首页 > 最新文献

Journal of Catalysis最新文献

英文 中文
Unusually high selectivity (100 %) of photocatalytic CC coupling achieved by instant reverse reduction of byproducts 通过瞬间反向还原副产物,实现光催化 CC 偶联的超高选择性(100
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-12 DOI: 10.1016/j.jcat.2024.115842
Tianhan Shen, Qipeng Chen, Yue Gao, Zuofei Gu, Huiqing Zhang, Fengyan Shi, Guohua Liu, Yuning Huo, Hexing Li
The photocatalytic CC coupling of benzyl alcohol (BA) into hydrobenzoin (HB), is appealing to obtain high-value chemicals. However, the selectivity of HB is still low due to the inevitable formation of benzaldehyde. Herein, we report In(OH)3-ZnS photocatalyst for CC coupling of BA into HB with very high selectivity (∼100 %). The introduction of In(OH)3 onto ZnS with stable interaction facilitates light harvesting and separation of photo-excited charges. As a result, BA conversion on optimized In(0.1)-ZnS catalyst (73 %) is much higher than ZnS (29 %). Besides, the surface hydroxyl groups derived from In(OH)3 enables the facile desorption of CH(OH)Ph radical. Therefore, the over oxidation of CH(OH)Ph radical into by-product of benzaldehyde can be effectively inhibited. More significantly, in-situ FTIR spectra and reduction of by-product manifest the instant reverse reduction process of benzaldehyde into CH(OH)Ph radical during CC coupling of BA, which is the key to realizing satisfied HB selectivity (100 %). Theoretical simulations reveal that the weak adsorption of CH(OH)Ph radical over catalyst and the high energy barrier of over-oxidation of CH(OH)Ph into benzaldehyde contributes to the formation of highly selective coupling products. This work will inspire new insights to design rational photoredox systems for organic transformations with high selectivity.
通过光催化 CC 将苯甲醇(BA)偶联成氢安息香(HB),对获得高价值化学品具有吸引力。然而,由于不可避免地会形成苯甲醛,因此 HB 的选择性仍然很低。在此,我们报告了 In(OH)3-ZnS 光催化剂用于将 BA 以极高的选择性(∼100 %)耦合到 HB 中。在 ZnS 上引入 In(OH)3 具有稳定的相互作用,有利于光收集和光激发电荷的分离。因此,优化 In(0.1)-ZnS 催化剂上的 BA 转化率(73%)远高于 ZnS(29%)。此外,In(OH)3 产生的表面羟基使 CH(OH)Ph 自由基易于解吸。因此,CH(OH)Ph 自由基过度氧化成苯甲醛副产物的过程可以得到有效抑制。更重要的是,原位傅立叶变换红外光谱和副产物的还原表明,在 BA 的 CC 偶联过程中,苯甲醛瞬间反向还原为 CH(OH)Ph 自由基,这是实现满意的 HB 选择性(100%)的关键。理论模拟揭示了催化剂对 CH(OH)Ph 自由基的弱吸附性和 CH(OH)Ph 过度氧化成苯甲醛的高能垒有助于形成高选择性的偶联产物。这项工作将为设计用于高选择性有机转化的合理光氧化系统提供新的启示。
{"title":"Unusually high selectivity (100 %) of photocatalytic CC coupling achieved by instant reverse reduction of byproducts","authors":"Tianhan Shen,&nbsp;Qipeng Chen,&nbsp;Yue Gao,&nbsp;Zuofei Gu,&nbsp;Huiqing Zhang,&nbsp;Fengyan Shi,&nbsp;Guohua Liu,&nbsp;Yuning Huo,&nbsp;Hexing Li","doi":"10.1016/j.jcat.2024.115842","DOIUrl":"10.1016/j.jcat.2024.115842","url":null,"abstract":"<div><div>The photocatalytic C<img>C coupling of benzyl alcohol (BA) into hydrobenzoin (HB), is appealing to obtain high-value chemicals. However, the selectivity of HB is still low due to the inevitable formation of benzaldehyde. Herein, we report In(OH)<sub>3</sub>-ZnS photocatalyst for C<img>C coupling of BA into HB with very high selectivity (∼100 %). The introduction of In(OH)<sub>3</sub> onto ZnS with stable interaction facilitates light harvesting and separation of photo-excited charges. As a result, BA conversion on optimized In(0.1)-ZnS catalyst (73 %) is much higher than ZnS (29 %). Besides, the surface hydroxyl groups derived from In(OH)<sub>3</sub> enables the facile desorption of <img>CH(OH)Ph radical. Therefore, the over oxidation of <img>CH(OH)Ph radical into by-product of benzaldehyde can be effectively inhibited. More significantly, in-situ FTIR spectra and reduction of by-product manifest the instant reverse reduction process of benzaldehyde into <img>CH(OH)Ph radical during C<img>C coupling of BA, which is the key to realizing satisfied HB selectivity (100 %). Theoretical simulations reveal that the weak adsorption of <img>CH(OH)Ph radical over catalyst and the high energy barrier of over-oxidation of <img>CH(OH)Ph into benzaldehyde contributes to the formation of highly selective coupling products. This work will inspire new insights to design rational photoredox systems for organic transformations with high selectivity.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115842"},"PeriodicalIF":6.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localized surface plasmon resonance effect–mediated in-situ photochemical–formation of H2O2 for high epoxidation performance over LaSrCoNiO6 nanoparticles 局部表面等离子体共振效应介导的 H2O2 在 LaSrCoNiO6 纳米粒子上原位光化学转化,实现高环氧氧化性能
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-12 DOI: 10.1016/j.jcat.2024.115841
Liru Song , Wenyu Wang , Jun Tang , Xu Guo , Xiantai Zhou , Qingping Ke
Selective aerobic epoxidation of allylic alcohols and olefins presents a promising solution to the modern chemical industry. However, the development of non-noble metal catalysts with superior catalytic performance for this reaction remains a significant challenge. This study introduces a plasmonic photothermal-catalytic system centered around nano LaSrCoNiO6 (LSCNi-N) catalyst, enabling the epoxidation of cinnamyl alcohol and styrene mediated by LSPR effect under visible light illumination (>420 nm). This catalyst exhibits superior epoxidation catalytic performance, with selectivities of up to 72.3 % in a 93.4 % conversion of cinnamyl alcohol and 91.8 % selectivity of styrene oxide at almost 100 % conversion of styrene. Mechanistic studies reveal that the high selectivity derives from the in-situ photochemical formation of H2O2 mediated by the localized surface plasmon resonance effect of LSCNi-N and hole scavenger effect of cinnamyl alcohol. These findings highlight the potential of designing plasmonic transition-metal oxidic catalysts to overcome challenges in selectively synthesizing fine chemicals through visible light catalysis.
烯丙醇和烯烃的选择性有氧环氧化反应为现代化学工业提供了一种前景广阔的解决方案。然而,为该反应开发催化性能优越的非贵金属催化剂仍是一项重大挑战。本研究介绍了一种以纳米 LaSrCoNiO6(LSCNi-N)催化剂为核心的等离子体光热催化系统,在可见光(420 纳米)照射下,通过 LSPR 效应介导肉桂醇和苯乙烯的环氧化反应。这种催化剂具有卓越的环氧化催化性能,在肉桂醇 93.4% 的转化率下,其选择性高达 72.3%;在苯乙烯几乎 100% 的转化率下,其对氧化苯乙烯的选择性高达 91.8%。机理研究表明,高选择性源于 LSCNi-N 的局部表面等离子共振效应和肉桂醇的空穴清除效应介导的 H2O2 的原位光化学形成。这些发现凸显了设计质子过渡金属氧化催化剂的潜力,以克服通过可见光催化选择性合成精细化学品的挑战。
{"title":"Localized surface plasmon resonance effect–mediated in-situ photochemical–formation of H2O2 for high epoxidation performance over LaSrCoNiO6 nanoparticles","authors":"Liru Song ,&nbsp;Wenyu Wang ,&nbsp;Jun Tang ,&nbsp;Xu Guo ,&nbsp;Xiantai Zhou ,&nbsp;Qingping Ke","doi":"10.1016/j.jcat.2024.115841","DOIUrl":"10.1016/j.jcat.2024.115841","url":null,"abstract":"<div><div>Selective aerobic epoxidation of allylic alcohols and olefins presents a promising solution to the modern chemical industry. However, the development of non-noble metal catalysts with superior catalytic performance for this reaction remains a significant challenge. This study introduces a plasmonic photothermal-catalytic system centered around nano LaSrCoNiO<sub>6</sub> (LSCNi-N) catalyst, enabling the epoxidation of cinnamyl alcohol and styrene mediated by LSPR effect under visible light illumination (&gt;420 nm). This catalyst exhibits superior epoxidation catalytic performance, with selectivities of up to 72.3 % in a 93.4 % conversion of cinnamyl alcohol and 91.8 % selectivity of styrene oxide at almost 100 % conversion of styrene. Mechanistic studies reveal that the high selectivity derives from the in-situ photochemical formation of H<sub>2</sub>O<sub>2</sub> mediated by the localized surface plasmon resonance effect of LSCNi-N and hole scavenger effect of cinnamyl alcohol. These findings highlight the potential of designing plasmonic transition-metal oxidic catalysts to overcome challenges in selectively synthesizing fine chemicals through visible light catalysis.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115841"},"PeriodicalIF":6.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic interplay of CuOx and Pd nanodots on TiO2 for efficient and highly selective photocatalytic oxidation of CH4 to oxygenates with O2 铜氧化物和钯纳米点在二氧化钛上的协同作用可高效、高选择性地光催化氧化 CH4 与 O2 生成含氧化合物
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-12 DOI: 10.1016/j.jcat.2024.115840
Yicheng Li , Kai Sun , Shangbo Ning , Panzhe Qiao , Shengyao Wang , Zhou-jun Wang , Liping Zhu , Xiao Zhang , Kang Peng , Xu-sheng Wang , Defa Wang , Lequan Liu , Hui Song , Jinhua Ye
Direct photocatalytic methane oxidation to produce liquid oxygenates offers a promising approach for the upgrading of abundant methane under mild conditions, yet it remains a formidable challenge in achieving high reaction rates while maintaining high selectivity. Herein, we report the highly dispersed CuOx and Pd nanodots decorated TiO2 for photocatalytic oxidation of CH4 with O2 at room temperature, which exhibits a remarkable C1 oxygenates production rate of 39.5 mmol·g−1·h−1 with a nearly 100 % selectivity, outperforming most of the state-of-the-art photocatalysts. Both experimental and theoretical studies suggest that the impressive photocatalytic performance is attributed to the synergy of Cu+ species and Pd nanodots. Cu+ species not only promote the interfacial electrons transfer from TiO2 to Pd, but also mediate CH4 oxidation reaction to avoid overoxidation of oxygenates to CO2, while the resulting electron-rich Pd sites boost the production of primary products (CH3OOH and CH3OH) by lowering the reaction energy. This work provides a new pathway for developing highly efficient photocatalysts for the selective conversion of methane to value-added chemicals by designing bimetallic cocatalysts.
直接光催化甲烷氧化制取液态含氧化合物为在温和条件下提纯丰富的甲烷提供了一种前景广阔的方法,但要在保持高选择性的同时实现高反应速率仍是一项艰巨的挑战。在此,我们报告了高度分散的 CuOx 和 Pd 纳米点装饰的 TiO2 在室温下用 O2 光催化氧化 CH4 的情况,其 C1 含氧化合物的生产率高达 39.5 mmol-g-1-h-1,选择性接近 100%,优于大多数最先进的光催化剂。实验和理论研究都表明,令人印象深刻的光催化性能归功于 Cu+ 物种和钯纳米点的协同作用。Cu+ 物种不仅能促进界面电子从 TiO2 转移到 Pd,还能介导 CH4 氧化反应,避免含氧化合物过度氧化成 CO2,而由此产生的富电子 Pd 位点则能通过降低反应能量促进初级产品(CH3OOH 和 CH3OH)的生成。这项工作为通过设计双金属协同催化剂来开发高效光催化剂提供了一条新途径,可用于将甲烷选择性转化为高附加值化学品。
{"title":"Synergistic interplay of CuOx and Pd nanodots on TiO2 for efficient and highly selective photocatalytic oxidation of CH4 to oxygenates with O2","authors":"Yicheng Li ,&nbsp;Kai Sun ,&nbsp;Shangbo Ning ,&nbsp;Panzhe Qiao ,&nbsp;Shengyao Wang ,&nbsp;Zhou-jun Wang ,&nbsp;Liping Zhu ,&nbsp;Xiao Zhang ,&nbsp;Kang Peng ,&nbsp;Xu-sheng Wang ,&nbsp;Defa Wang ,&nbsp;Lequan Liu ,&nbsp;Hui Song ,&nbsp;Jinhua Ye","doi":"10.1016/j.jcat.2024.115840","DOIUrl":"10.1016/j.jcat.2024.115840","url":null,"abstract":"<div><div>Direct photocatalytic methane oxidation to produce liquid oxygenates offers a promising approach for the upgrading of abundant methane under mild conditions, yet it remains a formidable challenge in achieving high reaction rates while maintaining high selectivity. Herein, we report the highly dispersed CuO<sub>x</sub> and Pd nanodots decorated TiO<sub>2</sub> for photocatalytic oxidation of CH<sub>4</sub> with O<sub>2</sub> at room temperature, which exhibits a remarkable C<sub>1</sub> oxygenates production rate of 39.5 mmol·g<sup>−1·</sup>h<sup>−1</sup> with a nearly 100 % selectivity, outperforming most of the state-of-the-art photocatalysts. Both experimental and theoretical studies suggest that the impressive photocatalytic performance is attributed to the synergy of Cu<sup>+</sup> species and Pd nanodots. Cu<sup>+</sup> species not only promote the interfacial electrons transfer from TiO<sub>2</sub> to Pd, but also mediate CH<sub>4</sub> oxidation reaction to avoid overoxidation of oxygenates to CO<sub>2</sub>, while the resulting electron-rich Pd sites boost the production of primary products (CH<sub>3</sub>OOH and CH<sub>3</sub>OH) by lowering the reaction energy. This work provides a new pathway for developing highly efficient photocatalysts for the selective conversion of methane to value-added chemicals by designing bimetallic cocatalysts.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115840"},"PeriodicalIF":6.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational descriptor for electrochemical currents of carbon dioxide reduction on Cu facets 铜面二氧化碳还原电化学电流的计算描述符
IF 7.3 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-10 DOI: 10.1016/j.jcat.2024.115836
Timothy T. Yang, Wissam A. Saidi
Computation screening is crucial for designing efficient electrochemical catalysts for carbon dioxide (CO2R) reduction that produce valuable hydrocarbons and oxygenates. Herein, leveraging density functional theory calculations of the CO adsorption energy ΔECO on seventeen Cu terminations, we discover a strong linear correlation between ΔECO and the recently experimentally measured CO2R electrochemical currents (ACS Catal. 2022, 12, 11, 6578–6588). Examining the ab initio thermodynamics of the early critical intermediates CO*, COH*, and CHO*, we find that CO* CHO* is the thermodynamically controlling step. Beyond the general CO adsorption energy that only shows a linear trend with CO2R activity, we show that the reaction free energy of CO* CHO* is the descriptor for the overall CO2R activity for Cu facets, as it displays a volcano relationship with the experimental current. Importantly, we show that increasing the step and kink density of the Cu terminations not only enhances CO adsorption strength but also modulates the CO* CHO* pathway, as respectively exemplified in the (941) and (741) facets. In addition, we explain that the high activity of (741) is due to its relatively low hydrogen evolution reaction activity compared with the other Cu surfaces.
计算筛选对于设计可产生有价值碳氢化合物和含氧化合物的高效二氧化碳(CO2R)还原电化学催化剂至关重要。在此,我们利用密度泛函理论计算了 17 个铜端点上的 CO 吸附能 ΔECOΔECO,发现 ΔECOΔECO 与最近实验测量的 CO2R 电化学电流(ACS Catal.)通过研究早期临界中间产物 CO*、COH* 和 CHO* 的 ab initio 热力学,我们发现 CO* →→ CHO* 是热力学上的控制步骤。除了一般的 CO 吸附能仅与 CO2R 活性呈线性趋势外,我们还发现 CO* →→ CHO* 的反应自由能是铜面整体 CO2R 活性的描述因子,因为它与实验电流呈火山关系。重要的是,我们发现增加 Cu 端面的阶梯和扭结密度不仅能增强 CO 吸附强度,还能调节 CO* →→ CHO* 路径,这在 (941) 和 (741) 面中分别得到了体现。此外,我们还解释了 (741) 面的高活性是由于其氢进化反应活性相对于其他铜表面较低。
{"title":"Computational descriptor for electrochemical currents of carbon dioxide reduction on Cu facets","authors":"Timothy T. Yang, Wissam A. Saidi","doi":"10.1016/j.jcat.2024.115836","DOIUrl":"https://doi.org/10.1016/j.jcat.2024.115836","url":null,"abstract":"Computation screening is crucial for designing efficient electrochemical catalysts for carbon dioxide (CO<sub>2</sub>R) reduction that produce valuable hydrocarbons and oxygenates. Herein, leveraging density functional theory calculations of the CO adsorption energy <span><span><math><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow></msub></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow></msub></mrow></math></script></span> on seventeen Cu terminations, we discover a strong linear correlation between <span><span><math><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow></msub></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow></msub></mrow></math></script></span> and the recently experimentally measured CO<sub>2</sub>R electrochemical currents (ACS Catal. 2022, 12, 11, 6578–6588). Examining the <em>ab initio</em> thermodynamics of the early critical intermediates CO*, COH*, and CHO*, we find that CO* <span><span><math><mo is=\"true\" stretchy=\"false\">→</mo></math></span><script type=\"math/mml\"><math><mo stretchy=\"false\" is=\"true\">→</mo></math></script></span> CHO* is the thermodynamically controlling step. <em>Beyond the general CO adsorption energy that only shows a linear trend with CO<sub>2</sub>R activity, we show that the reaction free</em> energy of CO* <span><span><math><mo is=\"true\" stretchy=\"false\">→</mo></math></span><script type=\"math/mml\"><math><mo stretchy=\"false\" is=\"true\">→</mo></math></script></span> CHO* <em>is the descriptor for the overall CO<sub>2</sub>R activity for Cu facets, as it displays a volcano relationship with the experimental current.</em> Importantly, we show that increasing the step and kink density of the Cu terminations not only enhances CO adsorption strength but also modulates the CO* <span><span><math><mo is=\"true\" stretchy=\"false\">→</mo></math></span><script type=\"math/mml\"><math><mo stretchy=\"false\" is=\"true\">→</mo></math></script></span> CHO* pathway, as respectively exemplified in the (941) and (741) facets. In addition, we explain that the high activity of (741) is due to its relatively low hydrogen evolution reaction activity compared with the other Cu surfaces.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"35 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cuboidal molybdenum sulfur cluster as a platform to construct novel catalyst for propane dehydrogenation 以立方体钼硫簇为平台构建新型丙烷脱氢催化剂
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-10 DOI: 10.1016/j.jcat.2024.115831
Tianci Zheng , Shaoxia Weng , Alan J. McCue , Nan Yang , Haowen Ma , Yuan Xie , Yanjun Lin , Yanan Liu , Dianqing Li
Growing demand of short chain olefins such as propylene for plastic production drives the development of high performing catalysts for propane dehydrogenation (PDH). Here, a confinement strategy originating from metal-sulfur clusters was employed to fabricate defective MoPtSx phase via anchoring by coordinatively unsaturated Al sites present on alumina, followed by reduction under H2 flow at high temperature. This catalyst with a low Pt content exhibits great ability for C–H activation with high intrinsic activity and facile propylene desorption in PDH reaction. More importantly, this catalyst shows excellent stability during long-term tests with both stable conversion and selectivity. Through combined X-ray absorption spectroscopy, electron microscopy and electron paramagnetic resonance measurements it could be affirmed that the isolated and electron-enriched Pt sites as well as their proximity to adjacent sulfur vacancies is vital for the first and second C–H bond activation, and suppressing of C–C cleavage which otherwise lead to coking.
塑料生产对丙烯等短链烯烃日益增长的需求推动了丙烷脱氢 (PDH) 高效催化剂的开发。在这里,我们采用了一种源自金属硫簇的限制策略,通过氧化铝上存在的配位不饱和铝位点的锚定来制造有缺陷的 MoPtSx 相,然后在高温 H2 流动条件下进行还原。这种铂含量较低的催化剂具有很强的 C-H 活化能力,在 PDH 反应中具有很高的内在活性和丙烯脱附能力。更重要的是,该催化剂在长期试验中表现出了极佳的稳定性,转化率和选择性都很稳定。通过结合 X 射线吸收光谱、电子显微镜和电子顺磁共振测量,可以确定孤立铂位点和电子富集铂位点之间的相互作用以及它们与相邻硫空位的接近程度对于第一和第二 C-H 键的活化至关重要,同时抑制了 C-C 裂解,否则会导致结焦。
{"title":"Cuboidal molybdenum sulfur cluster as a platform to construct novel catalyst for propane dehydrogenation","authors":"Tianci Zheng ,&nbsp;Shaoxia Weng ,&nbsp;Alan J. McCue ,&nbsp;Nan Yang ,&nbsp;Haowen Ma ,&nbsp;Yuan Xie ,&nbsp;Yanjun Lin ,&nbsp;Yanan Liu ,&nbsp;Dianqing Li","doi":"10.1016/j.jcat.2024.115831","DOIUrl":"10.1016/j.jcat.2024.115831","url":null,"abstract":"<div><div>Growing demand of short chain olefins such as propylene for plastic production drives the development of high performing catalysts for propane dehydrogenation (PDH). Here, a confinement strategy originating from metal-sulfur clusters was employed to fabricate defective MoPtS<sub>x</sub> phase via anchoring by coordinatively unsaturated Al sites present on alumina, followed by reduction under H<sub>2</sub> flow at high temperature. This catalyst with a low Pt content exhibits great ability for C–H activation with high intrinsic activity and facile propylene desorption in PDH reaction. More importantly, this catalyst shows excellent stability during long-term tests with both stable conversion and selectivity. Through combined X-ray absorption spectroscopy, electron microscopy and electron paramagnetic resonance measurements it could be affirmed that the isolated and electron-enriched Pt sites as well as their proximity to adjacent sulfur vacancies is vital for the first and second C–H bond activation, and suppressing of C–C cleavage which otherwise lead to coking.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115831"},"PeriodicalIF":6.5,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of a copper-bismuth catalyst featuring Bi-N4 sites and synergistic Bi clusters derived from TCPP(Bi)@HKUST-1 for enhanced formaldehyde to butynediol 构建具有 Bi-N4 位点和 TCPP(Bi)@HKUST-1 衍生的协同 Bi 簇的铜铋催化剂,以提高甲醛制丁炔二醇的效果
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-10 DOI: 10.1016/j.jcat.2024.115843
Yong Wang , Yongkang Sun , Fusheng Huang , Tingting Wang , Bin Dai , Jichang Liu , Jiangbing Li , Xuhong Guo
The construction of functional catalysts that efficiently catalyze in a reducing atmosphere is considered rather challenging. In this study, the catalysts bridged by Bi-N4 between copper and bismuth species were prepared. Herein, Bi-N4 and bismuth cluster sites were incorporated into porous carbon–nitrogen networks along with copper nanoparticles (BiSAC&Clu-Cu-NC). For the synthesis, metalloporphyrin-modified HKUST-1 (TCPP(Bi)@HKUST-1) was employed as a precursor. Additionally, metalloporphyrin functioned as a capping agent during catalyst preparation, thereby enhancing the dispersion of Bi species after calcination. Notably, the BiSAC&Clu-Cu-NC catalyst demonstrated 93.8 % selectivity towards 1,4-butynediol over 20 h at a Bi loading of 0.6 wt% in a reducing atmosphere of acetylene and formaldehyde. Furthermore, a mechanistic model is proposed that elucidates the observed synergistic catalytic behavior based on experimental characterization and DFT calculations. This proposed model is termed “Nanoparticles with Cluster and Single Metal Sites”(NCS mechanism). The retention of the Bi cluster structure within the material matrix plays a pivotal role in enhancing the adsorption and activation of formaldehyde. Interfacial effects between different copper species favour the activation of the reaction substrate acetylene. Additionally, the Bi-N4 structure can function as a crucial conduit, facilitating electron transfer between Cu and Bi elements and consequently lowering the activation energy barrier for key reaction intermediates.
构建能在还原气氛中有效催化的功能催化剂是一项相当具有挑战性的工作。本研究制备了铜和铋之间由 Bi-N4 桥接的催化剂。在这种催化剂中,Bi-N4 和铋团簇位点与铜纳米颗粒(BiSAC&Clu-Cu-NC)一起被纳入多孔碳氮网络。在合成过程中,采用了金属卟啉修饰的 HKUST-1 (TCPP(Bi)@HKUST-1)作为前体。此外,金属卟啉在催化剂制备过程中起到了封盖剂的作用,从而提高了煅烧后铋物种的分散性。值得注意的是,在乙炔和甲醛还原气氛中,BiSAC&Clu-Cu-NC 催化剂在 20 小时内对 1,4-丁炔二醇的选择性达到 93.8%,Bi 的负载量为 0.6 wt%。此外,还根据实验表征和 DFT 计算提出了一个机理模型,以阐明所观察到的协同催化行为。该模型被称为 "具有团簇和单金属位点的纳米颗粒"(NCS 机制)。在材料基质中保留 Bi 簇结构对增强甲醛的吸附和活化起着关键作用。不同铜种之间的界面效应有利于活化反应底物乙炔。此外,Bi-N4 结构还可以作为一个重要的通道,促进铜和 Bi 元素之间的电子转移,从而降低关键反应中间产物的活化能垒。
{"title":"Construction of a copper-bismuth catalyst featuring Bi-N4 sites and synergistic Bi clusters derived from TCPP(Bi)@HKUST-1 for enhanced formaldehyde to butynediol","authors":"Yong Wang ,&nbsp;Yongkang Sun ,&nbsp;Fusheng Huang ,&nbsp;Tingting Wang ,&nbsp;Bin Dai ,&nbsp;Jichang Liu ,&nbsp;Jiangbing Li ,&nbsp;Xuhong Guo","doi":"10.1016/j.jcat.2024.115843","DOIUrl":"10.1016/j.jcat.2024.115843","url":null,"abstract":"<div><div>The construction of functional catalysts that efficiently catalyze in a reducing atmosphere is considered rather challenging. In this study, the catalysts bridged by Bi-N<sub>4</sub> between copper and bismuth species were prepared. Herein, Bi-N<sub>4</sub> and bismuth cluster sites were incorporated into porous carbon–nitrogen networks along with copper nanoparticles (Bi<sub>SAC&amp;Clu</sub>-Cu-NC). For the synthesis, metalloporphyrin-modified HKUST-1 (TCPP(Bi)@HKUST-1) was employed as a precursor. Additionally, metalloporphyrin functioned as a capping agent during catalyst preparation, thereby enhancing the dispersion of Bi species after calcination. Notably, the Bi<sub>SAC&amp;Clu</sub>-Cu-NC catalyst demonstrated 93.8 % selectivity towards 1,4-butynediol over 20 h at a Bi loading of 0.6 wt% in a reducing atmosphere of acetylene and formaldehyde. Furthermore, a mechanistic model is proposed that elucidates the observed synergistic catalytic behavior based on experimental characterization and DFT calculations. This proposed model is termed “Nanoparticles with Cluster and Single Metal Sites”(NCS mechanism). The retention of the Bi cluster structure within the material matrix plays a pivotal role in enhancing the adsorption and activation of formaldehyde. Interfacial effects between different copper species favour the activation of the reaction substrate acetylene. Additionally, the Bi-N<sub>4</sub> structure can function as a crucial conduit, facilitating electron transfer between Cu and Bi elements and consequently lowering the activation energy barrier for key reaction intermediates.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115843"},"PeriodicalIF":6.5,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dealuminated H–Y zeolites generate, stabilize and catalytically insert carbenes from diazocarbonyl compounds 脱铝 H-Y 沸石从重氮羰基化合物中生成、稳定和催化插入烯碳化合物
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.jcat.2024.115835
Yongkun Zheng, Miguel Espinosa, Marta Mon, Antonio Leyva–Pérez
Carbenes are among the most powerful reactants in organic synthesis, with capacity to insert into a variety of otherwise stable bonds, and generate two new bonds in a straightforward manner. However, the intrinsic instability of such carbenes makes them to be catalytically generated, in–situ, from precursors such as diazocarbonyl compounds, and the catalyst, in turn, also controls the subsequent insertion reaction. The catalyst is generally a metal complex in solution, mainly Cu, Ag or Rh, but also others, including protons in rare cases. Here we show that carbenes are generated, stabilized and inserted into C–C, C–H, O–H, N–H, Si–H and O–O bonds after reacting diazocarbonyl compounds with catalytic amounts of metal–free, commercially available dealuminated H–Y zeolites. These results open the way to design carbene–mediated organic reactions on readily available and reusable catalytic solids without involving metals.
烯碳化合物是有机合成中最强大的反应物之一,能够插入各种原本稳定的键中,并以直接的方式生成两个新键。然而,由于这些碳烯的内在不稳定性,它们需要在原位由重氮羰基化合物等前体催化生成,而催化剂反过来也控制着随后的插入反应。催化剂通常是溶液中的金属复合物,主要是铜、银或铑,也有其他金属,包括极少数情况下的质子。在这里,我们展示了在重氮羰基化合物与催化量的无金属、市售脱铝 H-Y 沸石反应后,碳烯的生成、稳定和插入 C-C、C-H、O-H、N-H、Si-H 和 O-O 键。这些结果为在不涉及金属的情况下,在随时可用且可重复使用的催化固体上设计碳介导的有机反应开辟了道路。
{"title":"Dealuminated H–Y zeolites generate, stabilize and catalytically insert carbenes from diazocarbonyl compounds","authors":"Yongkun Zheng,&nbsp;Miguel Espinosa,&nbsp;Marta Mon,&nbsp;Antonio Leyva–Pérez","doi":"10.1016/j.jcat.2024.115835","DOIUrl":"10.1016/j.jcat.2024.115835","url":null,"abstract":"<div><div>Carbenes are among the most powerful reactants in organic synthesis, with capacity to insert into a variety of otherwise stable bonds, and generate two new bonds in a straightforward manner. However, the intrinsic instability of such carbenes makes them to be catalytically generated, in–situ, from precursors such as diazocarbonyl compounds, and the catalyst, in turn, also controls the subsequent insertion reaction. The catalyst is generally a metal complex in solution, mainly Cu, Ag or Rh, but also others, including protons in rare cases. Here we show that carbenes are generated, stabilized and inserted into C–C, C–H, O–H, N–H, Si–H and O–O bonds after reacting diazocarbonyl compounds with catalytic amounts of metal–free, commercially available dealuminated H–Y zeolites. These results open the way to design carbene–mediated organic reactions on readily available and reusable catalytic solids without involving metals.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115835"},"PeriodicalIF":6.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilitating the electrooxidation of 5-hydroxymethylfurfural on nickel hydroxide through deintercalation 通过脱插层促进 5-羟甲基糠醛在氢氧化镍上的电氧化作用
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.jcat.2024.115830
Yu-Feng Qi , Kai-Yao Wang , Hairui Guo , Yu-Jie Zhang , Yiwei Zhou , Cheng Wang
The electrocatalytic of 5-hydroxymethylfurfural oxidation reaction (HMFOR) is an alternative route for the green production of valuable oxygenated chemicals. Nickel hydroxides, which consist of hydroxide layers and interlayer charge-balancing anions, are a type of promising catalysts for HMFOR. Progresses have been made on elucidating the correlation between the hydroxide layer and HMFOR performance, while the effect of intercalated anions on the activity remains unclear. Herein, two self-supported nickel hydroxide catalysts (i.e., pristine Ni(OH)2/CP-F and deintercalated Ni(OH)2/CP-A) are employed for revealing the relationship between anion-deintercalation and HMFOR activity. Physical characterizations demonstrate that the deintercalation phenomenon can alter the d-band center and increase the electron density of the Ni site. This endows the deintercalated Ni(OH)2/CP-A with improved electrochemical properties (conversion = 99.99 %; FDCA yield > 99 %; FE > 99 %), enhanced adsorption strength for HMF, and increased intrinsic activity, compared to the pristine Ni(OH)2/CP-F. This work not only reports an excellent HMFOR electrocatalyst, but also manifests the crucial effect of deintercalation on the electrochemical oxidation performance of Ni(OH)2.
电催化 5-羟甲基糠醛氧化反应(HMFOR)是绿色生产有价值含氧化学品的另一条途径。氢氧化镍由氢氧化物层和层间电荷平衡阴离子组成,是一种很有前景的 HMFOR 催化剂。在阐明氢氧化物层与 HMFOR 性能之间的相关性方面已经取得了进展,但插层阴离子对活性的影响仍不清楚。本文采用两种自支撑氢氧化镍催化剂(即原始 Ni(OH)2/CP-F 和脱插层 Ni(OH)2/CP-A)来揭示阴离子脱插与 HMFOR 活性之间的关系。物理特性分析表明,脱插现象可以改变 d 带中心并增加镍位点的电子密度。与原始 Ni(OH)2/CP-F 相比,这使得去交联的 Ni(OH)2/CP-A 具有更好的电化学性能(转化率 = 99.99 %;FDCA 产率 > 99 %;FE > 99 %)、更强的 HMF 吸附强度和更高的内在活性。这项研究不仅发现了一种性能优异的 HMFOR 电催化剂,还揭示了脱夹层对 Ni(OH)2 电化学氧化性能的重要影响。
{"title":"Facilitating the electrooxidation of 5-hydroxymethylfurfural on nickel hydroxide through deintercalation","authors":"Yu-Feng Qi ,&nbsp;Kai-Yao Wang ,&nbsp;Hairui Guo ,&nbsp;Yu-Jie Zhang ,&nbsp;Yiwei Zhou ,&nbsp;Cheng Wang","doi":"10.1016/j.jcat.2024.115830","DOIUrl":"10.1016/j.jcat.2024.115830","url":null,"abstract":"<div><div>The electrocatalytic of 5-hydroxymethylfurfural oxidation reaction (HMFOR) is an alternative route for the green production of valuable oxygenated chemicals. Nickel hydroxides, which consist of hydroxide layers and interlayer charge-balancing anions, are a type of promising catalysts for HMFOR. Progresses have been made on elucidating the correlation between the hydroxide layer and HMFOR performance, while the effect of intercalated anions on the activity remains unclear. Herein, two self-supported nickel hydroxide catalysts (i.e., pristine Ni(OH)<sub>2</sub>/CP-F and deintercalated Ni(OH)<sub>2</sub>/CP-A) are employed for revealing the relationship between anion-deintercalation and HMFOR activity. Physical characterizations demonstrate that the deintercalation phenomenon can alter the d-band center and increase the electron density of the Ni site. This endows the deintercalated Ni(OH)<sub>2</sub>/CP-A with improved electrochemical properties (conversion = 99.99 %; FDCA yield &gt; 99 %; FE &gt; 99 %), enhanced adsorption strength for HMF, and increased intrinsic activity, compared to the pristine Ni(OH)<sub>2</sub>/CP-F. This work not only reports an excellent HMFOR electrocatalyst, but also manifests the crucial effect of deintercalation on the electrochemical oxidation performance of Ni(OH)<sub>2</sub>.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115830"},"PeriodicalIF":6.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilitating catalytic research via better data reporting and curation: A case study of propane dehydrogenation on Ga/H-ZSM-5 通过更好的数据报告和整理促进催化研究:Ga/H-ZSM-5 上丙烷脱氢的案例研究
IF 7.3 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.jcat.2024.115838
Zhaoqi Zhao, Bingjun Xu
In the field of experimental heterogeneous catalysis, the generation, analysis, and curation of large-scale, high-quality datasets are crucial yet challenging. This work highlights the significance of proper data reporting and curation through a case study on propane dehydrogenation over Ga/H-ZSM-5 catalysts. We demonstrate the challenges and benefits of analyzing larger datasets across multiple publications in the identification of active structures and elucidation of reaction mechanisms. The findings highlight the need for reporting reliable datasets in accessible format to facilitate integration and comparison of catalytic data across different studies, potentially leading to novel scientific insights.
在实验异相催化领域,大规模、高质量数据集的生成、分析和整理至关重要,但也极具挑战性。本研究通过对 Ga/H-ZSM-5 催化剂上丙烷脱氢反应的案例研究,强调了正确报告和整理数据的重要性。我们展示了在确定活性结构和阐明反应机理的过程中,分析多个出版物上的大型数据集所带来的挑战和益处。研究结果强调了以可访问的格式报告可靠数据集的必要性,以促进不同研究中催化数据的整合和比较,从而可能带来新的科学见解。
{"title":"Facilitating catalytic research via better data reporting and curation: A case study of propane dehydrogenation on Ga/H-ZSM-5","authors":"Zhaoqi Zhao, Bingjun Xu","doi":"10.1016/j.jcat.2024.115838","DOIUrl":"https://doi.org/10.1016/j.jcat.2024.115838","url":null,"abstract":"In the field of experimental heterogeneous catalysis, the generation, analysis, and curation of large-scale, high-quality datasets are crucial yet challenging. This work highlights the significance of proper data reporting and curation through a case study on propane dehydrogenation over Ga/H-ZSM-5 catalysts. We demonstrate the challenges and benefits of analyzing larger datasets across multiple publications in the identification of active structures and elucidation of reaction mechanisms. The findings highlight the need for reporting reliable datasets in accessible format to facilitate integration and comparison of catalytic data across different studies, potentially leading to novel scientific insights.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"215 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of alumina on the performance of Ag/ZnO based catalysts for carbon dioxide hydrogenation 氧化铝对基于 Ag/ZnO 的二氧化碳氢化催化剂性能的影响
IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-11-06 DOI: 10.1016/j.jcat.2024.115837
Paul Maurice Leidinger , Vitaly L. Sushkevich , Chiara Pischetola , Frank Krumeich , Jeroen A. van Bokhoven , Luca Artiglia
We study silver-zinc oxide type catalysts with and without the addition of alumina and perform structural analysis and activity tests for the hydrogenation of carbon dioxide. Adding alumina has a dispersing effect on the zinc oxide without structurally altering the silver phase. An alumina-surface enriched ZnO/Al2O3 phase is observed with an increased surface reducibility. Ag/ZnO has a high selectivity towards carbon monoxide (63 ± 12 %) and methane (24 ± 3 %) and low selectivity towards methanol (13 ± 0.5 %). Operando infrared (SSITKA-FTIR) and mass spectrometric product detection indicate methane formation via an adsorbed carbon monoxide (COads) intermediate. The selectivity changes gradually with increasing alumina content, up to 80 ± 3 % toward methanol, and 20 ± 4 % carbon monoxide without methane detection, combined with a tripling of the space time yield to 0.65 ± 0.02 mmolMeOH*gcat-1*h−1 at 250 °C and 30 bar. Kinetic analysis suggests that the selectivity change originates from hindering the CO-pathway, while the formate pathway leading to methanol remains active.
我们研究了添加和不添加氧化铝的银氧化锌型催化剂,并进行了结构分析和二氧化碳氢化活性测试。添加氧化铝对氧化锌有分散作用,但不会改变银相的结构。观察到氧化铝表面富集的氧化锌/Al2O3 相,其表面还原性增加。氧化铝/氧化锌对一氧化碳(63 ± 12 %)和甲烷(24 ± 3 %)的选择性较高,而对甲醇(13 ± 0.5 %)的选择性较低。操作红外(SSITKA-FTIR)和质谱产品检测表明,甲烷是通过吸附的一氧化碳(COads)中间体形成的。随着氧化铝含量的增加,选择性逐渐发生变化,在 250 °C 和 30 bar 条件下,对甲醇的选择性高达 80 ± 3 %,而对一氧化碳的选择性为 20 ± 4 %,但未检测到甲烷,同时空间产率增加了两倍,达到 0.65 ± 0.02 mmolMeOH*gcat-1*h-1。动力学分析表明,选择性变化源于一氧化碳途径受阻,而甲酸途径导致甲醇仍然活跃。
{"title":"Influence of alumina on the performance of Ag/ZnO based catalysts for carbon dioxide hydrogenation","authors":"Paul Maurice Leidinger ,&nbsp;Vitaly L. Sushkevich ,&nbsp;Chiara Pischetola ,&nbsp;Frank Krumeich ,&nbsp;Jeroen A. van Bokhoven ,&nbsp;Luca Artiglia","doi":"10.1016/j.jcat.2024.115837","DOIUrl":"10.1016/j.jcat.2024.115837","url":null,"abstract":"<div><div>We study silver-zinc oxide type catalysts with and without the addition of alumina and perform structural analysis and activity tests for the hydrogenation of carbon dioxide. Adding alumina has a dispersing effect on the zinc oxide without structurally altering the silver phase. An alumina-surface enriched ZnO/Al<sub>2</sub>O<sub>3</sub> phase is observed with an increased surface reducibility. Ag/ZnO has a high selectivity towards carbon monoxide (63 ± 12 %) and methane (24 ± 3 %) and low selectivity towards methanol (13 ± 0.5 %). Operando infrared (SSITKA-FTIR) and mass spectrometric product detection indicate methane formation via an adsorbed carbon monoxide (CO<sub>ads</sub>) intermediate. The selectivity changes gradually with increasing alumina content, up to 80 ± 3 % toward methanol, and 20 ± 4 % carbon monoxide without methane detection, combined with a tripling of the space time yield to 0.65 ± 0.02<!--> <!-->mmol<sub>MeOH</sub>*<span><math><msubsup><mi>g</mi><mrow><mi>c</mi><mi>a</mi><mi>t</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msubsup></math></span>*h<sup>−1</sup> at 250 °C and 30<!--> <!-->bar. Kinetic analysis suggests that the selectivity change originates from hindering the CO-pathway, while the formate pathway leading to methanol remains active.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115837"},"PeriodicalIF":6.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1