown for its starchy roots, which ensure food security. However, it is heavily attacked by the African root and tuber scale (ARTS) Stictococcus vayssierei in Central Africa. This pest is a severe constraint to the production of cassava, food and income security for smallholder farmers. Crop resistance development through the selection of varieties with resistant traits against targeted pests is a promising approach to pest control. This study investigated cassava genotypes' response to natural infestation and determined their resistance levels against S. vayssierei. Six cassava genotypes (two local and four improved) were planted in a completely randomized block design with four replicates. Agronomic parameters and ARTS density were evaluated at 3, 6, 9 and 12 months after planting (MAP). Biochemical content was determined on the pith and cortex of 12 MAP aged tuberous roots. As a result, the improved Excel variety recorded the highest scale density per plant with 102.83 ± 4.14 ARTS/P at 9 MAP. At 12 MAP, high activity of total cyanide (69.18 ± 0.88 and 69.16 ± 1.44 mg/kg) and phenylalanine ammonia-lyase (0.142 ± 0.020 and 0.145 ± 0.010 ΔA/min/mg) were observed in the cortex of the tuberous roots of the improved varieties TMS 96/0023 and TMS 92/0057 which were colonized by the lowest ARTS density. The local variety (Douma) had a high content of total phenols (44.87 ± 1.15 µg/g) in the pith. It also produced the highest yield (23.8 ± 2.9 t ha-1). Varieties TMS 96/0023, TMS 92/0057 and Douma may be the most suitable varieties for the control of ARTS stress.
{"title":"Response of cassava (Manihot esculenta Crantz) genotypes to natural infestation by scale insect pest Stictococcus vayssierei Richard (Hemiptera: Stictococcidae)","authors":"Patrice Zemko Ngatsi , Bekolo Ndongo , Zachée Ambang , Pierre Eke , William Norbert Tueguem Kuate , Sylvere Landry Lontsi Dida , Jude Ndjaga Manga , Champlain Djiéto-Lordon","doi":"10.1016/j.cris.2024.100071","DOIUrl":"https://doi.org/10.1016/j.cris.2024.100071","url":null,"abstract":"<div><p>Cassava is mostly grown for its starchy roots, which ensure food security. However, it is heavily attacked by the African root and tuber scale (ARTS) <em>Stictococcus vayssierei</em> in Central Africa. This pest is a severe constraint to the production of cassava, food and income security for smallholder farmers. Crop resistance development through the selection of varieties with resistant traits against targeted pests is a promising approach to pest control. This study investigated cassava genotypes' response to natural infestation and determined their resistance levels against <em>S. vayssierei.</em> Six cassava genotypes (two local and four improved) were planted in a completely randomized block design with four replicates. Agronomic parameters and ARTS density were evaluated at 3, 6, 9 and 12 months after planting (MAP). Biochemical content was determined on the pith and cortex of 12 MAP aged tuberous roots. As a result, the improved Excel variety recorded the highest scale density per plant with 102.83 ± 4.14 ARTS/P at 9 MAP. At 12 MAP, high activity of total cyanide (69.18 ± 0.88 and 69.16 ± 1.44 mg/kg) and phenylalanine ammonia-lyase (0.142 ± 0.020 and 0.145 ± 0.010 ΔA/min/mg) were observed in the cortex of the tuberous roots of the improved varieties TMS 96/0023 and TMS 92/0057 which were colonized by the lowest ARTS density. The local variety (Douma) had a high content of total phenols (44.87 ± 1.15 µg/g) in the pith. It also produced the highest yield (23.8 ± 2.9 t ha-1). Varieties TMS 96/0023, TMS 92/0057 and Douma may be the most suitable varieties for the control of ARTS stress.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"5 ","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000015/pdfft?md5=d51697f67b64c8403652943e90081fae&pid=1-s2.0-S2666515824000015-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139653207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100092
Mariana Bulgarella , John Haywood , Eddy J. Dowle , Mary Morgan-Richards , Steven A. Trewick
Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q10 per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.
{"title":"Standard metabolic rate variation among New Zealand Orthoptera","authors":"Mariana Bulgarella , John Haywood , Eddy J. Dowle , Mary Morgan-Richards , Steven A. Trewick","doi":"10.1016/j.cris.2024.100092","DOIUrl":"10.1016/j.cris.2024.100092","url":null,"abstract":"<div><p>Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q<sub>10</sub> per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100092"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000222/pdfft?md5=06ad71529af6dd37b5a5e2e7a2736ba8&pid=1-s2.0-S2666515824000222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100093
Fabrice Requier , Myriam Abdelli , Mathilde Baude , David Genoud , Hadrien Gens , Benoît Geslin , Mickaël Henry , Lise Ropars
Due to the increasing pressures on bees, many beekeepers currently wish to move their managed livestock of Apis mellifera into little disturbed ecosystems such as protected natural areas. This may, however, exert detrimental competitive effects upon local wild pollinators. While it appears critical for land managers to get an adequate knowledge of this issue for effective wildlife conservation schemes, the frequency of this competition is not clear to date. Based on a systematic literature review of 96 studies, we assessed the frequency of exploitative competition between honey bees and wild pollinators. We found that 78% of the studies highlighted exploitative competition from honey bees to wild pollinators. Importantly, these studies have mostly explored competition with wild bees, while only 18% of them considered other pollinator taxa such as ants, beetles, bugs, butterflies, flies, moths, and wasps. The integration of non-bee pollinators into scientific studies and conservation plans is urgently required as they are critical for the pollination of many wild plants and crops. Interestingly, we found that a majority (88%) of these studies considering also non-bee pollinators report evidence of competition. Thus, neglecting non-bee pollinators could imply an underestimation of competition risks from honey bees. More inclusive work is needed to estimate the risks of competition in its entirety, but also to apprehend the context-dependency of competition so as to properly inform wildlife conservation schemes.
{"title":"Neglecting non-bee pollinators may lead to substantial underestimation of competition risk among pollinators","authors":"Fabrice Requier , Myriam Abdelli , Mathilde Baude , David Genoud , Hadrien Gens , Benoît Geslin , Mickaël Henry , Lise Ropars","doi":"10.1016/j.cris.2024.100093","DOIUrl":"10.1016/j.cris.2024.100093","url":null,"abstract":"<div><p>Due to the increasing pressures on bees, many beekeepers currently wish to move their managed livestock of <em>Apis mellifera</em> into little disturbed ecosystems such as protected natural areas. This may, however, exert detrimental competitive effects upon local wild pollinators. While it appears critical for land managers to get an adequate knowledge of this issue for effective wildlife conservation schemes, the frequency of this competition is not clear to date. Based on a systematic literature review of 96 studies, we assessed the frequency of exploitative competition between honey bees and wild pollinators. We found that 78% of the studies highlighted exploitative competition from honey bees to wild pollinators. Importantly, these studies have mostly explored competition with wild bees, while only 18% of them considered other pollinator taxa such as ants, beetles, bugs, butterflies, flies, moths, and wasps. The integration of non-bee pollinators into scientific studies and conservation plans is urgently required as they are critical for the pollination of many wild plants and crops. Interestingly, we found that a majority (88%) of these studies considering also non-bee pollinators report evidence of competition. Thus, neglecting non-bee pollinators could imply an underestimation of competition risks from honey bees. More inclusive work is needed to estimate the risks of competition in its entirety, but also to apprehend the context-dependency of competition so as to properly inform wildlife conservation schemes.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100093"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000234/pdfft?md5=1362dc76b516bde790e0bb787dd6593a&pid=1-s2.0-S2666515824000234-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100082
Robert Renthal
The main insect chemoreceptors are olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs). The odorant binding sites of many insect ORs appear to be occluded and inaccessible from the surface of the receptor protein, based on the three-dimensional structure of OR5 from the jumping bristletail Machilis hrabei (MhraOR5) and a survey of a sample of vinegar fly (Drosophila melanogaster) OR structures obtained from artificial intellegence (A.I.) modeling. Molecular dynamics simulations revealed that the occluded site can become accessible through tunnels that transiently open and close. The present study extends this analysis to examine seventeen ORs and one GR docking with ligands that have known valence: nine that signal attraction and nine that signal aversion. All but one of the receptors displayed occluded ligand binding sites analogous to MhraOR5, and docking software predicted the known attractant and repellent ligands will bind to the occluded sites. Docking of the repellent DEET was examined, and more than half of the OR ligand sites were predicted to bind DEET, including receptors that signal aversion as well as those that signal attraction. However, DEET may not actually have access to all the attractant binding sites. The larger size and lower flexibility of repellent molecules may restrict their passage through the tunnel bottlenecks, which could act as filters to select access to the ligand binding sites. In contrast to ORs and GRs, the IR ligand binding site is in an extracellular domain known to undergo a large conformational change from an open to a closed state. A.I. models of two D. melanogaster IRs of known valence and two blacklegged tick (Ixodes scapularis) IRs having unknown ligands were computationally tested for attractant and repellent binding. The ligand-binding sites in the closed state appear inaccessible to the protein surface, so attractants and repellents must bind initially at an accessible site in the open state before triggering the conformational change. In some IRs, repellent binding sites were identified at exterior sites adjacent to the ligand-binding site. These may be allosteric sites that, when occupied by repellents, can stabilize the open state of an attractant IR, or stabilize the closed state of an IR in the absence of its activating ligand. The model of D. melanogaster IR64a suggests a possible molecular mechanism for the activation of this IR by H+. The amino acids involved in this proposed mechanism are conserved in IR64a from several Dipteran pest species and disease vectors, potentially offering a route to discovery of new repellents that act via the allosteric site.
昆虫的主要化学感受器有嗅觉受体(ORs)、味觉受体(GRs)和离子受体(IRs)。根据跳跃刚毛尾虫Machilis hrabei的嗅觉受体5(MhraOR5)的三维结构,以及对人工智能(A.I.)建模获得的醋蝇(Drosophila melanogaster)嗅觉受体结构样本的调查,许多昆虫嗅觉受体的气味结合位点似乎被封闭,无法从受体蛋白表面进入。分子动力学模拟显示,闭锁位点可以通过瞬时打开和关闭的隧道进入。本研究对这一分析进行了扩展,研究了 17 种 OR 和一种 GR 与已知价态配体的对接情况:其中 9 种配体发出吸引信号,9 种发出厌恶信号。除一种受体外,所有受体都显示出与 MhraOR5 类似的配体结合闭锁位点,对接软件预测已知的吸引和排斥配体将与闭锁位点结合。对驱避剂DEET的对接进行了研究,结果发现一半以上的OR配体位点都会与DEET结合,其中包括发出厌恶信号的受体和发出吸引信号的受体。然而,DEET 实际上可能无法进入所有吸引剂的结合位点。驱避剂分子体积较大,柔韧性较差,可能会限制它们通过隧道瓶颈,而隧道瓶颈可以作为过滤器,选择进入配体结合位点。与 ORs 和 GRs 不同的是,IR 配体结合位点位于一个细胞外结构域中,众所周知,从开放状态到封闭状态会发生很大的构象变化。通过计算测试了两个已知配价的D. melanogaster IRs和两个未知配体的黑脚蜱(Ixodes scapularis)IRs的吸引和排斥结合的A.I. 模型。闭合状态下的配体结合位点似乎无法接近蛋白质表面,因此吸引剂和排斥剂必须首先与开放状态下的可接近位点结合,然后才能触发构象变化。在一些 IR 中,在配体结合位点附近的外部位点发现了排斥结合位点。这些位点可能是异构位点,当被排斥物占据时,可以稳定吸引IR的开放状态,或者在没有激活配体的情况下稳定IR的封闭状态。黑腹黑蝇 IR64a 的模型提出了 H+ 激活该 IR 的可能分子机制。这一机制所涉及的氨基酸在多种双翅目害虫和病媒的 IR64a 中都是保守的,这可能为发现通过异构位点起作用的新驱虫剂提供了一条途径。
{"title":"Arthropod repellent interactions with olfactory receptors and ionotropic receptors analyzed by molecular modeling","authors":"Robert Renthal","doi":"10.1016/j.cris.2024.100082","DOIUrl":"https://doi.org/10.1016/j.cris.2024.100082","url":null,"abstract":"<div><p>The main insect chemoreceptors are olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs). The odorant binding sites of many insect ORs appear to be occluded and inaccessible from the surface of the receptor protein, based on the three-dimensional structure of OR5 from the jumping bristletail <em>Machilis hrabei</em> (<em>Mhra</em>OR5) and a survey of a sample of vinegar fly (<em>Drosophila melanogaster</em>) OR structures obtained from artificial intellegence (A.I.) modeling. Molecular dynamics simulations revealed that the occluded site can become accessible through tunnels that transiently open and close. The present study extends this analysis to examine seventeen ORs and one GR docking with ligands that have known valence: nine that signal attraction and nine that signal aversion. All but one of the receptors displayed occluded ligand binding sites analogous to <em>Mhra</em>OR5, and docking software predicted the known attractant and repellent ligands will bind to the occluded sites. Docking of the repellent DEET was examined, and more than half of the OR ligand sites were predicted to bind DEET, including receptors that signal aversion as well as those that signal attraction. However, DEET may not actually have access to all the attractant binding sites. The larger size and lower flexibility of repellent molecules may restrict their passage through the tunnel bottlenecks, which could act as filters to select access to the ligand binding sites. In contrast to ORs and GRs, the IR ligand binding site is in an extracellular domain known to undergo a large conformational change from an open to a closed state. A.I. models of two <em>D. melanogaster</em> IRs of known valence and two blacklegged tick (<em>Ixodes scapularis</em>) IRs having unknown ligands were computationally tested for attractant and repellent binding. The ligand-binding sites in the closed state appear inaccessible to the protein surface, so attractants and repellents must bind initially at an accessible site in the open state before triggering the conformational change. In some IRs, repellent binding sites were identified at exterior sites adjacent to the ligand-binding site. These may be allosteric sites that, when occupied by repellents, can stabilize the open state of an attractant IR, or stabilize the closed state of an IR in the absence of its activating ligand. The model of <em>D. melanogaster</em> IR64a suggests a possible molecular mechanism for the activation of this IR by <em>H</em><sup>+</sup>. The amino acids involved in this proposed mechanism are conserved in IR64a from several Dipteran pest species and disease vectors, potentially offering a route to discovery of new repellents that act via the allosteric site.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"5 ","pages":"Article 100082"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266651582400012X/pdfft?md5=70cfb410fe2c872ff499789f6b5196c8&pid=1-s2.0-S266651582400012X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100095
Jackson H. Birrell , Wilco C.E.P. Verberk , H. Arthur Woods
Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels. How much do levels vary among species, and how does variation depend on environment and life history? We predicted that lower internal oxygen levels occur in insects with either limited access to environmental oxygen (i.e., insects dependent on aquatic respiration, where low internal levels facilitate diffusive oxygen uptake, and reduce asphyxiation risks) or consistently low metabolic rates (i.e., inactive insects, requiring limited internal oxygen stores). Alternatively, we predicted insects with long life-stage durations would have internal oxygen levels > 1 kPa (preventing high ROS levels that are believed to occur under tissue hypoxia). We tested these predictions by measuring partial pressures of oxygen (PO2) in tissues from juvenile and adult stages across 15 species comprising nine insect orders. Tissue PO2 varied greatly (from 0 to 18.8 kPa) and variation across species and life stages was significantly related to differences in habitat, activity level, and life stage duration. Individuals with aquatic respiration sustained remarkably low PO2 (mean = 0.88 kPa) across all species from Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Diptera (true flies), possibly reflecting a widespread, but hitherto unknown, adaptation for extracting sufficient oxygen from water. For Odonata (dragonflies), aquatic juveniles had higher PO2 levels (mean = 6.12 kPa), but these were still lower compared to terrestrial adults (mean = 13.3 kPa). Follow-up tests in juvenile stoneflies showed that tissue PO2 remained low even when exposed to hyperoxia, suggesting that levels were down-regulated. This was further corroborated since levels could be modulated by ambient oxygen levels in dead individuals. In addition, tissue PO2 was positively related to activity levels of insect life stages across all species and was highest in stages with short durations. Combined, our results support the idea that internal PO2 is an evolutionarily labile trait that reflects the balance between oxygen supply and demand within the context of the environment and life-history of an insect.
{"title":"Consistent differences in tissue oxygen levels across 15 insect species reflect a balance between oxygen supply and demand and highlight a hitherto unknown adaptation for extracting sufficient oxygen from water","authors":"Jackson H. Birrell , Wilco C.E.P. Verberk , H. Arthur Woods","doi":"10.1016/j.cris.2024.100095","DOIUrl":"10.1016/j.cris.2024.100095","url":null,"abstract":"<div><p>Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels. How much do levels vary among species, and how does variation depend on environment and life history? We predicted that lower internal oxygen levels occur in insects with either limited access to environmental oxygen (i.e., insects dependent on aquatic respiration, where low internal levels facilitate diffusive oxygen uptake, and reduce asphyxiation risks) or consistently low metabolic rates (i.e., inactive insects, requiring limited internal oxygen stores). Alternatively, we predicted insects with long life-stage durations would have internal oxygen levels > 1 kPa (preventing high ROS levels that are believed to occur under tissue hypoxia). We tested these predictions by measuring partial pressures of oxygen (PO<sub>2</sub>) in tissues from juvenile and adult stages across 15 species comprising nine insect orders. Tissue PO<sub>2</sub> varied greatly (from 0 to 18.8 kPa) and variation across species and life stages was significantly related to differences in habitat, activity level, and life stage duration. Individuals with aquatic respiration sustained remarkably low PO<sub>2</sub> (mean = 0.88 kPa) across all species from Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Diptera (true flies), possibly reflecting a widespread, but hitherto unknown, adaptation for extracting sufficient oxygen from water. For Odonata (dragonflies), aquatic juveniles had higher PO<sub>2</sub> levels (mean = 6.12 kPa), but these were still lower compared to terrestrial adults (mean = 13.3 kPa). Follow-up tests in juvenile stoneflies showed that tissue PO<sub>2</sub> remained low even when exposed to hyperoxia, suggesting that levels were down-regulated. This was further corroborated since levels could be modulated by ambient oxygen levels in dead individuals. In addition, tissue PO<sub>2</sub> was positively related to activity levels of insect life stages across all species and was highest in stages with short durations. Combined, our results support the idea that internal PO<sub>2</sub> is an evolutionarily labile trait that reflects the balance between oxygen supply and demand within the context of the environment and life-history of an insect.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100095"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000258/pdfft?md5=e883d413040d01f9f969cafdd597fa74&pid=1-s2.0-S2666515824000258-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100075
Yan-Da Li , Zhen-Hua Liu , Di-Ying Huang , Chen-Yang Cai
The morphology of beetles of the recently defined superfamilies Erotyloidea, Nitiduloidea and Cucujoidea is varied. Determining the systematic positions of Mesozoic fossils within these groups can often be challenging. Here we describe and illustrate a puzzling cucujiform beetle, Isocryptophilus exilipunctus Li & Cai gen. & sp. nov., based on an individual from mid-Cretaceous Burmese amber. While we cannot definitively pinpoint the exact phylogenetic position of Isocryptophilus, its possible affinity to Erotylidae is discussed in light of our phylogenetic analyses. A broader-sampled morphological matrix, coupled with a robust molecular phylogeny of these groups, will be promising for clarifying the systematic placement of the fossil.
最近定义的超科 Erotyloidea、Nitiduloidea 和 Cucujoidea 中的甲虫形态各异。确定中生代化石在这些类群中的系统位置往往具有挑战性。在这里,我们根据白垩纪中期缅甸琥珀中的一个个体,描述并说明了一种令人费解的葫芦形甲虫--Isocryptophilus exilipunctus Li & Cai gen.虽然我们不能明确指出Isocryptophilus的确切系统发育位置,但根据我们的系统发育分析,讨论了它与Erotylidae可能的亲缘关系。一个取样范围更广的形态矩阵,再加上这些类群强大的分子系统发育,将有望明确该化石的系统定位。
{"title":"An enigmatic Cretaceous beetle with possible affinity to Erotylidae (Coleoptera: Cucujiformia)","authors":"Yan-Da Li , Zhen-Hua Liu , Di-Ying Huang , Chen-Yang Cai","doi":"10.1016/j.cris.2024.100075","DOIUrl":"https://doi.org/10.1016/j.cris.2024.100075","url":null,"abstract":"<div><p>The morphology of beetles of the recently defined superfamilies Erotyloidea, Nitiduloidea and Cucujoidea is varied. Determining the systematic positions of Mesozoic fossils within these groups can often be challenging. Here we describe and illustrate a puzzling cucujiform beetle, <em>Isocryptophilus exilipunctus</em> Li & Cai <strong>gen. & sp. nov.</strong>, based on an individual from mid-Cretaceous Burmese amber. While we cannot definitively pinpoint the exact phylogenetic position of <em>Isocryptophilus</em>, its possible affinity to Erotylidae is discussed in light of our phylogenetic analyses. A broader-sampled morphological matrix, coupled with a robust molecular phylogeny of these groups, will be promising for clarifying the systematic placement of the fossil.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"5 ","pages":"Article 100075"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000052/pdfft?md5=6812c80968b9675c7f9f9e7da2605894&pid=1-s2.0-S2666515824000052-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100094
Alison Julio , Tainan C. Guedes-Silva , Mateus Berni , Paulo Mascarello Bisch , Helena Araujo
The calcium dependent Calpain proteases are modulatory enzymes with important roles in cell cycle control, development and immunity. In the fly model Drosophila melanogaster Calpain A cleaves Cactus/IkappaB and consequently modifies Toll signals during embryonic dorsal-ventral (DV) patterning. Here we explore the role of Calpains in the hemiptera Rhodnius prolixus, an intermediate germband insect where the Bone Morphogenetic Protein (BMP) instead of the Toll pathway plays a major role in DV patterning. Phylogenetic analysis of Calpains in species ranging from Isoptera to Diptera indicates an increase of Calpain sequences in the R. prolixus genome and other hemimetabolous species. One locus encoding each of the CalpC, CalpD and Calp7 families, and seven Calpain A/B loci are present in the R. prolixus genome. Several predicted R. prolixus Calpains display a unique architecture, such as loss of Calcium-binding EF-hand domains and loss of catalytic residues in the active site CysPc domain, yielding catalytically dead Calpains A/B. Knockdown for one of these inactive Calpains results in embryonic DV patterning defects, with expansion of ventral and lateral gene expression domains and consequent failure of germ band elongation. In conclusion, our results reveal that Calpains may exert a conserved function in insect DV patterning, despite the changing role of the Toll and BMP pathways in defining gene expression territories along the insect DV axis.
钙依赖性钙蛋白酶是一种调节酶,在细胞周期控制、发育和免疫中发挥着重要作用。在黑腹果蝇模型中,钙蛋白酶 A 能裂解 Cactus/IkappaB,从而在胚胎背-腹(DV)模式化过程中改变 Toll 信号。在这里,我们探讨了钙蛋白酶在半翅目昆虫 Rhodnius prolixus 中的作用,在这种中间胚带昆虫中,骨形态发生蛋白(BMP)而不是 Toll 通路在 DV 形态形成中起着主要作用。从等翅目到双翅目的钙蛋白酶系统进化分析表明,R. prolixus 基因组和其他半代谢物种中的钙蛋白酶序列有所增加。在 R. prolixus 基因组中,CalpC、CalpD 和 Calp7 家族各有一个编码基因座,还有 7 个 Calpain A/B 基因座。几个预测的 R. prolixus 钙蛋白酶显示出独特的结构,例如钙结合 EF-手结构域的缺失和活性位点 CysPc 结构域催化残基的缺失,从而产生了无催化作用的钙蛋白酶 A/B。敲除其中一种无活性的钙蛋白酶会导致胚胎 DV 形态缺陷,腹侧和侧向基因表达域扩大,从而导致胚芽带伸长失败。总之,我们的研究结果表明,尽管 Toll 和 BMP 通路在沿昆虫 DV 轴确定基因表达区域方面的作用发生了变化,但钙蛋白酶可能在昆虫 DV 花纹形成中发挥着保守的功能。
{"title":"A Rhodnius prolixus catalytically inactive Calpain protease patterns the insect embryonic dorsal-ventral axis","authors":"Alison Julio , Tainan C. Guedes-Silva , Mateus Berni , Paulo Mascarello Bisch , Helena Araujo","doi":"10.1016/j.cris.2024.100094","DOIUrl":"10.1016/j.cris.2024.100094","url":null,"abstract":"<div><p>The calcium dependent Calpain proteases are modulatory enzymes with important roles in cell cycle control, development and immunity. In the fly model <em>Drosophila melanogaster</em> Calpain A cleaves Cactus/IkappaB and consequently modifies Toll signals during embryonic dorsal-ventral (DV) patterning. Here we explore the role of Calpains in the hemiptera <em>Rhodnius prolixus</em>, an intermediate germband insect where the Bone Morphogenetic Protein (BMP) instead of the Toll pathway plays a major role in DV patterning. Phylogenetic analysis of Calpains in species ranging from Isoptera to Diptera indicates an increase of Calpain sequences in the <em>R. prolixus</em> genome and other hemimetabolous species. One locus encoding each of the <em>CalpC, CalpD</em> and <em>Calp7</em> families, and seven Calpain A/B loci are present in the <em>R. prolixus</em> genome. Several predicted <em>R. prolixus</em> Calpains display a unique architecture, such as loss of Calcium-binding EF-hand domains and loss of catalytic residues in the active site CysPc domain, yielding catalytically dead Calpains A/B. Knockdown for one of these inactive Calpains results in embryonic DV patterning defects, with expansion of ventral and lateral gene expression domains and consequent failure of germ band elongation. In conclusion, our results reveal that Calpains may exert a conserved function in insect DV patterning, despite the changing role of the Toll and BMP pathways in defining gene expression territories along the insect DV axis.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100094"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000246/pdfft?md5=41d2c9ae156f861f2c8a2994a9f035f0&pid=1-s2.0-S2666515824000246-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100078
Houping Liu , James T. Julian
Population density and structure are critical to nature conservation and pest management. Traditional sampling methods such as capture-mark-recapture and catch-effort can't be used in situations where catching, marking, or removing individuals are not feasible. N-mixture models use repeated count data to estimate population abundance based on detection probability. They are widely adopted in wildlife surveys in recent years to account for imperfect detection. However, its application in entomology is relatively new. In this paper, we describe the general procedures of N-mixture models in population studies from data collection to model fitting and evaluation. Using Lycorma delicatula egg mass survey data at 28 plots in seven sites from the field, we found that detection probability (p) was negatively correlated with tree diameter at breast height (DBH), ranged from 0.516 [95 % CI: 0.470−0.561] to 0.614 [95 % CI: 0.566−0.660] between the 1st and the 3rd sample period. Furthermore, egg mass abundance (λ) was positively associated with basal area (BA) for the sample unit (single tree), with more egg masses on tree of heaven (TOH) trees. More egg masses were also expected on trees of other species in TOH plots. Predicted egg mass density (masses/100 m2) ranged from 5.0 (95 % CI: 3.0−16.0) (Gordon) to 276.9 (95 % CI: 255.0−303.0) (Susquehannock) for TOH plots, and 11.0 (95 % CI: 9.00−15.33) (Gordon) to 228.3 (95 % CI: 209.7−248.3) (Burlington) for nonTOH plots. Site-specific abundance estimates from N-mixture models were generally higher compared to observed maximum counts. N-mixture models could have great potential in insect population surveys in agriculture and forestry in the future.
{"title":"N-mixture models for population estimation: Application in spotted lanternfly egg mass survey","authors":"Houping Liu , James T. Julian","doi":"10.1016/j.cris.2024.100078","DOIUrl":"https://doi.org/10.1016/j.cris.2024.100078","url":null,"abstract":"<div><p>Population density and structure are critical to nature conservation and pest management. Traditional sampling methods such as capture-mark-recapture and catch-effort can't be used in situations where catching, marking, or removing individuals are not feasible. N-mixture models use repeated count data to estimate population abundance based on detection probability. They are widely adopted in wildlife surveys in recent years to account for imperfect detection. However, its application in entomology is relatively new. In this paper, we describe the general procedures of N-mixture models in population studies from data collection to model fitting and evaluation. Using <em>Lycorma delicatula</em> egg mass survey data at 28 plots in seven sites from the field, we found that detection probability (<em>p</em>) was negatively correlated with tree diameter at breast height (DBH), ranged from 0.516 [95 % CI: 0.470−0.561] to 0.614 [95 % CI: 0.566−0.660] between the 1st and the 3rd sample period. Furthermore, egg mass abundance (λ) was positively associated with basal area (BA) for the sample unit (single tree), with more egg masses on tree of heaven (TOH) trees. More egg masses were also expected on trees of other species in TOH plots. Predicted egg mass density (masses/100 m<sup>2</sup>) ranged from 5.0 (95 % CI: 3.0−16.0) (Gordon) to 276.9 (95 % CI: 255.0−303.0) (Susquehannock) for TOH plots, and 11.0 (95 % CI: 9.00−15.33) (Gordon) to 228.3 (95 % CI: 209.7−248.3) (Burlington) for nonTOH plots. Site-specific abundance estimates from N-mixture models were generally higher compared to observed maximum counts. N-mixture models could have great potential in insect population surveys in agriculture and forestry in the future.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"5 ","pages":"Article 100078"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000088/pdfft?md5=c5c2ea2bf48085deee5a20adb1ec3d1b&pid=1-s2.0-S2666515824000088-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.cris.2024.100090
Ludvine Brajon , Arthur Comte , Rémi Capoduro , Camille Meslin , Binu Antony , Mohammed Ali Al-Saleh , Arnab Pain , Emmanuelle Jacquin-Joly , Nicolas Montagné
The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil Rhynchophorus ferrugineus. This study compared the response spectra of this receptor, RferOR1, and its ortholog in the American palm weevil R. palmarum, RpalOR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of RpalOR1 confirmed this hypothesis, as RpalOR1 and RferOR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that R. ferrugineus pheromone compounds strongly activated RpalOR1, but we did not evidence any response to the R. palmarum pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.
{"title":"A conserved pheromone receptor in the American and the Asian palm weevils is also activated by host plant volatiles","authors":"Ludvine Brajon , Arthur Comte , Rémi Capoduro , Camille Meslin , Binu Antony , Mohammed Ali Al-Saleh , Arnab Pain , Emmanuelle Jacquin-Joly , Nicolas Montagné","doi":"10.1016/j.cris.2024.100090","DOIUrl":"10.1016/j.cris.2024.100090","url":null,"abstract":"<div><p>The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil <em>Rhynchophorus ferrugineus.</em> This study compared the response spectra of this receptor, <em>Rfer</em>OR1, and its ortholog in the American palm weevil <em>R. palmarum, Rpal</em>OR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of <em>Rpal</em>OR1 confirmed this hypothesis, as <em>Rpal</em>OR1 and <em>Rfer</em>OR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that <em>R. ferrugineus</em> pheromone compounds strongly activated <em>Rpal</em>OR1, but we did not evidence any response to the <em>R. palmarum</em> pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100090"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666515824000209/pdfft?md5=b2cfe36bb54df917861b70e41c7e5185&pid=1-s2.0-S2666515824000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Existing theories make different predictions regarding the effect of a pathogenic infection on the host capacity to reproduce. Terminal investment theory suggests that due to the increased risk of mortality, and the associated risk of losing future opportunity to reproduce, infected individuals would increase their investment towards reproduction. Life-history theory posits that due to energetic and resource costs associated with mounting an immune defense, hosts would decrease their investment towards reproduction, and reallocate resources towards defense and survival. Additionally, Somatic damage incurred by the host due to the infection is also expected to compromise the host capacity to reproduce. We explored these possibilities in Drosophila melanogaster females experimentally infected with pathogenic bacteria. We tested if the effect of infection on female fecundity is pathogen specific, determined by infection outcome, and variable between individual infected females. We observed that the mean, population level change in post-infection female fecundity was pathogen specific, but not correlated with mortality risk. Furthermore, infection outcome, i.e., if the infected female died or survived the infection, had no effect on fecundity at this level. At individual resolution, females that died after infection exhibited greater variation in fecundity compared to ones that survived the infection. This increased variation was bidirectional, with some females reproducing in excess while others reproducing less compared to the controls. Altogether, our results suggest that post-infection female fecundity is unlikely to be driven by risk of mortality and is probably determined by the precise physiological changes that an infected female undergoes when infected by a specific pathogen.
{"title":"Idiosyncratic effects of bacterial infection on female fecundity in Drosophila melanogaster","authors":"Aabeer Basu, Vandana Gupta , Kimaya Tekade , Nagaraj Guru Prasad","doi":"10.1016/j.cris.2024.100098","DOIUrl":"10.1016/j.cris.2024.100098","url":null,"abstract":"<div><div>Existing theories make different predictions regarding the effect of a pathogenic infection on the host capacity to reproduce. Terminal investment theory suggests that due to the increased risk of mortality, and the associated risk of losing future opportunity to reproduce, infected individuals would increase their investment towards reproduction. Life-history theory posits that due to energetic and resource costs associated with mounting an immune defense, hosts would decrease their investment towards reproduction, and reallocate resources towards defense and survival. Additionally, Somatic damage incurred by the host due to the infection is also expected to compromise the host capacity to reproduce. We explored these possibilities in <em>Drosophila melanogaster</em> females experimentally infected with pathogenic bacteria. We tested if the effect of infection on female fecundity is pathogen specific, determined by infection outcome, and variable between individual infected females. We observed that the mean, population level change in post-infection female fecundity was pathogen specific, but not correlated with mortality risk. Furthermore, infection outcome, i.e., if the infected female died or survived the infection, had no effect on fecundity at this level. At individual resolution, females that died after infection exhibited greater variation in fecundity compared to ones that survived the infection. This increased variation was bidirectional, with some females reproducing in excess while others reproducing less compared to the controls. Altogether, our results suggest that post-infection female fecundity is unlikely to be driven by risk of mortality and is probably determined by the precise physiological changes that an infected female undergoes when infected by a specific pathogen.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"6 ","pages":"Article 100098"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}