Pub Date : 2021-06-30DOI: 10.7216/1300759920212812201
Taufiq Khan, Abdullah Al Mamun
{"title":"Effect of Different Solvent Systems on Fiber Morphology and Property of Electrospun PCL Nano Fibers","authors":"Taufiq Khan, Abdullah Al Mamun","doi":"10.7216/1300759920212812201","DOIUrl":"https://doi.org/10.7216/1300759920212812201","url":null,"abstract":"","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85503346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-30DOI: 10.7216/1300759920212812207
G. Baser
{"title":"Determination of Yarn Diameter and Relevant Applications in Various Theoretical and Practical Problems","authors":"G. Baser","doi":"10.7216/1300759920212812207","DOIUrl":"https://doi.org/10.7216/1300759920212812207","url":null,"abstract":"","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77152368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-30DOI: 10.7216/1300759920212812204
Can Usta, Gülay Özcan
Reactive dyestuffs are widely used in textile industry due to their high fastness, affordable cost and wide color range advantages. However, the application of these dyestuffs causes environmental problems such as high total dissolved solids and wastewater load. In order to overcome these problems, different studies have been carried out on the modification of reactive dyestuffs, dyeing machines or cotton fiber and ecological wastewater treatment. In this study, considering the exhausting, fixing and washing steps in reactive dyeing, dyeing with dyestuffs with high fixation yield and using biodegradable organic salts instead of inorganic salts is aimed to conduct ecological and sustainable reactive dyeing. It is thought that significantly reduce in the amount of unfixed dyestuff in wastewater and increase in color yield by higher dye exhaustion will greatly benefit sustainability. In the experimental study, 3 reactive dyestuffs (Reactive Red 180, Reactive Red 24, Reactive Red 195) with different structures and functionalities were used and dyeing processes were carried out with different concentrations of 4 different organic salt (trisodium citrate, NTA, glutamate, polyacrylic acid sodium salt) alternatives instead of inorganic salt (NaCl). Environmentally friendly dyeing recipes were generated to minimize the salt and water consumption. The color data obtained from ecological dyeing were compared with the classical dyeing process used NaCl. After dyeing, color yields of each sample were measured and the obtained numerical values were analyzed in SPSS and Minitab software and evaluated statistically. Consequently, the use of organic salts, trisodium citrate and glutamate, at lower concentrations in dyeing
{"title":"Mono ve Bi-Fonksiyonel Reaktif Boyarmaddelerle Pamuklu Kumaşların Boyanmasında Tuz Kullanımının Azaltılması ve Organik Tuz Kullanımının Araştırılması","authors":"Can Usta, Gülay Özcan","doi":"10.7216/1300759920212812204","DOIUrl":"https://doi.org/10.7216/1300759920212812204","url":null,"abstract":"Reactive dyestuffs are widely used in textile industry due to their high fastness, affordable cost and wide color range advantages. However, the application of these dyestuffs causes environmental problems such as high total dissolved solids and wastewater load. In order to overcome these problems, different studies have been carried out on the modification of reactive dyestuffs, dyeing machines or cotton fiber and ecological wastewater treatment. In this study, considering the exhausting, fixing and washing steps in reactive dyeing, dyeing with dyestuffs with high fixation yield and using biodegradable organic salts instead of inorganic salts is aimed to conduct ecological and sustainable reactive dyeing. It is thought that significantly reduce in the amount of unfixed dyestuff in wastewater and increase in color yield by higher dye exhaustion will greatly benefit sustainability. In the experimental study, 3 reactive dyestuffs (Reactive Red 180, Reactive Red 24, Reactive Red 195) with different structures and functionalities were used and dyeing processes were carried out with different concentrations of 4 different organic salt (trisodium citrate, NTA, glutamate, polyacrylic acid sodium salt) alternatives instead of inorganic salt (NaCl). Environmentally friendly dyeing recipes were generated to minimize the salt and water consumption. The color data obtained from ecological dyeing were compared with the classical dyeing process used NaCl. After dyeing, color yields of each sample were measured and the obtained numerical values were analyzed in SPSS and Minitab software and evaluated statistically. Consequently, the use of organic salts, trisodium citrate and glutamate, at lower concentrations in dyeing","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87878249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-31DOI: 10.7216/1300759920212812105
Hilal Bilgiç, Yusuf Kuvvetli, Pınar Duru Baykal
The purpose of this study is a rule-based fuzzy logic approach is proposed for determining model difficulty in manufacturing top clothing for ladies. A decision framework concerned with different scenarios (main pattern types and material types) is proposed for determining the model difficulty. Each scenario modeled as a Mamdani type fuzzy inference system which is known as one of the best approximator fuzzy logic models. The fuzzified input variables are unit operation time, second quality rate and fabric weight. Moreover, two different defuzzification methods which are centroid and middle of maxima are compared for finding best fuzzy logic structure over the six different test instances. According to the results, both deffuzzification methods find similar model difficulty determinations. A graphical user interface of the proposed decision framework is designed in order to apply this to real-life applications. Finally, six different clothing models are identified to be simple, medium-hard, hard and very hard. The results of this study showed that defuzzification methods is not significantly effected the model difficulty decisions off is systems regarding different test instances. The model difficulty values range between 0-10. In order to find a useful difficulty assignment (linguistic), the model difficulty is determined by using the closeness to center value (a2) of membership functions. This research offers a solution to determine the difficulty levels of the garment models.
{"title":"Determination of Difficulty Level for Garment Model with Fuzzy Logic Method","authors":"Hilal Bilgiç, Yusuf Kuvvetli, Pınar Duru Baykal","doi":"10.7216/1300759920212812105","DOIUrl":"https://doi.org/10.7216/1300759920212812105","url":null,"abstract":"The purpose of this study is a rule-based fuzzy logic approach is proposed for determining model difficulty in manufacturing top clothing for ladies. A decision framework concerned with different scenarios (main pattern types and material types) is proposed for determining the model difficulty. Each scenario modeled as a Mamdani type fuzzy inference system which is known as one of the best approximator fuzzy logic models. The fuzzified input variables are unit operation time, second quality rate and fabric weight. Moreover, two different defuzzification methods which are centroid and middle of maxima are compared for finding best fuzzy logic structure over the six different test instances. According to the results, both deffuzzification methods find similar model difficulty determinations. A graphical user interface of the proposed decision framework is designed in order to apply this to real-life applications. Finally, six different clothing models are identified to be simple, medium-hard, hard and very hard. The results of this study showed that defuzzification methods is not significantly effected the model difficulty decisions off is systems regarding different test instances. The model difficulty values range between 0-10. In order to find a useful difficulty assignment (linguistic), the model difficulty is determined by using the closeness to center value (a2) of membership functions. This research offers a solution to determine the difficulty levels of the garment models.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46057929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-30DOI: 10.7216/1300759920202712002
Rıza Atav, A. Yıldız, Derman Vatansever Bayramol, A. Agirgan, Uğur Ergünay
In this study, guest:host inclusion complexes of silver cyclohexane di carboxylate (Ag-CdC) with β-cyclodextrin were prepared by kneading and physical mixing techniques, and analyzed via Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analyser (TGA). The 1:1 and 1:2 stoichiometry of the guest:host were prepared. Obtained FTIR and TGA results showed that formation of silver cyclohexane di carboxylate (Ag-CdC): β-cyclodextrin (β-CD) inclusion complexes occurred at a mass ratio of both 1:1 and 1:2. Furthermore, these prepared inclusion complexes were doped in poly(vinyl alcohol) nanofibers during electrospinning process for obtaining nanowebs. The formation of nanowebs were investigated with scanning electron microscopy (SEM). Besides, FTIR and TGA analysis were also carried out. Results showed that both inclusion complex preparation and inclusion complex added PVA nanowebs production were successful.
{"title":"Preparation of Silver Cyclohexane di Carboxylate: Β-cyclodextrin Inclusion Complexes and Their Use in the Production of Poly(vinyl alcohol) Nanowebs","authors":"Rıza Atav, A. Yıldız, Derman Vatansever Bayramol, A. Agirgan, Uğur Ergünay","doi":"10.7216/1300759920202712002","DOIUrl":"https://doi.org/10.7216/1300759920202712002","url":null,"abstract":"In this study, guest:host inclusion complexes of silver cyclohexane di carboxylate (Ag-CdC) with β-cyclodextrin were prepared by kneading and physical mixing techniques, and analyzed via Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analyser (TGA). The 1:1 and 1:2 stoichiometry of the guest:host were prepared. Obtained FTIR and TGA results showed that formation of silver cyclohexane di carboxylate (Ag-CdC): β-cyclodextrin (β-CD) inclusion complexes occurred at a mass ratio of both 1:1 and 1:2. Furthermore, these prepared inclusion complexes were doped in poly(vinyl alcohol) nanofibers during electrospinning process for obtaining nanowebs. The formation of nanowebs were investigated with scanning electron microscopy (SEM). Besides, FTIR and TGA analysis were also carried out. Results showed that both inclusion complex preparation and inclusion complex added PVA nanowebs production were successful.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43875273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-30DOI: 10.7216/1300759920202712001
Ecem Akin, Sibel Demiroğlu Mustafov, Elif Alyamaç, M. Ö. Seydibeyoğlu
In this study, it was aimed to produce biocomposite nanofibers by using electrospinning technique and to form biocomposite structure, bio-based thermoplastic polyurethane (BioTPU) and halloysite (HST) mineral obtained from natural sources were used. Electrospinning parameters have been optimized for the production of nanofibers with smooth morphology and the polymer solution with the most suitable parameter was determined. Different concentrations of HST filled BioTPU nanofibers were produced and the rheological behavior of the solutions was investigated with a rotational rheometer before electrospinning to observe the effects of halloysite on fiber morphology. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to determine the chemical composition of acquired nanofibers, and scanning electron microscopy (SEM) was used to monitor surface morphologies. Contact angle measurements were carried out to observe the effects of halloysite on the hydrophilicity of nanofiber. According to rheology results, it has been found out that the solution viscosity, storage modulus (G') and loss modulus (G'') of halloysite increased up to a certain concentration (0.3 % HST), but later caused falls on viscosity. According to the results of FTIR analysis, there is no chemical bond between halloysite and BioTPU, but SEM images show that halloysite was added to the structure of nanofibers. It was also found that the halloysite added to the structure increased the fiber diameters and that the fiber cross-section was not uniformly distributed along the fiber axis. The results of contact angle analysis indicated that acquired nanofibers have hydrophobic surface and the added halloysite decreases contact angles of nanofibers.
{"title":"Elektro Çekim Yöntemi ile Haloysit Katkılı Biyo-Bazlı Termoplastik Poliüretan Nanolif Üretimi ve Karakterizasyonu","authors":"Ecem Akin, Sibel Demiroğlu Mustafov, Elif Alyamaç, M. Ö. Seydibeyoğlu","doi":"10.7216/1300759920202712001","DOIUrl":"https://doi.org/10.7216/1300759920202712001","url":null,"abstract":"In this study, it was aimed to produce biocomposite nanofibers by using electrospinning technique and to form biocomposite structure, bio-based thermoplastic polyurethane (BioTPU) and halloysite (HST) mineral obtained from natural sources were used. Electrospinning parameters have been optimized for the production of nanofibers with smooth morphology and the polymer solution with the most suitable parameter was determined. Different concentrations of HST filled BioTPU nanofibers were produced and the rheological behavior of the solutions was investigated with a rotational rheometer before electrospinning to observe the effects of halloysite on fiber morphology. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to determine the chemical composition of acquired nanofibers, and scanning electron microscopy (SEM) was used to monitor surface morphologies. Contact angle measurements were carried out to observe the effects of halloysite on the hydrophilicity of nanofiber. According to rheology results, it has been found out that the solution viscosity, storage modulus (G') and loss modulus (G'') of halloysite increased up to a certain concentration (0.3 % HST), but later caused falls on viscosity. According to the results of FTIR analysis, there is no chemical bond between halloysite and BioTPU, but SEM images show that halloysite was added to the structure of nanofibers. It was also found that the halloysite added to the structure increased the fiber diameters and that the fiber cross-section was not uniformly distributed along the fiber axis. The results of contact angle analysis indicated that acquired nanofibers have hydrophobic surface and the added halloysite decreases contact angles of nanofibers.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43608071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-30DOI: 10.7216/1300759920202712007
D. Tama, Z. Öndoğan
The aim of this study is to investigate the local body measurement changes in movements during Alpine skiing and to calculate these changes in "percentages" in order to use in garment pattern preparing process to achieve the best clothing comfort characteristics in alpine skiing suits. For that purpose, an anthropometric measurement study was conducted, which involved measuring 31 male volunteer’s body sizes in static and dynamic postures. Within this context, the sizes to be measured were identified as static and dynamic by specifying the anthropometric landmarks on the body using ISAK (The International Society for the Advancement of Kinanthropometry) practices as the base. It was found that percentage changes in the anterior knee length, anterior leg length, hip length, elbow length and posterior arm length were 43%, 2%, 35%, 40% and 9%, respectively, from the measurements collected from 31 male recreational Alpine skiers. Afterwards, regarding to the obtained data, the three body dimensions such as inseam, back waist rise and sleeve length were re-calculated to use in the preparing of pattern for tight-fitting garments. Ultimately, a base layer thermal bottom’s garment patterns were developed and evaluated using a 3D virtual try-on system. Consequently, it was found that the inseam length and sleeve length should be reduced while the back waist rise needs extra ease allowance. With respect to the virtual fitting, the developed pattern was more fit than the original pattern and had more ability to adapt dynamic postures.
{"title":"Calculating the Percentage of Body Measurement Changes In Dynamic Postures In Order To Provide Fit In Skiwear","authors":"D. Tama, Z. Öndoğan","doi":"10.7216/1300759920202712007","DOIUrl":"https://doi.org/10.7216/1300759920202712007","url":null,"abstract":"The aim of this study is to investigate the local body measurement changes in movements during Alpine skiing and to calculate these changes in \"percentages\" in order to use in garment pattern preparing process to achieve the best clothing comfort characteristics in alpine skiing suits. For that purpose, an anthropometric measurement study was conducted, which involved measuring 31 male volunteer’s body sizes in static and dynamic postures. Within this context, the sizes to be measured were identified as static and dynamic by specifying the anthropometric landmarks on the body using ISAK (The International Society for the Advancement of Kinanthropometry) practices as the base. It was found that percentage changes in the anterior knee length, anterior leg length, hip length, elbow length and posterior arm length were 43%, 2%, 35%, 40% and 9%, respectively, from the measurements collected from 31 male recreational Alpine skiers. Afterwards, regarding to the obtained data, the three body dimensions such as inseam, back waist rise and sleeve length were re-calculated to use in the preparing of pattern for tight-fitting garments. Ultimately, a base layer thermal bottom’s garment patterns were developed and evaluated using a 3D virtual try-on system. Consequently, it was found that the inseam length and sleeve length should be reduced while the back waist rise needs extra ease allowance. With respect to the virtual fitting, the developed pattern was more fit than the original pattern and had more ability to adapt dynamic postures.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48026309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-30DOI: 10.7216/1300759920202712005
Fatma Günseli Yaşar Çiklaçandir, Semih Utku, H. Özdemir
Defects in the fabrics during or after weaving reduce the quality of them. With the development of technology, the frequency of the defects seen in fabrics has decreased, but still occurs. In the process of detecting fabric defects, the quality control unit tries to detect fabric defects. This process is both personal and time consuming, leading to costly and personal Errors. For this reason, solutions have been proposed in studies to carry out and automate the process under computer control. In this study, fabric images are divided into blocks of equal sizes to find out whether there are any defects in the fabrics. The features, which are Extracted by applying feature extraction method to each block of the image, are inserted into the K-means clustering algorithm. Two different methods are applied for feature extraction (gray level co-formation matrix and median difference) and their performances have been compared. The success rate of detecting the defect increases up to 97.99% when the gray level co-occurrence matrix is used. The success rate of detecting the defect increases up to 86.91% when the median differences are used. In addition, In addition, when the success rates are calculated separately for the defects in the weft direction and the defects in the warp direction, it is concluded that the defects in the weft direction are easier to find than the defects in the warp direction.
{"title":"Kumaşlarda Hatayı Yerel Olarak Arayan Denetimsiz Bir Sistem","authors":"Fatma Günseli Yaşar Çiklaçandir, Semih Utku, H. Özdemir","doi":"10.7216/1300759920202712005","DOIUrl":"https://doi.org/10.7216/1300759920202712005","url":null,"abstract":"Defects in the fabrics during or after weaving reduce the quality of them. With the development of technology, the frequency of the defects seen in fabrics has decreased, but still occurs. In the process of detecting fabric defects, the quality control unit tries to detect fabric defects. This process is both personal and time consuming, leading to costly and personal Errors. For this reason, solutions have been proposed in studies to carry out and automate the process under computer control. In this study, fabric images are divided into blocks of equal sizes to find out whether there are any defects in the fabrics. The features, which are Extracted by applying feature extraction method to each block of the image, are inserted into the K-means clustering algorithm. Two different methods are applied for feature extraction (gray level co-formation matrix and median difference) and their performances have been compared. The success rate of detecting the defect increases up to 97.99% when the gray level co-occurrence matrix is used. The success rate of detecting the defect increases up to 86.91% when the median differences are used. In addition, In addition, when the success rates are calculated separately for the defects in the weft direction and the defects in the warp direction, it is concluded that the defects in the weft direction are easier to find than the defects in the warp direction.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44958639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pre-finishing, finishing, and dyeing processes applied to the fabrics are carried out at high temperatures, in acidic or alkaline environments. Conventional metalized yarns which are produced by metalized yarn companies cannot resist these conditions that change due to raw material type. Metalized parts exfoliate when exposed to these conditions, and shiny appearance disappears completely. Therefore, in order to be a solution for this problem for the products that the use of metalized yarn is required, companies produce fabrics by using metalized yarns that were colored in bobbin form and choose proper application conditions for metalized yarns. However, because this solution increases production time and workmanship, the production costs and the product’s sale price increase correspondingly. The use of metalized yarns with untreated fiber is more advantageous than the method mentioned above for companies in terms of both cost and ease of production process. For this purpose, in this study, the resistance of metalized yarns that were produced by using lamination technique was tested against the chemicals which metalized yarns can be exposed during textile finishing processes, and the appearances of the fabrics were evaluated. Because metalized yarns are commonly used in the production of cotton and polyester fabrics, finishing processes that are applied to cotton and polyester fabrics were applied to metalized fabrics in a textile finishing laboratory. Then post-processing appearances of fabrics were evaluated subjectively.
{"title":"Laminasyon Tekniği İle Üretilen Sim İpliklerden Örülen Kumaşların Tekstil Terbiye İşlemlerine Karşı Dayanımının İncelenmesi","authors":"Elif Yılmaz, Sevda Altaş, Nildeniz Adman, Burçin Özkan","doi":"10.7216/1300759920202712006","DOIUrl":"https://doi.org/10.7216/1300759920202712006","url":null,"abstract":"The pre-finishing, finishing, and dyeing processes applied to the fabrics are carried out at high temperatures, in acidic or alkaline environments. Conventional metalized yarns which are produced by metalized yarn companies cannot resist these conditions that change due to raw material type. Metalized parts exfoliate when exposed to these conditions, and shiny appearance disappears completely. Therefore, in order to be a solution for this problem for the products that the use of metalized yarn is required, companies produce fabrics by using metalized yarns that were colored in bobbin form and choose proper application conditions for metalized yarns. However, because this solution increases production time and workmanship, the production costs and the product’s sale price increase correspondingly. The use of metalized yarns with untreated fiber is more advantageous than the method mentioned above for companies in terms of both cost and ease of production process. For this purpose, in this study, the resistance of metalized yarns that were produced by using lamination technique was tested against the chemicals which metalized yarns can be exposed during textile finishing processes, and the appearances of the fabrics were evaluated. Because metalized yarns are commonly used in the production of cotton and polyester fabrics, finishing processes that are applied to cotton and polyester fabrics were applied to metalized fabrics in a textile finishing laboratory. Then post-processing appearances of fabrics were evaluated subjectively.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47283819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-30DOI: 10.7216/1300759920202712009
Mutlu Kurban, Osman Babaarslan
Textile-Reinforced Concrete (TRC) is a new construction material and has been used in civil engineering applications such as façade systems, sandwich panel and outside furniture during the past several decades. Generally in TRC, glass, carbon filaments, etc. are used to reinforce concrete because these high-performance filaments have superior mechanical properties and corrosion resistance. Coating of these filaments with different polymers provide extra performance for TRC’s durability. But, because of coating materials’ cost and stiffness, using of coating for TRC is not so advantageous. For these reasons, new approaches are needed. In this study, a new hybrid yarn design and production for TRC are emphasized. AR-Glass and polypropylene filament were used for production of hybrid yarn by commingling method. It was aimed to optimize the parameters of commingling yarn production with Taguchi orthogonal design. The experiments were performed by using L9 orthogonal matrix with respect to Taguchi approach. The best strength value in the study was obtained in production parameters where the machine production speed is 50 m / min, the air pressure is 6 bar and the feeding amount is 2%. Analysis of variance (ANOVA) and signal/noise ratio were used to evaluate the experiment results. As a result of the analysis, it has been observed that the machine production speed has the greatest effect on the breaking strength and the feed amount has the lowest effect.
纺织钢筋混凝土(TRC)是一种新型的建筑材料,在过去的几十年里被广泛应用于建筑幕墙系统、夹心板和户外家具等土木工程中。一般在TRC中,玻璃、碳长丝等被用来加固混凝土,因为这些高性能长丝具有优越的机械性能和耐腐蚀性。用不同的聚合物涂层这些长丝为TRC的耐久性提供了额外的性能。但是,由于涂层材料的成本和刚度,使用涂层用于TRC并不是很有优势。由于这些原因,需要新的方法。本文着重介绍了一种新型TRC混纺纱的设计与生产。以ar玻璃和聚丙烯长丝为原料,采用混纺法生产混纺纱。采用田口正交设计对混纺纱生产工艺参数进行优化。实验采用L9正交矩阵与田口法进行。在机器生产速度为50 m / min,气压为6 bar,加料量为2%的生产参数下,得到了本研究的最佳强度值。采用方差分析(ANOVA)和信噪比对实验结果进行评价。分析结果表明,机器生产速度对断裂强度的影响最大,进给量的影响最小。
{"title":"Tekstil Takviyeli Beton Üretiminde Kullanılmak Üzere Yüksek Performanslı Hibrit İplik Geliştirilmesi Ve Üretim Parametrelerinin Optimizasyonu","authors":"Mutlu Kurban, Osman Babaarslan","doi":"10.7216/1300759920202712009","DOIUrl":"https://doi.org/10.7216/1300759920202712009","url":null,"abstract":"Textile-Reinforced Concrete (TRC) is a new construction material and has been used in civil engineering applications such as façade systems, sandwich panel and outside furniture during the past several decades. Generally in TRC, glass, carbon filaments, etc. are used to reinforce concrete because these high-performance filaments have superior mechanical properties and corrosion resistance. Coating of these filaments with different polymers provide extra performance for TRC’s durability. But, because of coating materials’ cost and stiffness, using of coating for TRC is not so advantageous. For these reasons, new approaches are needed. In this study, a new hybrid yarn design and production for TRC are emphasized. AR-Glass and polypropylene filament were used for production of hybrid yarn by commingling method. It was aimed to optimize the parameters of commingling yarn production with Taguchi orthogonal design. The experiments were performed by using L9 orthogonal matrix with respect to Taguchi approach. The best strength value in the study was obtained in production parameters where the machine production speed is 50 m / min, the air pressure is 6 bar and the feeding amount is 2%. Analysis of variance (ANOVA) and signal/noise ratio were used to evaluate the experiment results. As a result of the analysis, it has been observed that the machine production speed has the greatest effect on the breaking strength and the feed amount has the lowest effect.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44708700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}