Pub Date : 2024-10-28DOI: 10.1016/j.jcat.2024.115828
Abdelilah Bayout , Claudia Cammarano , Izabel Medeiros Costa , Gleb Veryasov , Alexander Sachse , Vasile Hulea
Friedel-Crafts alkylation of toluene with methyl mercaptan has been investigated in the presence of H-ZSM-5 and SiO2/H-ZSM-5 catalysts. The silica layers have been built on H-ZSM-5 zeolite by chemical liquid deposition of tetraethyl orthosilicate. The passivation with silica of the external surface of H-ZSM-5 zeolite has been confirmed by FT-IR spectroscopy and mesitylene isomerization, used as a model reaction. All catalysts exhibited notable behavior in the alkylation of toluene to xylenes. Efficiencies higher than 98 % in alkylation for both toluene and methyl mercaptan were obtained at 375 °C. In terms of para-selectivity, outstanding performance was revealed by the silylated zeolites. Thus, over 12 % SiO2/H-ZSM-5, at 375 °C and WHSV = 9.4 gtoluene+CH3SH gcat-1h−1, the para-xylene selectivity was close to 100 %. The experimental apparent activation energy for the toluene alkylation with methyl mercaptan catalyzed by H-ZSM-5 was 80 kJ/mol.
{"title":"Highly para-selective alkylation of toluene by methyl mercaptan over silylated ZSM-5 zeolite","authors":"Abdelilah Bayout , Claudia Cammarano , Izabel Medeiros Costa , Gleb Veryasov , Alexander Sachse , Vasile Hulea","doi":"10.1016/j.jcat.2024.115828","DOIUrl":"10.1016/j.jcat.2024.115828","url":null,"abstract":"<div><div>Friedel-Crafts alkylation of toluene with methyl mercaptan has been investigated in the presence of H-ZSM-5 and SiO<sub>2</sub>/H-ZSM-5 catalysts. The silica layers have been built on H-ZSM-5 zeolite by chemical liquid deposition of tetraethyl orthosilicate. The passivation with silica of the external surface of H-ZSM-5 zeolite has been confirmed by FT-IR spectroscopy and mesitylene isomerization, used as a model reaction. All catalysts exhibited notable behavior in the alkylation of toluene to xylenes. Efficiencies higher than 98 % in alkylation for both toluene and methyl mercaptan were obtained at 375 °C. In terms of <em>para</em>-selectivity, outstanding performance was revealed by the silylated zeolites. Thus, over 12 % SiO<sub>2</sub>/H-ZSM-5, at 375 °C and WHSV = 9.4 g<sub>toluene+CH3SH</sub> g<sub>cat</sub><sup>-1</sup>h<sup>−1</sup>, the <em>para</em>-xylene selectivity was close to 100 %. The experimental apparent activation energy for the toluene alkylation with methyl mercaptan catalyzed by H-ZSM-5 was 80 kJ/mol.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115828"},"PeriodicalIF":6.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.jcat.2024.115829
Dominic Walter , Jonathan Hackebeil , Conrad Hübler , Erik Schumann , Andreas Lißner , Bianca Störr , Mykhaylo Motylenko , David Rafaja , Florian Mertens
The sintering process on Cu/ZnO/Al2O3 catalysts in the heterogeneous liquid phase assisted methanol synthesis from CO2/H2 was investigated. In order to better understand the sintering event, in addition to standard methods (XRD, XPS, BET, ICP-OES) microscopic techniques with different magnifications such as SEM-EDX, AFM, and TEM were used. Water has been identified as the sintering agent. In addition to eliminating water with CO, another way was found to remove water from the catalyst surface and therefore to counteract the sintering during catalysis. This goal can be achieved by using highly polar solvents allowing to synthesize MeOH solely from carbon dioxide and hydrogen, without deactivating the catalyst or using carbon monoxide.
{"title":"Deactivation of Cu/ZnO/Al2O3 catalysts by sintering in liquid phase assisted methanol synthesis from CO2/H2 and a way to counteract it","authors":"Dominic Walter , Jonathan Hackebeil , Conrad Hübler , Erik Schumann , Andreas Lißner , Bianca Störr , Mykhaylo Motylenko , David Rafaja , Florian Mertens","doi":"10.1016/j.jcat.2024.115829","DOIUrl":"10.1016/j.jcat.2024.115829","url":null,"abstract":"<div><div>The sintering process on Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> catalysts in the heterogeneous liquid phase assisted methanol synthesis from CO<sub>2</sub>/H<sub>2</sub> was investigated. In order to better understand the sintering event, in addition to standard methods (XRD, XPS, BET, ICP-OES) microscopic techniques with different magnifications such as SEM-EDX, AFM, and TEM were used. Water has been identified as the sintering agent. In addition to eliminating water with CO, another way was found to remove water from the catalyst surface and therefore to counteract the sintering during catalysis. This goal can be achieved by using highly polar solvents allowing to synthesize MeOH solely from carbon dioxide and hydrogen, without deactivating the catalyst or using carbon monoxide.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115829"},"PeriodicalIF":6.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.jcat.2024.115823
Harol Moreno Fernández , Achim Alkemper , Kai Wang , Crizaldo Jr. Mempin , Julia Gallenbeger , Jan P. Hofmann
NiOOH has been established as the active phase of NiO-based electrocatalysts in the alkaline Oxygen Evolution Reaction (OER). Here, we investigate the self-discharge behavior of NiOOH electrodes under open circuit potential (OCP) conditions in 1 M KOH electrolyte by monitoring phase changes via in-situ Raman and UV–Vis reflectance spectroscopies and performing kinetic analyses on the OCP and spectroscopic data. Our findings reveal a linear phase change from NiOOH to Ni(OH)2 over time, indicative of a 0th-order reduction reaction. Contrarily, the OCP evolution associated with this phase reduction displayed a combination of linear and exponential decay patterns as a result of various kinetics, including Faradaic processes and diffusion-controlled mechanisms, influencing the self-discharge potential over 1.25 V (vs RHE). An additional linear region at lower potentials (<1.25 V (vs RHE)) suggests that charge redistribution due to the phase change from α-Ni(OH)2 to β-Ni(OH)2 dominates the self-discharge, a behavior confirmed by in-situ UV–Vis reflectance spectroscopy. These findings highlight the effectiveness of combining in-situ Raman and UV–Vis spectroscopy with electrochemical data for real-time monitoring of electrochemical processes, here potential-dependent electrocatalyst phase changes, leading to a more detailed and accurate understanding of the dynamic behavior, phase change kinetics, and self-discharge behaviors of solid electrocatalysts that can guide the design of more efficient and durable energy storage and conversion materials.
{"title":"Kinetic analysis of the self-discharge of the NiOOH OER active phase in KOH electrolyte: insights from in-situ Raman and UV–Vis reflectance spectroscopies","authors":"Harol Moreno Fernández , Achim Alkemper , Kai Wang , Crizaldo Jr. Mempin , Julia Gallenbeger , Jan P. Hofmann","doi":"10.1016/j.jcat.2024.115823","DOIUrl":"10.1016/j.jcat.2024.115823","url":null,"abstract":"<div><div>NiOOH has been established as the active phase of NiO-based electrocatalysts in the alkaline Oxygen Evolution Reaction (OER). Here, we investigate the self-discharge behavior of NiOOH electrodes under open circuit potential (OCP) conditions in 1 M KOH electrolyte by monitoring phase changes via in-situ Raman and UV–Vis reflectance spectroscopies and performing kinetic analyses on the OCP and spectroscopic data. Our findings reveal a linear phase change from NiOOH to Ni(OH)<sub>2</sub> over time, indicative of a 0<sup>th</sup>-order reduction reaction. Contrarily, the OCP evolution associated with this phase reduction displayed a combination of linear and exponential decay patterns as a result of various kinetics, including Faradaic processes and diffusion-controlled mechanisms, influencing the self-discharge potential over 1.25 V (vs RHE). An additional linear region at lower potentials (<1.25 V (vs RHE)) suggests that charge redistribution due to the phase change from α-Ni(OH)<sub>2</sub> to β-Ni(OH)<sub>2</sub> dominates the self-discharge, a behavior confirmed by in-situ UV–Vis reflectance spectroscopy. These findings highlight the effectiveness of combining in-situ Raman and UV–Vis spectroscopy with electrochemical data for real-time monitoring of electrochemical processes, here potential-dependent electrocatalyst phase changes, leading to a more detailed and accurate understanding of the dynamic behavior, phase change kinetics, and self-discharge behaviors of solid electrocatalysts that can guide the design of more efficient and durable energy storage and conversion materials.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115823"},"PeriodicalIF":6.5,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.jcat.2024.115808
Thanh Tam Nguyen , Kaveh Edalati
Simultaneous catalytic hydrogen (H2) production and plastic waste degradation under light, known as photoreforming, is a novel approach to green fuel production and efficient waste management. Here, we use a high-entropy oxide (HEO), a new family of catalysts with five or more principal cations in their structure, for plastic degradation and simultaneous H2 production. The HEO shows higher activity than that of P25 TiO2, a benchmark photocatalyst, for the degradation of polyethylene terephthalate (PET) plastics in water. Several valuable products are produced by photoreforming of PET bottles and microplastics including H2, terephthalate, ethylene glycol and formic acid. The high activity is attributed to the diverse existence of several cations in the HEO lattice, lattice defects, and appropriate charge carrier lifetime. These findings suggest that HEOs possess high potential as new catalysts for concurrent plastic waste conversion and clean H2 production.
{"title":"Efficient photoreforming of plastic waste using a high-entropy oxide catalyst","authors":"Thanh Tam Nguyen , Kaveh Edalati","doi":"10.1016/j.jcat.2024.115808","DOIUrl":"10.1016/j.jcat.2024.115808","url":null,"abstract":"<div><div>Simultaneous catalytic hydrogen (H<sub>2</sub>) production and plastic waste degradation under light, known as photoreforming, is a novel approach to green fuel production and efficient waste management. Here, we use a high-entropy oxide (HEO), a new family of catalysts with five or more principal cations in their structure, for plastic degradation and simultaneous H<sub>2</sub> production. The HEO shows higher activity than that of P25 TiO<sub>2</sub>, a benchmark photocatalyst, for the degradation of polyethylene terephthalate (PET) plastics in water. Several valuable products are produced by photoreforming of PET bottles and microplastics including H<sub>2</sub>, terephthalate, ethylene glycol and formic acid. The high activity is attributed to the diverse existence of several cations in the HEO lattice, lattice defects, and appropriate charge carrier lifetime. These findings suggest that HEOs possess high potential as new catalysts for concurrent plastic waste conversion and clean H<sub>2</sub> production.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115808"},"PeriodicalIF":6.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The reforming of CH4 and CO2 into syngas is a highly relevant technology for energy conservation and reducing greenhouse gas emissions, attracting widespread attention in the industry. Inspired by this, this work proposes a general criterion for coke-resistant nickel-based catalysts. By leveraging the high-entropy effect and the lattice distortion of the structure, a high-entropy (NiCaMgZnCo)Al10Ox catalyst was synthesized. The high-entropy oxide exhibited good activity and stability during the DRM reaction over 100 h at 800°C and 650°C, producing only a minimal amount of easily removable carbon deposition. O2-TPO, CO2-TPD, CH4-TPSR, CO2-TPSR, DFT and in situ DRIFT were employed to investigate the mechanism of carbon deposition elimination on the surface of the high-entropy catalyst. Then, a high-entropy strategy for designing coke-resistant catalysts was proposed. This strategy may soon inspire the development of catalysts with enhanced stability and anti-coke deposition properties for various catalytic applications.
{"title":"Enhancing coke resistance of Ni-based spinel-type oxides by tuning the configurational entropy","authors":"Shuangshuang Zhang , Ying Gao , Qiang Niu , Pengfei Zhang","doi":"10.1016/j.jcat.2024.115819","DOIUrl":"10.1016/j.jcat.2024.115819","url":null,"abstract":"<div><div>The reforming of CH<sub>4</sub> and CO<sub>2</sub> into syngas is a highly relevant technology for energy conservation and reducing greenhouse gas emissions, attracting widespread attention in the industry. Inspired by this, this work proposes a general criterion for coke-resistant nickel-based catalysts. By leveraging the high-entropy effect and the lattice distortion of the structure, a high-entropy (NiCaMgZnCo)Al<sub>10</sub>O<sub>x</sub> catalyst was synthesized. The high-entropy oxide exhibited good activity and stability during the DRM reaction over 100 h at 800°C and 650°C, producing only a minimal amount of easily removable carbon deposition. O<sub>2</sub>-TPO, CO<sub>2</sub>-TPD, CH<sub>4</sub>-TPSR, CO<sub>2</sub>-TPSR, DFT and in situ DRIFT were employed to investigate the mechanism of carbon deposition elimination on the surface of the high-entropy catalyst. Then, a high-entropy strategy for designing coke-resistant catalysts was proposed. This strategy may soon inspire the development of catalysts with enhanced stability and anti-coke deposition properties for various catalytic applications.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115819"},"PeriodicalIF":6.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.jcat.2024.115820
Andrew T.Y. Wolek , Evan Sowinski , Rajamani Gounder , Justin M. Notestein
Catalytic oligomerization of light olefins is an important CC coupling strategy that can be used to produce high-value transportation fuels and chemicals from shale gas and biomass feedstocks. In this work, vapor-phase propylene oligomerization was studied over a series of overcoated SiO2-MOx materials, whose acid site densities and strengths are tunable by the amount of SiO2 deposition and the nature of the core oxide. These materials contain acid sites only on particle external surfaces, limiting pore diffusion artifacts. SiO2-MOx materials were prepared by depositing stoichiometric amounts of tetraethyl orthosilicate (TEOS) onto Al2O3, anatase TiO2, Nb2O5, and ZrO2. Compared to the unmodified oxides, which are poor propylene oligomerization catalysts, the SiO2-MOx materials exhibit moderate activity with Al2O3, TiO2, and Nb2O5 core materials performing better than commercial amorphous silica alumina (ASA) on a surface area basis. The activity of the materials appears to be primarily driven by their Brønsted acid strength as measured by 31P TMPO MAS NMR with the rates ranked in order SiO2/Al2O3 > SiO2/TiO2 ≈ SiO2/Nb2O5 > SiO2/ZrO2. This study shows that SiO2-overcoated materials are a tunable class of materials that are active for vapor-phase propylene oligomerization.
{"title":"Propylene oligomerization over SiO2-overcoated oxides","authors":"Andrew T.Y. Wolek , Evan Sowinski , Rajamani Gounder , Justin M. Notestein","doi":"10.1016/j.jcat.2024.115820","DOIUrl":"10.1016/j.jcat.2024.115820","url":null,"abstract":"<div><div>Catalytic oligomerization of light olefins is an important C<img>C coupling strategy that can be used to produce high-value transportation fuels and chemicals from shale gas and biomass feedstocks. In this work, vapor-phase propylene oligomerization was studied over a series of overcoated SiO<sub>2</sub>-MOx materials, whose acid site densities and strengths are tunable by the amount of SiO<sub>2</sub> deposition and the nature of the core oxide. These materials contain acid sites only on particle external surfaces, limiting pore diffusion artifacts. SiO<sub>2</sub>-MOx materials were prepared by depositing stoichiometric amounts of tetraethyl orthosilicate (TEOS) onto Al<sub>2</sub>O<sub>3</sub>, anatase TiO<sub>2</sub>, Nb<sub>2</sub>O<sub>5</sub>, and ZrO<sub>2</sub>. Compared to the unmodified oxides, which are poor propylene oligomerization catalysts, the SiO<sub>2</sub>-MOx materials exhibit moderate activity with Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub> core materials performing better than commercial amorphous silica alumina (ASA) on a surface area basis. The activity of the materials appears to be primarily driven by their Brønsted acid strength as measured by <sup>31</sup>P TMPO MAS NMR with the rates ranked in order SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> > SiO<sub>2</sub>/TiO<sub>2</sub> ≈ SiO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> > SiO<sub>2</sub>/ZrO<sub>2</sub>. This study shows that SiO<sub>2</sub>-overcoated materials are a tunable class of materials that are active for vapor-phase propylene oligomerization.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115820"},"PeriodicalIF":6.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photo catalysis has comprehensively become a powerful tool in organic synthesis, and organic molecules are thriving as catalyst. The thioxanthone-TfOH complex (9-HTXTF) as photoredox catalyst with high oxidative capacity can be applied in single electron reduction of alkene affording alkene radical anion as a key intermediate. To transform this intermediate from radical anion to radical cation, a well-designed strategy is proposed with N-arylacrylamides as substrate. Based on its single electron transfer (SET) with 9-HTXTF*, N-radical cation is generated and then transformed to alkene radical cation by intramolecular conjugated system. By using this photoredox catalysis strategy, we developed a 9-HTXTF-catalyzed photochemical cyclization of alkenes, which further expands the applications of this catalyst. The entire cyclization is metal-free and without sacrificing agents, which conforms to atom economy and environmental friendliness.
{"title":"Generation of alkene radical cation for thioxanthone-TfOH complex-catalyzed intramolecular cyclization using a photoredox catalysis strategy","authors":"Jin Feng , Guanglong Huang , Haoliang Huang , Hanguang Tang , Wangsheng Liu , Aishun Ding , Xiao-Song Xue , Hao Guo","doi":"10.1016/j.jcat.2024.115817","DOIUrl":"10.1016/j.jcat.2024.115817","url":null,"abstract":"<div><div>Photo catalysis has comprehensively become a powerful tool in organic synthesis, and organic molecules are thriving as catalyst. The thioxanthone-TfOH complex (<strong>9-HTXTF</strong>) as photoredox catalyst with high oxidative capacity can be applied in single electron reduction of alkene affording alkene radical anion as a key intermediate. To transform this intermediate from radical anion to radical cation, a well-designed strategy is proposed with <em>N</em>-arylacrylamides as substrate. Based on its single electron transfer (SET) with <strong>9-HTXTF</strong>*, N-radical cation is generated and then transformed to alkene radical cation by intramolecular conjugated system. By using this photoredox catalysis strategy, we developed a <strong>9-HTXTF</strong>-catalyzed photochemical cyclization of alkenes, which further expands the applications of this catalyst. The entire cyclization is metal-free and without sacrificing agents, which conforms to atom economy and environmental friendliness.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115817"},"PeriodicalIF":6.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.jcat.2024.115818
Bing-Bing Lu , Ji-Qiang Guan , Yu-Tong Wu , Si-Yi An , Ying Fu , Fei Ye
Boosting the nucleophilicity of Cu(I) sites is an essential strategy to enhance the efficiency of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In this work, a Lindquist-type polyoxometalate (POM)-based metal–organic framework, [CuI4(W6O19)2(L)]·2H2O (NEAU-1), was synthesized via an in-situ solvothermal method. Single-crystal X-ray diffraction results reveal that NEAU-1 exhibits a sandwich structure, with POMs intercalated between the two-dimensional layers formed by resorcin[4]arene ligands and Cu(I) ions. NEAU-1 possesses abundant Cu(I) active sites and high chemical stability, making it an effective heterogeneous catalyst for the CuAAC reaction. More importantly, the presence of POMs effectively reduces the electron cloud density around Cu(I) sites, significantly lowering the energy barrier for the formation of copper-acetylide compounds and facilitating subsequent nucleophilic reactions. The synergistic catalytic effect of POMs and Cu(I) can achieve a conversion rate of over 99 % for benzyl azide and phenylacetylene within 40 min. This work presents a sustainable molecular-level strategy to enhance the activity of the CuAAC reaction.
{"title":"Electron-withdrawing effect of polyoxometalates in Cu(I)-based metal–organic frameworks for enhanced azide-alkyne “click” reaction","authors":"Bing-Bing Lu , Ji-Qiang Guan , Yu-Tong Wu , Si-Yi An , Ying Fu , Fei Ye","doi":"10.1016/j.jcat.2024.115818","DOIUrl":"10.1016/j.jcat.2024.115818","url":null,"abstract":"<div><div>Boosting the nucleophilicity of Cu(I) sites is an essential strategy to enhance the efficiency of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In this work, a Lindquist-type polyoxometalate (POM)-based metal–organic framework, [Cu<sup>I</sup><sub>4</sub>(W<sub>6</sub>O<sub>19</sub>)<sub>2</sub>(L)]·2H<sub>2</sub>O (NEAU-1), was synthesized via an in-situ solvothermal method. Single-crystal X-ray diffraction results reveal that NEAU-1 exhibits a sandwich structure, with POMs intercalated between the two-dimensional layers formed by resorcin[4]arene ligands and Cu(I) ions. NEAU-1 possesses abundant Cu(I) active sites and high chemical stability, making it an effective heterogeneous catalyst for the CuAAC reaction. More importantly, the presence of POMs effectively reduces the electron cloud density around Cu(I) sites, significantly lowering the energy barrier for the formation of copper-acetylide compounds and facilitating subsequent nucleophilic reactions. The synergistic catalytic effect of POMs and Cu(I) can achieve a conversion rate of over 99 % for benzyl azide and phenylacetylene within 40 min. This work presents a sustainable molecular-level strategy to enhance the activity of the CuAAC reaction.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115818"},"PeriodicalIF":6.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.jcat.2024.115815
Fengwei Zhang , Jijie Li , Shuai Chen , Jingjing Li , Ruimin Zhang , Yangyang Zhao , Wen-Yan Zan , Yawei Li
Transition metal-nitrogen-carbon (M−N−C) are considered as promising candidates for the electrochemical conversion of inert CO2 into high value-added CO products. However, previous reports have focused on Ni single-atom sites (Ni SAs) and the role of Ni nanoparticles (Ni NPs) in CO2 electroreduction reaction (CO2RR) has been overlooked. Herein, we prepared a series of Ni, N-codoped porous carbon (NiNC-T, T represents the temperature) catalysts by combining Ni phthalocyanine pyrolysis and acid etching strategy, which either contain only Ni SAs or both Ni SAs and Ni NPs. Notably, the NiNC-1100 catalyst with both Ni SAs and Ni NPs exhibited 99 % CO faradaic efficiency (FECO) at −0.66 V versus reversible hydrogen electrode (vs. RHE) and FECO above 98 % over a wide potential range (−0.66 V ∼ −1.06 V). Moreover, the FECO of NiNC-1100 remained above 95 % after 100 h of continuous electrocatalysis, which was significantly superior to that of the most advanced Ni single atom electrocatalysts. The systematic characterization results showed that the introduction of Ni NPs can promote the adsorption and activation of CO2 by increasing the electron cloud density of Ni SAs, thus enhancing the CO2RR catalytic performance.
过渡金属氮碳(M-N-C)被认为是将惰性二氧化碳电化学转化为高附加值一氧化碳产品的理想候选材料。然而,以往的报道主要集中于镍单原子位点(Ni SA),而镍纳米颗粒(Ni NPs)在 CO2 电还原反应(CO2RR)中的作用却被忽视了。在此,我们结合镍酞菁热解和酸蚀策略,制备了一系列镍、N-掺杂多孔碳(NiNC-T,T 代表温度)催化剂,这些催化剂或仅含有镍单原子位点,或同时含有镍单原子位点和镍纳米粒子。值得注意的是,同时含有 Ni SAs 和 Ni NPs 的 NiNC-1100 催化剂在 -0.66 V 相对于可逆氢电极(vs. RHE)时的 CO 法拉第效率(FECO)为 99%,在较宽的电位范围(-0.66 V ∼ -1.06 V)内的 FECO 均高于 98%。此外,在连续电催化 100 小时后,NiNC-1100 的 FECO 仍保持在 95% 以上,明显优于最先进的镍单原子电催化剂。系统表征结果表明,Ni NPs 的引入可以通过增加 Ni SAs 的电子云密度来促进 CO2 的吸附和活化,从而提高 CO2RR 催化性能。
{"title":"Highly stable and electron-rich Ni single atom catalyst for directed electroreduction of CO2 to CO","authors":"Fengwei Zhang , Jijie Li , Shuai Chen , Jingjing Li , Ruimin Zhang , Yangyang Zhao , Wen-Yan Zan , Yawei Li","doi":"10.1016/j.jcat.2024.115815","DOIUrl":"10.1016/j.jcat.2024.115815","url":null,"abstract":"<div><div>Transition metal-nitrogen-carbon (M−N−C) are considered as promising candidates for the electrochemical conversion of inert CO<sub>2</sub> into high value-added CO products. However, previous reports have focused on Ni single-atom sites (Ni SAs) and the role of Ni nanoparticles (Ni NPs) in CO<sub>2</sub> electroreduction reaction (CO<sub>2</sub>RR) has been overlooked. Herein, we prepared a series of Ni, N-codoped porous carbon (NiNC-T, T represents the temperature) catalysts by combining Ni phthalocyanine pyrolysis and acid etching strategy, which either contain only Ni SAs or both Ni SAs and Ni NPs. Notably, the NiNC-1100 catalyst with both Ni SAs and Ni NPs exhibited 99 % CO faradaic efficiency (FE<sub>CO</sub>) at −0.66 V versus reversible hydrogen electrode (<em>vs.</em> RHE) and FE<sub>CO</sub> above 98 % over a wide potential range (−0.66 V ∼ −1.06 V). Moreover, the FE<sub>CO</sub> of NiNC-1100 remained above 95 % after 100 h of continuous electrocatalysis, which was significantly superior to that of the most advanced Ni single atom electrocatalysts. The systematic characterization results showed that the introduction of Ni NPs can promote the adsorption and activation of CO<sub>2</sub> by increasing the electron cloud density of Ni SAs, thus enhancing the CO<sub>2</sub>RR catalytic performance.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115815"},"PeriodicalIF":6.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.jcat.2024.115814
Qian Zheng , Yuandong Yan , Shaonan Zhang , Shicheng Yan , Zhigang Zou
Reducing the urea oxidation reaction (UOR) barriers is a key knot for accelerating its practical applications. Here, we demonstrate that NiMn-LDH with sulfate anion interaction can enable urea electrooxidation with a low anodic potential of 1.36 V at 100 mA cm−2. We find that the UOR on NiMn-LDH is driven by Ni3+ species and the Ni3+ generation is the rate-determining step of UOR. Both the Mn doping and sulfate anion interaction contribute to the low-barrier phase transformation from Ni(OH)2 to NiOOH to produce the Ni3+ state with high activity in UOR, owing to that Mn doping optimizes the electronic states and intercalation of guest anions weakens the interlayer interactions, which ultimately tunes Ni3+ generation kinetics toward the superior UOR activity. Our findings provide new insights into the design of the highly active UOR catalysts.
{"title":"Anion intercalation of NiMn-LDH accelerating urea electrooxidation on trivalent nickel","authors":"Qian Zheng , Yuandong Yan , Shaonan Zhang , Shicheng Yan , Zhigang Zou","doi":"10.1016/j.jcat.2024.115814","DOIUrl":"10.1016/j.jcat.2024.115814","url":null,"abstract":"<div><div>Reducing the urea oxidation reaction (UOR) barriers is a key knot for accelerating its practical applications. Here, we demonstrate that NiMn-LDH with sulfate anion interaction can enable urea electrooxidation with a low anodic potential of 1.36 V at 100 mA cm<sup>−2</sup>. We find that the UOR on NiMn-LDH is driven by Ni<sup>3+</sup> species and the Ni<sup>3+</sup> generation is the rate-determining step of UOR. Both the Mn doping and sulfate anion interaction contribute to the low-barrier phase transformation from Ni(OH)<sub>2</sub> to NiOOH to produce the Ni<sup>3+</sup> state with high activity in UOR, owing to that Mn doping optimizes the electronic states and intercalation of guest anions weakens the interlayer interactions, which ultimately tunes Ni<sup>3+</sup> generation kinetics toward the superior UOR activity. Our findings provide new insights into the design of the highly active UOR catalysts.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115814"},"PeriodicalIF":6.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}