PIWI-interacting (pi) RNAs play an essential role in protecting the genomic integrity of germ cells from the disruptive transpositions of selfish genetic elements. One of the most important model systems for studying piRNA biogenesis is the ovary derived BmN4 cell line of the silkworm Bombyx mori. In recent years, many steps and components of the pathways involved in this process have been unraveled. However, a holistic description of piRNA biogenesis in BmN4 cells is still unavailable. In this paper, we review the state of the art and propose a novel model for piRNA biogenesis in BmN4 cells. This model was built considering the latest published data and will empower researchers to plan future experiments and interpret experimental results.
{"title":"A model that integrates the different piRNA biogenesis pathways based on studies in silkworm BmN4 cells","authors":"Thomas-Wolf Verdonckt , Luc Swevers , Dulce Santos","doi":"10.1016/j.cris.2025.100108","DOIUrl":"10.1016/j.cris.2025.100108","url":null,"abstract":"<div><div>PIWI-interacting (pi) RNAs play an essential role in protecting the genomic integrity of germ cells from the disruptive transpositions of selfish genetic elements. One of the most important model systems for studying piRNA biogenesis is the ovary derived BmN4 cell line of the silkworm Bombyx mori. In recent years, many steps and components of the pathways involved in this process have been unraveled. However, a holistic description of piRNA biogenesis in BmN4 cells is still unavailable. In this paper, we review the state of the art and propose a novel model for piRNA biogenesis in BmN4 cells. This model was built considering the latest published data and will empower researchers to plan future experiments and interpret experimental results.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100108"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100110
Cristina Cameirão , José Alberto Pereira , Rui Tavares , Teresa Lino-Neto , Paula Baptista
In nature, plants and insects engage in intricate interactions. Despite the increasing knowledge of the microbiomes of plants and insects, the extent to which they exchange and alter each other's microbiomes remains unclear. In this work, the bacterial community associated with nymphs of Philaenus spumarius (Hemiptera: Aphrophoridae), the stems of Coleostephus myconis where the nymphs were feeding, and the foam produced by the nymphs, were studied by culture-dependent and -independent approaches, with an attempt to elucidate the exchange of bacteria between plants and insects. The results suggest that both approaches complement each other, as many bacterial genera identified by metabarcoding were not detected by culturing, and vice versa. Overall, stems and foam exhibited higher bacterial diversity than nymphs, with all the samples showing enrichment in bacteria known to provide diverse benefits to their host. Stems and foam were the most similar in bacterial composition, but Burkholderiaceae and Moraxellaceae dominated the stems, whereas Rhizobiaceae and Sphingobacteriaceae dominated the foam. Nymphs exhibit the most distinct bacterial composition, yet more similar to that found in the stem compared to the foam. Indeed, nymphs were enriched on endosymbiotic bacteria, mostly Candidatus Sulcia and Sodalis, not found in the stem and foam. Nevertheless, during feeding, nymphs appeared to exchange several bacteria genera with C. myconis, with a significant number being incorporated into the bacteriome of the nymph. The genera Curvibacter, Cutibacterium, Methylobacterium, Pseudomonas and Rhizobium are likely the most exchanged. Nymphs also appear to exchange bacteria to the foam, notably species from the Enhydrobacter, Pseudomonas, Rhizobium and Roseomonas genera. More studies to infer the functions of the shared bacteria between P. spumarius-C. myconis are needed.
{"title":"Bacterial dynamics and exchange in plant-insect interactions","authors":"Cristina Cameirão , José Alberto Pereira , Rui Tavares , Teresa Lino-Neto , Paula Baptista","doi":"10.1016/j.cris.2025.100110","DOIUrl":"10.1016/j.cris.2025.100110","url":null,"abstract":"<div><div>In nature, plants and insects engage in intricate interactions. Despite the increasing knowledge of the microbiomes of plants and insects, the extent to which they exchange and alter each other's microbiomes remains unclear. In this work, the bacterial community associated with nymphs of <em>Philaenus spumarius</em> (Hemiptera: Aphrophoridae), the stems of <em>Coleostephus myconis</em> where the nymphs were feeding, and the foam produced by the nymphs, were studied by culture-dependent and -independent approaches, with an attempt to elucidate the exchange of bacteria between plants and insects. The results suggest that both approaches complement each other, as many bacterial genera identified by metabarcoding were not detected by culturing, and vice versa. Overall, stems and foam exhibited higher bacterial diversity than nymphs, with all the samples showing enrichment in bacteria known to provide diverse benefits to their host. Stems and foam were the most similar in bacterial composition, but <em>Burkholderiaceae</em> and <em>Moraxellaceae</em> dominated the stems, whereas <em>Rhizobiaceae</em> and <em>Sphingobacteriaceae</em> dominated the foam. Nymphs exhibit the most distinct bacterial composition, yet more similar to that found in the stem compared to the foam. Indeed, nymphs were enriched on endosymbiotic bacteria, mostly <em>Candidatus</em> Sulcia and <em>Sodalis</em>, not found in the stem and foam. Nevertheless, during feeding, nymphs appeared to exchange several bacteria genera with <em>C. myconis</em>, with a significant number being incorporated into the bacteriome of the nymph. The genera <em>Curvibacter, Cutibacterium, Methylobacterium, Pseudomonas</em> and <em>Rhizobium</em> are likely the most exchanged. Nymphs also appear to exchange bacteria to the foam, notably species from the <em>Enhydrobacter, Pseudomonas, Rhizobium</em> and <em>Roseomonas</em> genera. More studies to infer the functions of the shared bacteria between <em>P. spumarius</em>-<em>C. myconis</em> are needed.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100110"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100118
Stijn Van den Brande , Simon Remans , Anton Bilsen, Inge Corstjens, Evert Bruyninckx, Jozef Vanden Broeck, Dulce Santos
Extracellular vesicles (EVs) are produced by cells of all domains of life and current research shows their involvement in intercellular transfer of information. However, a major drawback to the progress of the field relates to the fact that isolating pure EV fractions from complex biofluids is a challenging task. Isolation of EVs is often compromised by the presence of contaminating protein and lipoprotein particles, which has recently led to the establishment of guidelines for analyzing and reporting on EVs. In insects, reports on EV studies are starting to emerge, with several techniques being used without consideration of contaminant co-isolation. To address this, we optimized and validated a robust procedure for the isolation of EVs from insect hemolymph.
{"title":"Isolation of extracellular vesicles from insect hemolymph","authors":"Stijn Van den Brande , Simon Remans , Anton Bilsen, Inge Corstjens, Evert Bruyninckx, Jozef Vanden Broeck, Dulce Santos","doi":"10.1016/j.cris.2025.100118","DOIUrl":"10.1016/j.cris.2025.100118","url":null,"abstract":"<div><div>Extracellular vesicles (EVs) are produced by cells of all domains of life and current research shows their involvement in intercellular transfer of information. However, a major drawback to the progress of the field relates to the fact that isolating pure EV fractions from complex biofluids is a challenging task. Isolation of EVs is often compromised by the presence of contaminating protein and lipoprotein particles, which has recently led to the establishment of guidelines for analyzing and reporting on EVs. In insects, reports on EV studies are starting to emerge, with several techniques being used without consideration of contaminant co-isolation. To address this, we optimized and validated a robust procedure for the isolation of EVs from insect hemolymph.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"8 ","pages":"Article 100118"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145270084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100112
Eliza I. Clark , Dan W. Bean , Ellyn V. Bitume , Amanda R. Stahlke , Paul A. Hohenlohe , Ruth A. Hufbauer
Adaptive evolution requires both natural selection and genetic variation. In introduced species, the selective dynamics of range expansion are predicted by theory to lead to differences between the core and the leading edge, with edge individuals evolving to be more fecund (under r-selection) and have greater dispersal ability than core individuals. In arthropods, both fecundity and dispersal ability are often positively correlated with body size. Here, we quantify genetic variation available for evolution of body size in a beetle (Diorhabda carinulata) introduced into North America as a biological control agent. Previously, we found that females at the edge of the range expansion have evolved to be larger than those at the core as predicted by theory, while male body size has not clearly changed, despite the evolution of increased dispersal capacity. Using a half-sib mating design, we measure genetic variation in mass at eclosion and thorax width of female and male beetles from a single introduced population at the core of the range expansion. We find significant heritable genetic variation in females in both traits, but not in males. Thus, lack of genetic variation in body size may preclude evolution of size in males along this expansion front.
{"title":"Heritability of body size matches trait evolution in the range expansion of a biological control agent","authors":"Eliza I. Clark , Dan W. Bean , Ellyn V. Bitume , Amanda R. Stahlke , Paul A. Hohenlohe , Ruth A. Hufbauer","doi":"10.1016/j.cris.2025.100112","DOIUrl":"10.1016/j.cris.2025.100112","url":null,"abstract":"<div><div>Adaptive evolution requires both natural selection and genetic variation. In introduced species, the selective dynamics of range expansion are predicted by theory to lead to differences between the core and the leading edge, with edge individuals evolving to be more fecund (under <em>r</em>-selection) and have greater dispersal ability than core individuals. In arthropods, both fecundity and dispersal ability are often positively correlated with body size. Here, we quantify genetic variation available for evolution of body size in a beetle (<em>Diorhabda carinulata</em>) introduced into North America as a biological control agent. Previously, we found that females at the edge of the range expansion have evolved to be larger than those at the core as predicted by theory, while male body size has not clearly changed, despite the evolution of increased dispersal capacity. Using a half-sib mating design, we measure genetic variation in mass at eclosion and thorax width of female and male beetles from a single introduced population at the core of the range expansion. We find significant heritable genetic variation in females in both traits, but not in males. Thus, lack of genetic variation in body size may preclude evolution of size in males along this expansion front.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100112"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100114
Daniel González-Tokman , Sebastián Villada-Bedoya , América Hernández , Bibiana Montoya
In response to high temperatures, insect metabolic rates increase, favoring the release of higher amounts of reactive oxygen species (ROS). These ROS need to be counteracted by antioxidants to avoid oxidative stress, which can lead to cell damage and death. In this manuscript, we review evidence in insects showing the effects of high temperatures on ROS production, the antioxidant defenses reported in insects in response to high and extremely high temperatures and the extent to which they contribute to preventing oxidative damage. Endogenously produced antioxidants can be enzymatic or non-enzymatic and are involved in heat responses in at least seven insect orders. Our review indicates that evidence is very limited for the effect of high temperature on ROS production, but it clearly shows that at least one antioxidant is upregulated during short-term heat exposure. However, the effects of antioxidants in effectively reducing oxidative damage in biomolecules are still poorly supported by evidence. Dietary-dependent antioxidants show strong potential for coping with heat stress, but evidence is limited, although numerous plants produce antioxidant compounds and a great number of insect species feed on plants. The role of antioxidants in heat acclimation and adaptation is promising but evidence is still very limited in insects. Antioxidants also protect from other prooxidant conditions such as pesticide exposure, nutrient stress, or new biotic interactions, which often act in combination. Potential trade-offs between antioxidant use to different functions could define insect survival and pace of life in response to multiple stressors, including high temperatures. Our literature review indicates that there is only limited evidence of the role of antioxidants in preventing oxidative damage caused by heat, opening the possibility that ROS production might be mitigated by the action of uncoupling proteins or degradation of mitochondria. Finally, we conclude by proposing promising research avenues to gain a deeper understanding of the role of ROS and antioxidants in the oxidative balance of insects exposed to mild and extreme heat.
{"title":"Antioxidants, oxidative stress and reactive oxygen species in insects exposed to heat","authors":"Daniel González-Tokman , Sebastián Villada-Bedoya , América Hernández , Bibiana Montoya","doi":"10.1016/j.cris.2025.100114","DOIUrl":"10.1016/j.cris.2025.100114","url":null,"abstract":"<div><div>In response to high temperatures, insect metabolic rates increase, favoring the release of higher amounts of reactive oxygen species (ROS). These ROS need to be counteracted by antioxidants to avoid oxidative stress, which can lead to cell damage and death. In this manuscript, we review evidence in insects showing the effects of high temperatures on ROS production, the antioxidant defenses reported in insects in response to high and extremely high temperatures and the extent to which they contribute to preventing oxidative damage. Endogenously produced antioxidants can be enzymatic or non-enzymatic and are involved in heat responses in at least seven insect orders. Our review indicates that evidence is very limited for the effect of high temperature on ROS production, but it clearly shows that at least one antioxidant is upregulated during short-term heat exposure. However, the effects of antioxidants in effectively reducing oxidative damage in biomolecules are still poorly supported by evidence. Dietary-dependent antioxidants show strong potential for coping with heat stress, but evidence is limited, although numerous plants produce antioxidant compounds and a great number of insect species feed on plants. The role of antioxidants in heat acclimation and adaptation is promising but evidence is still very limited in insects. Antioxidants also protect from other prooxidant conditions such as pesticide exposure, nutrient stress, or new biotic interactions, which often act in combination. Potential trade-offs between antioxidant use to different functions could define insect survival and pace of life in response to multiple stressors, including high temperatures. Our literature review indicates that there is only limited evidence of the role of antioxidants in preventing oxidative damage caused by heat, opening the possibility that ROS production might be mitigated by the action of uncoupling proteins or degradation of mitochondria. Finally, we conclude by proposing promising research avenues to gain a deeper understanding of the role of ROS and antioxidants in the oxidative balance of insects exposed to mild and extreme heat.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100114"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance. Using laboratory Drosophila melanogaster populations, we explore if hosts experimentally adapted to surviving infection challenges by a single bacterial pathogen are also better at surviving infection challenges by novel bacterial pathogens. We found that such hosts can survive infection challenges by multiple novel pathogens, with the expanse of cross-resistance determined by the identity of the native pathogen and sex of the host. Therefore, we have demonstrated that cross-resistance can evolve in host populations by virtue of adaptation to a single pathogen. This observation has important ecological consequences, especially in the modern era where spillover of novel pathogens is a common occurrence due to various factors, including climate change.
{"title":"Experimental adaptation to singular pathogen challenge reduces susceptibility to novel pathogens in Drosophila melanogaster","authors":"Aparajita Singh, Aabeer Basu , Biswajit Shit , Tejashwini Hegde , Nitin Bansal , Nagaraj Guru Prasad","doi":"10.1016/j.cris.2024.100105","DOIUrl":"10.1016/j.cris.2024.100105","url":null,"abstract":"<div><div>Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance. Using laboratory <em>Drosophila melanogaster</em> populations, we explore if hosts experimentally adapted to surviving infection challenges by a single bacterial pathogen are also better at surviving infection challenges by novel bacterial pathogens. We found that such hosts can survive infection challenges by multiple novel pathogens, with the expanse of cross-resistance determined by the identity of the native pathogen and sex of the host. Therefore, we have demonstrated that cross-resistance can evolve in host populations by virtue of adaptation to a single pathogen. This observation has important ecological consequences, especially in the modern era where spillover of novel pathogens is a common occurrence due to various factors, including climate change.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100105"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2024.100102
Sophia Vermeulen , Anna M Forsman , Charissa de Bekker
The bacterial microbiome of the ant Camponotus floridanus has been well characterized across body regions and maturation levels. However, potential effects of entomopathogens on the gut microbiome, and the fungal communities therein, are yet to be assessed. Additionally, the mycobiome remains often overlooked despite playing a vital role in gut ecology with potential implications for health and infection outcomes. We characterized the effects of two entomopathogens with different infection strategies on the gut micro- and mycobiota of C. floridanus over time; Ophiocordyceps camponoti-floridani and Beauveria bassiana. Specialist, ‘zombie-making’ O. camponoti-floridani fungi hijack the behavior of C. floridanus ants over three weeks, leading them to find an elevated position and fix themselves in place with their mandibles. This summiting behavior is adaptive to Ophiocordyceps as the ant transports the fungus to conditions that favor fruiting body development, spore production, dispersal, and transmission. In contrast, the generalist entomopathogen B. bassiana infects and kills the ant within a few days, without the induction of obvious fungus-adaptive behaviors. By comparing healthy ants with Beauveria- and Ophiocordyceps-infected ants we aimed to 1) describe the dynamics of the micro- and mycobiome of C. floridanus during infection, and 2) determine if the effects on gut microbiota are distinctive between fungi that have different infection strategies. While Beauveria did not measurably affect the ant host micro-and mycobiome, Ophiocordyceps did, especially for the mycobiome. Moreover, ants that were sampled during Ophiocordyceps-adaptive summiting behavior had a significantly different micro- and mycobiome composition compared to healthy controls and those sampled before and after manipulation took place. This suggests that the host microbiome might have a role to play in the manipulation strategy of Ophiocordyceps.
{"title":"Consequences of “zombie-making” and generalist fungal pathogens on carpenter ant microbiota","authors":"Sophia Vermeulen , Anna M Forsman , Charissa de Bekker","doi":"10.1016/j.cris.2024.100102","DOIUrl":"10.1016/j.cris.2024.100102","url":null,"abstract":"<div><div>The bacterial microbiome of the ant <em>Camponotus floridanus</em> has been well characterized across body regions and maturation levels. However, potential effects of entomopathogens on the gut microbiome, and the fungal communities therein, are yet to be assessed. Additionally, the mycobiome remains often overlooked despite playing a vital role in gut ecology with potential implications for health and infection outcomes. We characterized the effects of two entomopathogens with different infection strategies on the gut micro- and mycobiota of <em>C. floridanus</em> over time; <em>Ophiocordyceps camponoti-floridani</em> and <em>Beauveria bassiana.</em> Specialist, ‘zombie-making’ <em>O. camponoti-floridani</em> fungi hijack the behavior of <em>C. floridanus</em> ants over three weeks, leading them to find an elevated position and fix themselves in place with their mandibles. This summiting behavior is adaptive to <em>Ophiocordyceps</em> as the ant transports the fungus to conditions that favor fruiting body development, spore production, dispersal, and transmission. In contrast, the generalist entomopathogen <em>B. bassiana</em> infects and kills the ant within a few days, without the induction of obvious fungus-adaptive behaviors. By comparing healthy ants with <em>Beauveria-</em> and <em>Ophiocordyceps-</em>infected ants we aimed to 1) describe the dynamics of the micro- and mycobiome of <em>C. floridanus</em> during infection<em>,</em> and 2) determine if the effects on gut microbiota are distinctive between fungi that have different infection strategies. While <em>Beauveria</em> did not measurably affect the ant host micro-and mycobiome, <em>Ophiocordyceps</em> did, especially for the mycobiome. Moreover, ants that were sampled during <em>Ophiocordyceps</em>-adaptive summiting behavior had a significantly different micro- and mycobiome composition compared to healthy controls and those sampled before and after manipulation took place. This suggests that the host microbiome might have a role to play in the manipulation strategy of <em>Ophiocordyceps</em>.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100102"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100106
Rossella Tiritelli , Giovanni Cilia , Tamara Gómez-Moracho
Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While Crithidia mellificae and C. bombi were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed Lotmaria passim as the predominant trypanosomatid in honey bees globally. New species like C. expoeki and C. acanthocephali have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of C. bombi, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.
{"title":"The trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites in bees: A review on their environmental circulation, impacts and implications","authors":"Rossella Tiritelli , Giovanni Cilia , Tamara Gómez-Moracho","doi":"10.1016/j.cris.2025.100106","DOIUrl":"10.1016/j.cris.2025.100106","url":null,"abstract":"<div><div>Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While <em>Crithidia mellificae</em> and <em>C. bombi</em> were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed <em>Lotmaria passim</em> as the predominant trypanosomatid in honey bees globally. New species like <em>C. expoeki</em> and <em>C. acanthocephali</em> have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of <em>C. bombi</em>, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100106"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100107
Rafael Carvalho da Silva , Fabio Santos do Nascimento , Cintia Akemi Oi
The family Vespidae represents a key group to understand the evolutionary trajectory of social behavior in insects, as these wasps display the entire spectrum of social behaviors, from solitary to highly eusocial. The evolution of eusociality likely depended on a coordinated communication system, with chemical communication being suggested as the most commonly used among social insects. Chemical communication provides information about colony identity and an individual's identity, sex and caste, and can help resolve intracolonial conflicts. Parallel to the communication observed in adult-to-adult interactions, several reports have highlighted that the brood (eggs, larvae or pupae) can also act as direct or indirect sources of chemical compounds that can convey information. For example, eggs are covered with chemical substances that provide information about egg maternity and the queen's fertility. Given the increase in the past years of studies aiming to understand how brood can contribute to social dynamics, we reviewed the literature about the information conveyed by brood in wasp's nests across different levels of sociality. The main goal of this review was to synthesize the current knowledge and provide new venues of research. We addressed five main subjects (1) brood mediated conflicts and underlying mechanisms, (2) brood parasitism, (3) hydrocarbon cues covering brood, (4) juvenile hormone influencing brood scent and (5) other modes of communication used by brood.
{"title":"The multifaceted role of brood communication in wasp societies","authors":"Rafael Carvalho da Silva , Fabio Santos do Nascimento , Cintia Akemi Oi","doi":"10.1016/j.cris.2025.100107","DOIUrl":"10.1016/j.cris.2025.100107","url":null,"abstract":"<div><div>The family Vespidae represents a key group to understand the evolutionary trajectory of social behavior in insects, as these wasps display the entire spectrum of social behaviors, from solitary to highly eusocial. The evolution of eusociality likely depended on a coordinated communication system, with chemical communication being suggested as the most commonly used among social insects. Chemical communication provides information about colony identity and an individual's identity, sex and caste, and can help resolve intracolonial conflicts. Parallel to the communication observed in adult-to-adult interactions, several reports have highlighted that the brood (eggs, larvae or pupae) can also act as direct or indirect sources of chemical compounds that can convey information. For example, eggs are covered with chemical substances that provide information about egg maternity and the queen's fertility. Given the increase in the past years of studies aiming to understand how brood can contribute to social dynamics, we reviewed the literature about the information conveyed by brood in wasp's nests across different levels of sociality. The main goal of this review was to synthesize the current knowledge and provide new venues of research. We addressed five main subjects (1) brood mediated conflicts and underlying mechanisms, (2) brood parasitism, (3) hydrocarbon cues covering brood, (4) juvenile hormone influencing brood scent and (5) other modes of communication used by brood.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100107"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.cris.2025.100111
Emily E. Mikucki , Cole Julick , Justin L. Buchanan , Kristi L. Montooth , Brent L. Lockwood
As ectotherms, many insects spend the winter months in a state of suspended animation (i.e., diapause), lowering their metabolic rates to subsist on a limited store of energy reserves. The ability to lower metabolic rate during diapause relies, in part, on cold winter temperatures to intrinsically lower metabolic rate. Winter warming associated with global climate change may pose a challenge to diapausing insects by intrinsically increasing metabolic rate, potentially leading to the exhaustion of energetic reserves. We used stop-flow respirometry to measure oxygen consumption in response to temperatures representative of both acute and chronic winter warming scenarios in diapausing Pieris rapae pupae. Metabolic rate increased with increasing temperature in diapausing pupae, but metabolic rate depended on both pupal age and warming severity, with older pupae having lower metabolic rates overall. Despite the increases in metabolic rate, pupae recovered metabolic rate within 24-hours after short-term acute-warming exposure. In contrast, chronic exposure to warming over weeks and months led to significant decreases in metabolic rate later in diapause, as well as reductions in pupal mass. These results demonstrate that while respiration was thermally responsive, warming did not lead to sustained increases in metabolic rate. Instead, diapausing P. rapae appear to acclimate to higher temperature by lowering their metabolic rates in response to months of chronic warming. Overall, these patterns suggest that this species could be resilient to winter warming, at least in the context of energetics. However, the precise mechanisms underlying these responses remain to be characterized. Thus, future research—e.g., on the genetic underpinnings of energetics in the context of warming—could further elucidate the relative vulnerability of diapausing insects to future winter warming.
{"title":"Thermal effects on metabolic rate in diapausing Pieris rapae butterflies","authors":"Emily E. Mikucki , Cole Julick , Justin L. Buchanan , Kristi L. Montooth , Brent L. Lockwood","doi":"10.1016/j.cris.2025.100111","DOIUrl":"10.1016/j.cris.2025.100111","url":null,"abstract":"<div><div>As ectotherms, many insects spend the winter months in a state of suspended animation (i.e., diapause), lowering their metabolic rates to subsist on a limited store of energy reserves. The ability to lower metabolic rate during diapause relies, in part, on cold winter temperatures to intrinsically lower metabolic rate. Winter warming associated with global climate change may pose a challenge to diapausing insects by intrinsically increasing metabolic rate, potentially leading to the exhaustion of energetic reserves. We used stop-flow respirometry to measure oxygen consumption in response to temperatures representative of both acute and chronic winter warming scenarios in diapausing <em>Pieris rapae</em> pupae. Metabolic rate increased with increasing temperature in diapausing pupae, but metabolic rate depended on both pupal age and warming severity, with older pupae having lower metabolic rates overall. Despite the increases in metabolic rate, pupae recovered metabolic rate within 24-hours after short-term acute-warming exposure. In contrast, chronic exposure to warming over weeks and months led to significant decreases in metabolic rate later in diapause, as well as reductions in pupal mass. These results demonstrate that while respiration was thermally responsive, warming did not lead to sustained increases in metabolic rate. Instead, diapausing <em>P. rapae</em> appear to acclimate to higher temperature by lowering their metabolic rates in response to months of chronic warming. Overall, these patterns suggest that this species could be resilient to winter warming, at least in the context of energetics. However, the precise mechanisms underlying these responses remain to be characterized. Thus, future research—e.g., on the genetic underpinnings of energetics in the context of warming—could further elucidate the relative vulnerability of diapausing insects to future winter warming.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100111"},"PeriodicalIF":2.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}