Environmental and genetic differentiation jointly influence intra-specific variations of plant functional traits. Research on this topic is of great importance for the assessment plant adaptation to climate change and for developing long-term conservation strategies. In a common garden experiment, we investigated the variations in root and leaf functional traits of Caragana jubata across 14 provenances, as well as their relationships with the climatic and geographic factors of seed origin. The results showed that there were significant intraspecific differences in leaf tissue density, specific leaf area, leaf length to width ratio, leaf shape factor, leaf chlorophyll content, leaf nitrogen concentration, as well as root average diameter, specific root length, specific root area, and root nitrogen concentration. Leaf tissue density and root nitrogen concentration were key indicators explaining the differentiation of leaf and root functional traits across the various provenances. There were significant trade-offs among leaf and root functional traits, as indicated by the significant negative correlation between leaf area and leaf tissue density, between specific root length and root tissue density, as well as between leaf nitrogen concentration and root nitrogen concentration. Mean annual precipitation, growing season precipitation, altitude and geographical factors (longitude and latitude) of the seed origin played crucial roles in influencing intraspecific variation of leaf functional traits, while altitude dominantly accounted for the intraspecific variation of root functional traits.
{"title":"Variation in leaf and root functional traits of <i>Caragana jubata</i> across different provenances in a common garden.","authors":"Lu-Lu Wei, Ting-Ting Xu, Zhou-Juan Ma, Long-An Zhang, Zi-Yu Wang, Fei Ma","doi":"10.13287/j.1001-9332.202411.003","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202411.003","url":null,"abstract":"<p><p>Environmental and genetic differentiation jointly influence intra-specific variations of plant functional traits. Research on this topic is of great importance for the assessment plant adaptation to climate change and for developing long-term conservation strategies. In a common garden experiment, we investigated the variations in root and leaf functional traits of <i>Caragana jubata</i> across 14 provenances, as well as their relationships with the climatic and geographic factors of seed origin. The results showed that there were significant intraspecific differences in leaf tissue density, specific leaf area, leaf length to width ratio, leaf shape factor, leaf chlorophyll content, leaf nitrogen concentration, as well as root average diameter, specific root length, specific root area, and root nitrogen concentration. Leaf tissue density and root nitrogen concentration were key indicators explaining the differentiation of leaf and root functional traits across the various provenances. There were significant trade-offs among leaf and root functional traits, as indicated by the significant negative correlation between leaf area and leaf tissue density, between specific root length and root tissue density, as well as between leaf nitrogen concentration and root nitrogen concentration. Mean annual precipitation, growing season precipitation, altitude and geographical factors (longitude and latitude) of the seed origin played crucial roles in influencing intraspecific variation of leaf functional traits, while altitude dominantly accounted for the intraspecific variation of root functional traits.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 11","pages":"3005-3014"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To evaluate the effects of tillage measure on soil organic carbon (SOC) and influence degree of various factors on relative change rate of SOC at regional scale, we conducted a meta-analysis to investigate the impacts of tillage measures (CK, traditional deep tillage without straw return; NTS, no tillage with straw return; NT, no tillage without straw return; TS, traditional tillage with straw return; SS, subsoiling tillage) on SOC content and influence factors (climate conditions, soil types, cultivation types, and initial soil physicochemical properties) on relative change rate of SOC in dryland wheat fields on the Loess Plateau, based on literatures published during 2000-2023. Results indicated that NT, NTS, SS and TS performed varies positive effect on SOC content in 0-20 cm soil layer compared with CK. In addition, greater enhancement of SOC were obtained in conditions of loessal soil, mid-temperate zone, average annual temperature of ≤10 ℃ and average annual rainfall of ≤500 mm. It was favorable to carbon sequestration when the initial SOC ≥10 g·kg-1, alkaline nitrogen ≥60 mg·kg-1, available phosphorus ≥20 mg·kg-1 and available potassium ≥120 mg·kg-1. However, accumulation of SOC could be weakened under higher total nitrogen content (≥1 g·kg-1). In conclusion, NTS treatment performs better carbon sequestration effect in the topsoil and can be used as suitable tillage measure in dryland wheat fields on the Loess Plateau region.
{"title":"[Effects of different tillage measures on soil organic carbon in dryland wheat fields on the Loess Plateau, Northwest China based on meta-analysis].","authors":"Xiao Huang, Long-Xin Wang, Tian-Jing Xu, Qiu-Yan Yan, Shuang-Dui Yan, Fei Dong, Chen Qi, Min-Min Zhang","doi":"10.13287/j.1001-9332.202410.011","DOIUrl":"10.13287/j.1001-9332.202410.011","url":null,"abstract":"<p><p>To evaluate the effects of tillage measure on soil organic carbon (SOC) and influence degree of various factors on relative change rate of SOC at regional scale, we conducted a meta-analysis to investigate the impacts of tillage measures (CK, traditional deep tillage without straw return; NTS, no tillage with straw return; NT, no tillage without straw return; TS, traditional tillage with straw return; SS, subsoiling tillage) on SOC content and influence factors (climate conditions, soil types, cultivation types, and initial soil physicochemical properties) on relative change rate of SOC in dryland wheat fields on the Loess Plateau, based on literatures published during 2000-2023. Results indicated that NT, NTS, SS and TS performed varies positive effect on SOC content in 0-20 cm soil layer compared with CK. In addition, greater enhancement of SOC were obtained in conditions of loessal soil, mid-temperate zone, average annual temperature of ≤10 ℃ and average annual rainfall of ≤500 mm. It was favorable to carbon sequestration when the initial SOC ≥10 g·kg<sup>-1</sup>, alkaline nitrogen ≥60 mg·kg<sup>-1</sup>, available phosphorus ≥20 mg·kg<sup>-1</sup> and available potassium ≥120 mg·kg<sup>-1</sup>. However, accumulation of SOC could be weakened under higher total nitrogen content (≥1 g·kg<sup>-1</sup>). In conclusion, NTS treatment performs better carbon sequestration effect in the topsoil and can be used as suitable tillage measure in dryland wheat fields on the Loess Plateau region.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2725-2732"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.13287/j.1001-9332.202410.010
Yan-Lin Li, Juan Chen, Li-Li Chu, Peng-Chao Zhu, Yi-Rui Fu, Dong-Lin Huang, Da-Bin Zhang, Ya-Jun Gao, Zhao-Hui Wang
Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, Talaromyces purpureogenus, Talaromyces pinophilus, and Penicillium amestolkiae, and three strains of bacteria, Cellulosimicrobium funkei, Isptericola cucumis and Streptomyces canus. We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs. The results showed that Zn content in the roots and leaves of Bok choy of treatments inoculated with ZSMs were increased by 15%-44% and 27%-62%, respectively, and that soil DTPA-Zn concentration were increased by 52%-359%. The treatment inoculated with P. amestolkiae had the best effect. ZSMs significantly enhanced root uptake of Zn and foliar Zn content through increa-sing DTPA-Zn by mobilizing soil Zn by transformation of moderately available Zn (Zn bounded with manganese oxide and Zn strongly bounded with organic matter) to available Zn (exchangeable fraction, Zn bounded with carbonate, and Zn bounded with loose organic matter). The screened Zn mobilizing fungi averagely enhanced soil Zn phytoavailability and leaf Zn content by 240% and 46%, showing superior mobilizing ability than screened bacteria. P. amestolkiae significantly increased Zn content of soil and plant, thus it could be a promising potential microorganism as biofotification agent.
{"title":"[Isolation, screening of zinc solubilizing microorganisms and its application in low zinc calcareous soil].","authors":"Yan-Lin Li, Juan Chen, Li-Li Chu, Peng-Chao Zhu, Yi-Rui Fu, Dong-Lin Huang, Da-Bin Zhang, Ya-Jun Gao, Zhao-Hui Wang","doi":"10.13287/j.1001-9332.202410.010","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.010","url":null,"abstract":"<p><p>Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, <i>Talaromyces purpureogenus, Talaromyces pinophilus, and Penicillium amestolkiae</i>, and three strains of bacteria, <i>Cellulosimicrobium funkei, Isptericola cucumis and Streptomyces canus</i>. We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs. The results showed that Zn content in the roots and leaves of Bok choy of treatments inoculated with ZSMs were increased by 15%-44% and 27%-62%, respectively, and that soil DTPA-Zn concentration were increased by 52%-359%. The treatment inoculated with <i>P. amestolkiae</i> had the best effect. ZSMs significantly enhanced root uptake of Zn and foliar Zn content through increa-sing DTPA-Zn by mobilizing soil Zn by transformation of moderately available Zn (Zn bounded with manganese oxide and Zn strongly bounded with organic matter) to available Zn (exchangeable fraction, Zn bounded with carbonate, and Zn bounded with loose organic matter). The screened Zn mobilizing fungi averagely enhanced soil Zn phytoavailability and leaf Zn content by 240% and 46%, showing superior mobilizing ability than screened bacteria. <i>P. amestolkiae</i> significantly increased Zn content of soil and plant, thus it could be a promising potential microorganism as biofotification agent.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2765-2774"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-grain utilization of cultivated land threatens farmland ecological environment and soil health, which restricts grain production. To identify the key obstacle factors of cultivated soil under non-grain utilization, explore the changes of soil quality and function, and evaluate the effects of non-grain utilization on the health of farmland soil, we evaluated soil health of farmland under different non-grain utilization types (vegetables, bamboo-abandoned, nursery-grown plant-abandoned, nursery-grown plant-rice) by soil quality index and soil multifunctionality index method combined with sensitivity and resistance approaches. The results showed that soil organic carbon and total nitrogen (TN) in the bamboo-abandoned soil were 95.3%, 66.7%, 65.7% and 82.6%, 57.0%, 59.5% of those under vegetables, nursery-grown plant-abandoned and nursery-grown plant-rice treatments, respectively. The electrical conductivity of vegetable soil was 2.2-2.5 times that of other soils of non-grain cultivated land. Total phosphorus and nitrate nitrogen were 1.8-2.0 times and 3.5-5.5 times of other soils of non-grain cultivated land, respectively. Among different non-grain utilization types, soil quality index and soil multifunctionality index of vegetable soil were the highest. Soil quality index and soil multifunctionality index decreased significantly in bamboo-abandoned (50.2% and 22.7%), nursery-grown plant-abandoned (38.3% and 14.4%) and nursery-grown plant-rice (27.7% and 8.5%) treatments, compared with that of vegetable soil. Random forest model analysis showed that available potassium and available nitrogen (AN) were the key factors affecting soil quality index. TN, cellulase and xylanase activities that related to soil C cycle were the key factors affecting soil multifunctionality index. In addition, available phosphorus, AN, TN and enzyme activity were sensitive indices to soil change in non-grain cultivated land. By comprehensively evaluating soil quality of non-grain cultivated land, we identified the key obstacle factors and provide a theoretical basis for the healthy soil cultivation and sustainable utilization of non-grain cultivated land.
{"title":"[Soil health evaluation of non-grain cultivated land: A case study of Dongwu Town, Ningbo City, Zhejiang Province, China].","authors":"Yu-Xiao Zhao, Mou-Liang Xiao, Xin-Tao Cui, Shun-Bao Lu, Shuang Wang, Zhen-Ke Zhu, Yan-Jie Zhang, Ti-da Ge","doi":"10.13287/j.1001-9332.202410.018","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.018","url":null,"abstract":"<p><p>Non-grain utilization of cultivated land threatens farmland ecological environment and soil health, which restricts grain production. To identify the key obstacle factors of cultivated soil under non-grain utilization, explore the changes of soil quality and function, and evaluate the effects of non-grain utilization on the health of farmland soil, we evaluated soil health of farmland under different non-grain utilization types (vegetables, bamboo-abandoned, nursery-grown plant-abandoned, nursery-grown plant-rice) by soil quality index and soil multifunctionality index method combined with sensitivity and resistance approaches. The results showed that soil organic carbon and total nitrogen (TN) in the bamboo-abandoned soil were 95.3%, 66.7%, 65.7% and 82.6%, 57.0%, 59.5% of those under vegetables, nursery-grown plant-abandoned and nursery-grown plant-rice treatments, respectively. The electrical conductivity of vegetable soil was 2.2-2.5 times that of other soils of non-grain cultivated land. Total phosphorus and nitrate nitrogen were 1.8-2.0 times and 3.5-5.5 times of other soils of non-grain cultivated land, respectively. Among different non-grain utilization types, soil quality index and soil multifunctionality index of vegetable soil were the highest. Soil quality index and soil multifunctionality index decreased significantly in bamboo-abandoned (50.2% and 22.7%), nursery-grown plant-abandoned (38.3% and 14.4%) and nursery-grown plant-rice (27.7% and 8.5%) treatments, compared with that of vegetable soil. Random forest model analysis showed that available potassium and available nitrogen (AN) were the key factors affecting soil quality index. TN, cellulase and xylanase activities that related to soil C cycle were the key factors affecting soil multifunctionality index. In addition, available phosphorus, AN, TN and enzyme activity were sensitive indices to soil change in non-grain cultivated land. By comprehensively evaluating soil quality of non-grain cultivated land, we identified the key obstacle factors and provide a theoretical basis for the healthy soil cultivation and sustainable utilization of non-grain cultivated land.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2785-2793"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.13287/j.1001-9332.202410.002
Ren-Fei Xu, Lu Wang, Lei Deng, Wen-Ying Wang, Sheng DU, Jin-Hong Guan
As the most effective way to remedy and reconstruct the degraded ecosystems, vegetation restoration could affect soil carbon and nitrogen cycles and water balance. We examined the responses of carbon, nitrogen, and water in 0-200 cm soil layer to vegetation restoration years by analyzing their distribution characteristics across a restoration chronosequence of Populus cathayana plantation (5, 10, 15, 20, and 25 years) in alpine sandy region of the Qinghai-Tibetan Plateau. The results showed that the content and storage of soil organic carbon (SOC) and soil total nitrogen (STN) increased significantly, while that of soil inorganic carbon (SIC) decreased significantly with restoration years. SOC, SIC and STN content for the entire 200 cm soil layer were 0.41-1.24 g C·kg-1, 4.53-8.07 g C·kg-1, and 0.12-0.22 g N·kg-1, respectively. SOC, SIC, and STN storage for the entire 200 cm were 16.08-33.51 t C·hm-2, 187.12-241.02 t C·hm-2, and 4.27-6.66 t N·hm-2, respectively. After 25 years vegetation restoration, the storage of SOC and STN for the entire 200 cm soil layer were significantly increased by 68.1% and 39.6%, while the SIC storage was significantly decreased by 9.5% compared with the 5 years vegetation restoration. The storage of SOC, SIC and STN in the 100-200 cm soil layer were 1.3-1.4 times higher than those in the 0-100 cm layer. The storage of SIC within the 0-200 cm layer was 8.2 times of the SOC storage over the same layer. Compared with the 5 years restoration, SOC storage in the 0-200 cm soil layer of 10, 15, 20, and 25 restoration years increased by 13.3%-68.1%, which were 1.0-2.1 times of the STN storage, suggesting a decoupling of SOC and STN accumulation during restoration. After 15 years vegetation restoration, soil water content and storage peaked at 7.4% and 274.17 mm, respectively. Restoration years were significantly positively correlated with SOC and STN contents, but not related to water content. SOC, STN, and water storage were significantly and positively correlated with each other, resulting in a positive promoting effect between each pair. In conclusion, the inorganic carbon pool was a significant contributor to the total carbon pool in alpine sandy region of the Qinghai-Tibetan Pla-teau. Vegetation restoration year is a primary determinant of soil carbon, nitrogen, and water sequestration, with the contributions of deeper soil layers to regional levels being equally important and can not be ignored. This finding suggested that alpine sandy ecosystems required soil nitrogen input in the early vegetation restoration stages.
植被恢复是修复和重建退化生态系统最有效的途径,影响着土壤碳氮循环和水分平衡。通过分析青藏高原高寒沙地白杨人工林(5、10、15、20和25年)0 ~ 200 cm土层碳、氮和水的分布特征,研究了它们对植被恢复年限的响应。结果表明:随着恢复年限的增加,土壤有机碳(SOC)和全氮(STN)含量和储量显著增加,土壤无机碳(SIC)含量和储量显著降低;200 cm全土层有机碳、SIC和STN含量分别为0.41 ~ 1.24 g C·kg-1、4.53 ~ 8.07 g C·kg-1和0.12 ~ 0.22 g N·kg-1。整个200 cm的SOC、SIC和STN储量分别为16.08 ~ 33.51 t C·hm-2、187.12 ~ 241.02 t C·hm-2和4.27 ~ 6.66 t N·hm-2。植被恢复25年后,整个200 cm土层有机碳和STN储量与恢复5年相比显著增加了68.1%和39.6%,SIC储量显著减少了9.5%。土壤有机碳、碳化硅和STN在100 ~ 200 cm土层的储量是0 ~ 100 cm土层的1.3 ~ 1.4倍。0 ~ 200 cm层SIC的储存量是同一层SOC储存量的8.2倍。与5 a恢复相比,恢复10、15、20和25 a 0-200 cm土层有机碳储量增加了13.3% ~ 68.1%,是土壤氮储量的1.0 ~ 2.1倍,表明恢复过程中有机碳与土壤氮积累存在解耦关系。植被恢复15年后,土壤含水量和库存量最高,分别为7.4%和274.17 mm。恢复年限与土壤有机碳和土壤氮含量呈极显著正相关,与水分含量无显著相关。土壤有机碳(SOC)、土壤氮(STN)和储水量之间呈显著正相关,三者之间存在正促进作用。综上所述,无机碳库是青藏高原高寒沙区碳库总量的重要贡献者。植被恢复年份是土壤碳、氮和水固存的主要决定因素,深层土壤对区域水平的贡献同样重要且不可忽视。这表明高寒沙质生态系统在植被恢复早期需要土壤氮输入。
{"title":"[Characteristics of soil carbon, nitrogen, and water of <i>Populus cathayana</i> plantation along different vegetation restoration years in alpine sandy region].","authors":"Ren-Fei Xu, Lu Wang, Lei Deng, Wen-Ying Wang, Sheng DU, Jin-Hong Guan","doi":"10.13287/j.1001-9332.202410.002","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.002","url":null,"abstract":"<p><p>As the most effective way to remedy and reconstruct the degraded ecosystems, vegetation restoration could affect soil carbon and nitrogen cycles and water balance. We examined the responses of carbon, nitrogen, and water in 0-200 cm soil layer to vegetation restoration years by analyzing their distribution characteristics across a restoration chronosequence of <i>Populus cathayana</i> plantation (5, 10, 15, 20, and 25 years) in alpine sandy region of the Qinghai-Tibetan Plateau. The results showed that the content and storage of soil organic carbon (SOC) and soil total nitrogen (STN) increased significantly, while that of soil inorganic carbon (SIC) decreased significantly with restoration years. SOC, SIC and STN content for the entire 200 cm soil layer were 0.41-1.24 g C·kg<sup>-1</sup>, 4.53-8.07 g C·kg<sup>-1</sup>, and 0.12-0.22 g N·kg<sup>-1</sup>, respectively. SOC, SIC, and STN storage for the entire 200 cm were 16.08-33.51 t C·hm<sup>-2</sup>, 187.12-241.02 t C·hm<sup>-2</sup>, and 4.27-6.66 t N·hm<sup>-2</sup>, respectively. After 25 years vegetation restoration, the storage of SOC and STN for the entire 200 cm soil layer were significantly increased by 68.1% and 39.6%, while the SIC storage was significantly decreased by 9.5% compared with the 5 years vegetation restoration. The storage of SOC, SIC and STN in the 100-200 cm soil layer were 1.3-1.4 times higher than those in the 0-100 cm layer. The storage of SIC within the 0-200 cm layer was 8.2 times of the SOC storage over the same layer. Compared with the 5 years restoration, SOC storage in the 0-200 cm soil layer of 10, 15, 20, and 25 restoration years increased by 13.3%-68.1%, which were 1.0-2.1 times of the STN storage, suggesting a decoupling of SOC and STN accumulation during restoration. After 15 years vegetation restoration, soil water content and storage peaked at 7.4% and 274.17 mm, respectively. Restoration years were significantly positively correlated with SOC and STN contents, but not related to water content. SOC, STN, and water storage were significantly and positively correlated with each other, resulting in a positive promoting effect between each pair. In conclusion, the inorganic carbon pool was a significant contributor to the total carbon pool in alpine sandy region of the Qinghai-Tibetan Pla-teau. Vegetation restoration year is a primary determinant of soil carbon, nitrogen, and water sequestration, with the contributions of deeper soil layers to regional levels being equally important and can not be ignored. This finding suggested that alpine sandy ecosystems required soil nitrogen input in the early vegetation restoration stages.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2657-2666"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To select the mycorrhizal seedlings of Pinus massoniana with excellent Cd-resistance and explore the mechanism of Cenococcum geophilum promoting the resistance to Cd stress of P. massoniana, nine species of C. geophilum isolated from different hosts infected P. massoniana to form mycorrhizal seedlings, were cultured in Cd-contaminated soil for three months. We conducted the principal component analysis (PCA) on biomass, root structure, and photosynthesis, and evaluated the Cd tolerance of mycorrhizal seedlings by membership function. The results showed that dry and fresh weight of mycorrhizal seedlings under Cd stress were 1.0-2.1 and 1.0-1.4 times of that under the control. Root structure of P. massoniana mycorrhizal seedlings was improved by C. geophilum, with root volume and average root diameter being 1.5-2.3 and 1.0-1.3 times of that under the control. Photosynthesis of mycorrhizal seedlings was significantly enhanced by C. geophilum, with photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration of Cg-HS3 being 11.8, 3.5, 3.0, and 0.4 times of that under the control, respectively. The transport of Cd by mycorrhizal seedlings was significantly reduced by C. geophilum, which was 30.4%-73.0% of that under the control. Based on the D value of comprehensive evaluation of Cd tole-rance of mycorrhizal seedlings, and cluster analysis of inter-group linkage, the mycorrhizal seedlings were classified into Cd-sensitive type (Cg-YS4, Cg-HS2, Cg-YS1, Cg-HS1), low Cd-tolerance type (Cg-HS3, Cg-QQ, Cg-YS3, Cg-YS2), and high Cd-tolerance type (Cg-QG). In conclusion, Cg-QG and Cg-HS3 can be used as excellent materials to resist Cd stress and restore the ecological environment in mining area.
{"title":"[Comprehensive evaluation of resistance to Cd stress in mycorrhizal seedlings formed by different genotypes of <i>Cenococcum geophilum</i> and <i>Pinus massoniana</i>].","authors":"Xiao Zhang, Tian-Yi Yan, Yu-Hu Zhang, Ao-Lin Wu, Rong-Zhang Xie, Tao-Xiang Zhang, Wen-Hao Yang","doi":"10.13287/j.1001-9332.202410.008","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.008","url":null,"abstract":"<p><p>To select the mycorrhizal seedlings of <i>Pinus massoniana</i> with excellent Cd-resistance and explore the mechanism of <i>Cenococcum geophilum</i> promoting the resistance to Cd stress of <i>P. massoniana</i>, nine species of <i>C. geophilum</i> isolated from different hosts infected <i>P. massoniana</i> to form mycorrhizal seedlings, were cultured in Cd-contaminated soil for three months. We conducted the principal component analysis (PCA) on biomass, root structure, and photosynthesis, and evaluated the Cd tolerance of mycorrhizal seedlings by membership function. The results showed that dry and fresh weight of mycorrhizal seedlings under Cd stress were 1.0-2.1 and 1.0-1.4 times of that under the control. Root structure of <i>P. massoniana</i> mycorrhizal seedlings was improved by <i>C. geophilum</i>, with root volume and average root diameter being 1.5-2.3 and 1.0-1.3 times of that under the control. Photosynthesis of mycorrhizal seedlings was significantly enhanced by <i>C. geophilum</i>, with photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO<sub>2</sub> concentration of Cg-HS3 being 11.8, 3.5, 3.0, and 0.4 times of that under the control, respectively. The transport of Cd by mycorrhizal seedlings was significantly reduced by <i>C. geophilum</i>, which was 30.4%-73.0% of that under the control. Based on the <i>D</i> value of comprehensive evaluation of Cd tole-rance of mycorrhizal seedlings, and cluster analysis of inter-group linkage, the mycorrhizal seedlings were classified into Cd-sensitive type (Cg-YS4, Cg-HS2, Cg-YS1, Cg-HS1), low Cd-tolerance type (Cg-HS3, Cg-QQ, Cg-YS3, Cg-YS2), and high Cd-tolerance type (Cg-QG). In conclusion, Cg-QG and Cg-HS3 can be used as excellent materials to resist Cd stress and restore the ecological environment in mining area.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2677-2687"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurately capturing the spatiotemporal dynamics of regional forest cover and its response to climate change is of great significance for forest resource management and ecological environment protection. We used statistical methods such us linear regression and correlation analysis, as well as remote sensing change monitoring to investigate the spatiotemporal dynamics of forest cover and its response to climate change from 2000 to 2022 in Shandong Province based on MODIS VCF products and meteorological data. The results showed that the forest co-verage and forest area in Shandong Province increased from 43.0% and 197.06×104 hm2 in 2000 to 43.1% and 326.08×104 hm2 in 2022, respectively. Spatially, forest coverage grew stepwise from the southwest and northwest to the center and east of Shandong. 90.6% of the forest area of Shandong Province experienced a relative increase in forest cover during 2000-2022. Most of the increased area was concentrated in the central southern mountains and hills and the eastern low mountains and hills. The area expansion of forest cover was primarily located in the lowland areas of Liaocheng, Dezhou, Heze, Jining, and Binzhou, which accounted for 52.3% of the provincial forest area. There was a positive correlation between forest coverage and air temperature, but a negative correlation between forest coverage and precipitation. Air temperature was the main climatic factor influencing the shift in forest coverage during the study period.
{"title":"[Spatiotemporal dynamics of forest cover and its response to climate change in Shandong Province, China during 2000-2022.]","authors":"Yue Cao, Hao Li, Chun-Hua Zhang, Yun-Yuan Li, Jing-Qi Wu, Xin-Yuan Chai, Jin-Zheng Niu, Yu-Jun Tao","doi":"10.13287/j.1001-9332.202410.024","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.024","url":null,"abstract":"<p><p>Accurately capturing the spatiotemporal dynamics of regional forest cover and its response to climate change is of great significance for forest resource management and ecological environment protection. We used statistical methods such us linear regression and correlation analysis, as well as remote sensing change monitoring to investigate the spatiotemporal dynamics of forest cover and its response to climate change from 2000 to 2022 in Shandong Province based on MODIS VCF products and meteorological data. The results showed that the forest co-verage and forest area in Shandong Province increased from 43.0% and 197.06×10<sup>4</sup> hm<sup>2</sup> in 2000 to 43.1% and 326.08×10<sup>4</sup> hm<sup>2</sup> in 2022, respectively. Spatially, forest coverage grew stepwise from the southwest and northwest to the center and east of Shandong. 90.6% of the forest area of Shandong Province experienced a relative increase in forest cover during 2000-2022. Most of the increased area was concentrated in the central southern mountains and hills and the eastern low mountains and hills. The area expansion of forest cover was primarily located in the lowland areas of Liaocheng, Dezhou, Heze, Jining, and Binzhou, which accounted for 52.3% of the provincial forest area. There was a positive correlation between forest coverage and air temperature, but a negative correlation between forest coverage and precipitation. Air temperature was the main climatic factor influencing the shift in forest coverage during the study period.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2803-2812"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.13287/j.1001-9332.202410.023
Lan-di Hu, Juan Tan, Chu-Lin Chen, Ji-Yun She
As one of the provinces with the largest number of national forest cities, all prefecture-level cities in Guangdong Province have joined the campaigns of building forest cities. Mastering the spatial and temporal variations of ecological environment quality (EEQ) in Guangdong Province is conducive to the benign interaction and coordinated development of urban construction and ecosystem. We used the water benefit-based ecological index (WBEI) to achieve rapid monitoring of EEQ in Guangdong Province, utilized the standard deviation ellipse and gravity center migration, Theil-Sen Median trend method and Mann-Kendall test to explore the spatial distribution disparities and trends, and analyzed the coupling coordination between EEQ and urbanization. The results showed that the WBEI derived from the normalized difference vegetation index could better reflect vegetation coverage in Guangdong Province, and objectively evaluate the EEQ of watersheds and urban vegetation zones. The EEQ in the northern inland area was generally better than that in the southern coastal area, and it was more concentrated in the southwest-northeast direction. The gravity center position displayed a sequential movement from southwest to northeast and then back to southwest. Most prefecture-level cities remained stable or improved in EEQ, while the improved and degraded types were distributed in various regions of the province. The coupling coordination degree between EEQ and urbanization in southern Guangdong Province exceeded that of the northern region, with the coupling coordination degree being constantly improving. The Pearl River Delta Forest City Cluster emerged as a region characterized by high levels of coupling coordination, with a good radiation driving effect in promoting the coordination of EEQ and urban construction. This study could provide a method reference for EEQ evaluation within multi-watershed forest cities.
{"title":"[Ecological environment quality evaluation based on water benefit-based ecological index in Guangdong Province, China].","authors":"Lan-di Hu, Juan Tan, Chu-Lin Chen, Ji-Yun She","doi":"10.13287/j.1001-9332.202410.023","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.023","url":null,"abstract":"<p><p>As one of the provinces with the largest number of national forest cities, all prefecture-level cities in Guangdong Province have joined the campaigns of building forest cities. Mastering the spatial and temporal variations of ecological environment quality (EEQ) in Guangdong Province is conducive to the benign interaction and coordinated development of urban construction and ecosystem. We used the water benefit-based ecological index (WBEI) to achieve rapid monitoring of EEQ in Guangdong Province, utilized the standard deviation ellipse and gravity center migration, Theil-Sen Median trend method and Mann-Kendall test to explore the spatial distribution disparities and trends, and analyzed the coupling coordination between EEQ and urbanization. The results showed that the WBEI derived from the normalized difference vegetation index could better reflect vegetation coverage in Guangdong Province, and objectively evaluate the EEQ of watersheds and urban vegetation zones. The EEQ in the northern inland area was generally better than that in the southern coastal area, and it was more concentrated in the southwest-northeast direction. The gravity center position displayed a sequential movement from southwest to northeast and then back to southwest. Most prefecture-level cities remained stable or improved in EEQ, while the improved and degraded types were distributed in various regions of the province. The coupling coordination degree between EEQ and urbanization in southern Guangdong Province exceeded that of the northern region, with the coupling coordination degree being constantly improving. The Pearl River Delta Forest City Cluster emerged as a region characterized by high levels of coupling coordination, with a good radiation driving effect in promoting the coordination of EEQ and urban construction. This study could provide a method reference for EEQ evaluation within multi-watershed forest cities.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2861-2871"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.13287/j.1001-9332.202410.012
Cong-Cong Lyu, Ya-Dong Ma, Bo-Nian Shui, Yang Yu, Bin Li, Xue-Li Li, Zhong-Nan Zhou, Cheng-Ye Hu
Mangrove forests are crucial coastal "blue carbon" ecosystems, known for their significant carbon sequestration capabilities to "carbon neutrality" and mitigating global climate change. We used 210Pb radioisotope dating to analyze sedimentation rates in the sediments of the Oujiang River Estuary mangrove forest, to calculate organic carbon burial rate, and to assess the characteristics and sources of organic carbon burial. The results showed that the average total organic carbon content in the sediments was 1.4 %, generally decreasing with depth. The average organic carbon burial rate was 26.2 Mg C·hm-2·a-1, slightly higher than the global average for mangrove forests. By contrast, the organic carbon content in the core sediments (0-150 cm) was 37.4 Mg C·hm-2, slightly lower than the global average. The stable carbon and nitrogen isotope distribution characteristics and the stable isotope mixing model (SIMMR) indicated that organic carbon originated from a mix of marine and terrestrial sources. Marine sources, such as suspended organic particles and phytoplankton, contributed 45.6% and 10.6%, respectively, while terrestrial sources, including sedimentary organic matter and leaf litter, accounted for 31.5% and 12.3%, respectively. Overall, the Oujiang River Estuary mangrove forest had a high organic carbon burial rate, with significant variations in carbon content at different depths influenced by tidal influences. Additionally, the input of external suspended organic particles was an important contributor to sediment organic carbon burial.
{"title":"[Burial, source characteristics and influencing factors of organic carbon in mangrove sediments at the mouth of the Oujiang River Estuary, China].","authors":"Cong-Cong Lyu, Ya-Dong Ma, Bo-Nian Shui, Yang Yu, Bin Li, Xue-Li Li, Zhong-Nan Zhou, Cheng-Ye Hu","doi":"10.13287/j.1001-9332.202410.012","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.012","url":null,"abstract":"<p><p>Mangrove forests are crucial coastal \"blue carbon\" ecosystems, known for their significant carbon sequestration capabilities to \"carbon neutrality\" and mitigating global climate change. We used <sup>210</sup>Pb radioisotope dating to analyze sedimentation rates in the sediments of the Oujiang River Estuary mangrove forest, to calculate organic carbon burial rate, and to assess the characteristics and sources of organic carbon burial. The results showed that the average total organic carbon content in the sediments was 1.4 %, generally decreasing with depth. The average organic carbon burial rate was 26.2 Mg C·hm<sup>-2</sup>·a<sup>-1</sup>, slightly higher than the global average for mangrove forests. By contrast, the organic carbon content in the core sediments (0-150 cm) was 37.4 Mg C·hm<sup>-2</sup>, slightly lower than the global average. The stable carbon and nitrogen isotope distribution characteristics and the stable isotope mixing model (SIMMR) indicated that organic carbon originated from a mix of marine and terrestrial sources. Marine sources, such as suspended organic particles and phytoplankton, contributed 45.6% and 10.6%, respectively, while terrestrial sources, including sedimentary organic matter and leaf litter, accounted for 31.5% and 12.3%, respectively. Overall, the Oujiang River Estuary mangrove forest had a high organic carbon burial rate, with significant variations in carbon content at different depths influenced by tidal influences. Additionally, the input of external suspended organic particles was an important contributor to sediment organic carbon burial.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2688-2696"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human-wildlife conflict is one of the important research topics in biodiversity and conservation. Understanding the status of wildlife resources and its conflict with human could promote the sustainable protection and management of wildlife. Wild boar (Sus scrofa) is one of the most widely distributed ungulates in the world, with an increasing population and recently rising levels of conflict with human. Research on wild boar abundance, distribution and crop damage is an urgent priority in Zhejiang Province, China. We set up a total of 1271 infrared cameras in 11 districts/counties of Zhejiang Province from January 2019 to August 2023 and surveyed the levels of wild boar damage in 90 districts/counties. Results showed that: 1) a total of 5226 independent photos of wild boar were obtained. Based on the random encounter model, the density and number of wild boars in Zhejiang Province was (1.8±0.4) ind·km-2 and (115156±24072) individuals, respectively. 2) Wild boar damage occurred in 60.0% of the districts/counties in Zhejiang Province. The three cities that most seriously damaged by wild boar were Lishui, Hangzhou and Jinhua. 3) The number of conflicts between human and wild boar was positively correlated with vegetation area and negatively correlated with GDP. The area of vegetation damaged by wild boar was positively correlated with the total area of regional vegetation. We found that wild boars are distributed in 11 prefecture-level cities in Zhejiang Province and the population is large. The damage of wild boars and conflicts with people are particularly serious in the mountainous areas in south and west. The damage of wild boars is strongly correlated with vegetation area and GDP.
{"title":"[Wild boar resource and its conflict with human in Zhejiang Province, East China].","authors":"Li-Ping Tan, Jun-Chen Liu, Jian-Wu Wang, Xiao Song, Shu-Sheng Zhang, Feng Chen, Shan-Shan Zhao, Ai-Chun Xu","doi":"10.13287/j.1001-9332.202410.029","DOIUrl":"https://doi.org/10.13287/j.1001-9332.202410.029","url":null,"abstract":"<p><p>Human-wildlife conflict is one of the important research topics in biodiversity and conservation. Understanding the status of wildlife resources and its conflict with human could promote the sustainable protection and management of wildlife. Wild boar (<i>Sus scrofa</i>) is one of the most widely distributed ungulates in the world, with an increasing population and recently rising levels of conflict with human. Research on wild boar abundance, distribution and crop damage is an urgent priority in Zhejiang Province, China. We set up a total of 1271 infrared cameras in 11 districts/counties of Zhejiang Province from January 2019 to August 2023 and surveyed the levels of wild boar damage in 90 districts/counties. Results showed that: 1) a total of 5226 independent photos of wild boar were obtained. Based on the random encounter model, the density and number of wild boars in Zhejiang Province was (1.8±0.4) ind·km<sup>-2</sup> and (115156±24072) individuals, respectively. 2) Wild boar damage occurred in 60.0% of the districts/counties in Zhejiang Province. The three cities that most seriously damaged by wild boar were Lishui, Hangzhou and Jinhua. 3) The number of conflicts between human and wild boar was positively correlated with vegetation area and negatively correlated with GDP. The area of vegetation damaged by wild boar was positively correlated with the total area of regional vegetation. We found that wild boars are distributed in 11 prefecture-level cities in Zhejiang Province and the population is large. The damage of wild boars and conflicts with people are particularly serious in the mountainous areas in south and west. The damage of wild boars is strongly correlated with vegetation area and GDP.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 10","pages":"2907-2915"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}