Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.2.04
М. С. Шелестов
The paper analyzes the world experience in boosting diesel engines by improving the air supply system, i.e. the installation of drive superchargers and (turbochargers) TKR. Two main types of mechanical superchargers, rotary and centrifugal, are considered. The most common models of rotatory superchargers, Roots, Eaton and Lysholm, the scheme and principle of operation of centrifugal superchargers are analyzed. The main disadvantage of mechanical supercharging is that all the power needed to compress the air is taken from the engine crankshaft. Therefore, gas turbine supercharging is considered the most promising. Single-stage boost systems are analyzed using the example of well-known car manufacturers such as Pegaso and Volkswagen. It has been established that the use of turbocharging increases engine efficiency, which leads to a decrease in specific effective fuel consumption. The further development is aimed at improving single-stage turbocharging systems, reducing the size of turbochargers, reducing inertia, using turbine controls and using two-stage boost systems. In addition, an analysis is made of the work of well-known companies developing boost systems (ABB Turbo Systems, MTU, MAN, Borg Warner Turbo System), which showed that for diesel engines with a liter capacity of more than 60 kW / l it is rational to use a two-stage boost system with intermediate cooling of the charge air. The advantages of using a two-stage boost system are: high torque at low engine speeds; increase in rated power; increase in boost pressure; reduction in fuel consumption; smoke reduction; high potential to reduce NOx emissions; improved transient characteristics. The use of a two-stage controlled turbocharging with cooling of the charge air type R2S achieves a high average effective pressure. Depending on the setting, the system can be implemented both at low and high engine speeds.
{"title":"DEVELOPMENT OF BOOST SYSTEMS FOR FORCED DIESEL ENGINES","authors":"М. С. Шелестов","doi":"10.20998/0419-8719.2020.2.04","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.2.04","url":null,"abstract":"The paper analyzes the world experience in boosting diesel engines by improving the air supply system, i.e. the installation of drive superchargers and (turbochargers) TKR. Two main types of mechanical superchargers, rotary and centrifugal, are considered. The most common models of rotatory superchargers, Roots, Eaton and Lysholm, the scheme and principle of operation of centrifugal superchargers are analyzed. The main disadvantage of mechanical supercharging is that all the power needed to compress the air is taken from the engine crankshaft. Therefore, gas turbine supercharging is considered the most promising. Single-stage boost systems are analyzed using the example of well-known car manufacturers such as Pegaso and Volkswagen. It has been established that the use of turbocharging increases engine efficiency, which leads to a decrease in specific effective fuel consumption. The further development is aimed at improving single-stage turbocharging systems, reducing the size of turbochargers, reducing inertia, using turbine controls and using two-stage boost systems. In addition, an analysis is made of the work of well-known companies developing boost systems (ABB Turbo Systems, MTU, MAN, Borg Warner Turbo System), which showed that for diesel engines with a liter capacity of more than 60 kW / l it is rational to use a two-stage boost system with intermediate cooling of the charge air. The advantages of using a two-stage boost system are: high torque at low engine speeds; increase in rated power; increase in boost pressure; reduction in fuel consumption; smoke reduction; high potential to reduce NOx emissions; improved transient characteristics. The use of a two-stage controlled turbocharging with cooling of the charge air type R2S achieves a high average effective pressure. Depending on the setting, the system can be implemented both at low and high engine speeds.","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83282793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.1.06
С. О. Ковальов
{"title":"DEVELOPMENT OF A MICROPROCESSOR CONTROL SYSTEM OF GAS ICE WITH SEQUENTIAL GAS FUEL INJECTION","authors":"С. О. Ковальов","doi":"10.20998/0419-8719.2020.1.06","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.1.06","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73598684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.1.10
А. В. Грицюк
{"title":"THE COURSE'S \"THE TESTING OF INTERNAL COMBUSTION ENGINES\" TEACHING METHODOLOGY DEVELOPMENT IN DOMECTIC EDUCATIONAL INSTITUTIONS - FRAGMENTS OF HISTORY","authors":"А. В. Грицюк","doi":"10.20998/0419-8719.2020.1.10","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.1.10","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79185831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.1.02
Р. А. Варбанець, В. І. Залож, Тарас Валерійович Тарасенко, Ю. М. Кучеренко, Виталий Григорьевич Клименко
{"title":"FEATURES OF ANALYTICAL SYNCHRONIZATION OF DATA OF WORKING PROCESS MONITORING IN TRANSPORT DIESEL ENGINES UNDER OPERATION","authors":"Р. А. Варбанець, В. І. Залож, Тарас Валерійович Тарасенко, Ю. М. Кучеренко, Виталий Григорьевич Клименко","doi":"10.20998/0419-8719.2020.1.02","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.1.02","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75749605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.2.01
Б. Г. Тимошевський, О. С. Митрофанов, А. Ю. Проскурін, А. С. Познанський
{"title":"SELECTION OF CYLINDER-PISTON CLEARANCES OF ROTOR-PISTON ENGINES","authors":"Б. Г. Тимошевський, О. С. Митрофанов, А. Ю. Проскурін, А. С. Познанський","doi":"10.20998/0419-8719.2020.2.01","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.2.01","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88160391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.2.03
Ігор Володимирович Парсаданов, С. О. Ковальов, С. В. Плис
{"title":"DEVELOPMENT OF ELECTRONIC MICROPROCESSOR UNITS OF GAS ENGINE CONTROL","authors":"Ігор Володимирович Парсаданов, С. О. Ковальов, С. В. Плис","doi":"10.20998/0419-8719.2020.2.03","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.2.03","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74998677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.1.05
И. В. Грицук, Д. С. Погорлецкий, Р. В. Симоненко, И. В. Худяков
Presented are the results of experimental studies of the heat treatment system of a vehicle gasoline engine, which is heated to operating temperatures on gasoline, and subsequent operation on liquefied oil gas. The main element of the heat preparation system is a phase transition heat accumulator. The research task to be solved is to minimize the time of heat preparation of the vehicle gasoline engine and, therefore, to reduce gasoline consumption in warm-up modes. To ensure remote registration of vehicle parameters and control of heat preparation processes, an information system for monitoring and control of heat preparation processes of a vehicle engine with a heat accumulator was developed and used. During the research, a gasoline-powered vehicle was used with additionally installed gas equipment. The use of a phase transition heat accumulator in the heat preparation system of a vehicle gasoline engine (operating both on gasoline and on liquefied gas fuel) has confirmed a significant improvement in fuel economy. For this, the engine heat preparation should be carried out immediately before starting from an additional heat source to the coolant temperature in the cooling system up to 50° C. The research results have confirmed the capabilities of the system under study to significantly reduce the time of heat preparation and reduce the vehicle gasoline engine fuel consumption running on gasoline and liquefied gas fuel under operating conditions. The phase transition heat accumulator in the heat preparation system of a vehicle gasoline engine (operating both on gasoline and on liquefied gas fuel) reduces the time required to heat the coolant to 50° C and gas consumption to ensure the transition to gas fuel when using various modes (options) of heat preparation in operating conditions.
{"title":"IMPROVEMENT OF HEAT PREPARATION PROCESSES OF VEHICLE ENGINE EQUIPPED WITH GASOLINE AND LIQUEFIED OIL SUPPLY GAS SYSTEMS","authors":"И. В. Грицук, Д. С. Погорлецкий, Р. В. Симоненко, И. В. Худяков","doi":"10.20998/0419-8719.2020.1.05","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.1.05","url":null,"abstract":"Presented are the results of experimental studies of the heat treatment system of a vehicle gasoline engine, which is heated to operating temperatures on gasoline, and subsequent operation on liquefied oil gas. The main element of the heat preparation system is a phase transition heat accumulator. The research task to be solved is to minimize the time of heat preparation of the vehicle gasoline engine and, therefore, to reduce gasoline consumption in warm-up modes. To ensure remote registration of vehicle parameters and control of heat preparation processes, an information system for monitoring and control of heat preparation processes of a vehicle engine with a heat accumulator was developed and used. During the research, a gasoline-powered vehicle was used with additionally installed gas equipment. The use of a phase transition heat accumulator in the heat preparation system of a vehicle gasoline engine (operating both on gasoline and on liquefied gas fuel) has confirmed a significant improvement in fuel economy. For this, the engine heat preparation should be carried out immediately before starting from an additional heat source to the coolant temperature in the cooling system up to 50° C. The research results have confirmed the capabilities of the system under study to significantly reduce the time of heat preparation and reduce the vehicle gasoline engine fuel consumption running on gasoline and liquefied gas fuel under operating conditions. The phase transition heat accumulator in the heat preparation system of a vehicle gasoline engine (operating both on gasoline and on liquefied gas fuel) reduces the time required to heat the coolant to 50° C and gas consumption to ensure the transition to gas fuel when using various modes (options) of heat preparation in operating conditions.","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79087852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.2.13
Л. В. Капітанова, О. В. Лось, Віктор Іванович Рябков
{"title":"METHOD OF INFLUENCE OF REPLACEMENT OF MAIN ENGINES ON THE MASS AND TAKE-OFF AND LANDING CHARACTERISTICS OF AIRCRAFT MODIFICATIONS","authors":"Л. В. Капітанова, О. В. Лось, Віктор Іванович Рябков","doi":"10.20998/0419-8719.2020.2.13","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.2.13","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83273255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.2.06
Е. В. Белоусов, И. В. Грицук, Р. А. Варбанец, А. Е. Самарин
{"title":"IMPLEMENTATION OF HIGHLY EFFICIENT THERMODYNAMIC CYCLES IN TWO-STROKE SOLID-FUEL PISTON INTERNAL COMBUSTION ENGINES OF SHIP PURPOSE","authors":"Е. В. Белоусов, И. В. Грицук, Р. А. Варбанец, А. Е. Самарин","doi":"10.20998/0419-8719.2020.2.06","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.2.06","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87083584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-31DOI: 10.20998/0419-8719.2020.2.08
А. А. Лисовал
{"title":"RESULTS OF RESEARCH FOR THE USE OF THE BIOGAS AND METHANE MIXTURE IN A GAS POWER PLANT ENGINE","authors":"А. А. Лисовал","doi":"10.20998/0419-8719.2020.2.08","DOIUrl":"https://doi.org/10.20998/0419-8719.2020.2.08","url":null,"abstract":"","PeriodicalId":35991,"journal":{"name":"Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86494424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}