首页 > 最新文献

Letters in High Energy Physics最新文献

英文 中文
Joule-Thomson Expansion of Reissner-Nordstrom AdS Black Holes in $f(R)$ gravity 重力下Reissner-Nordstrom AdS黑洞的焦耳-汤姆逊膨胀
Q2 Physics and Astronomy Pub Date : 2018-04-16 DOI: 10.31526/LHEP.2.2018.02
M. Chabab, High Energy, H. E. Moumni, S. Iraoui, K. Masmar, S. Zhizeh
In this paper, we study Joule-Thomson expansion for charged AdS black holes in (f(R)) gravity. We obtain the inversiontemperatures as well as inversion curves, and investigate similarities and differences between van der Waals fluidsand charged AdS black holes in (f(R)) gravity for this expansion.In addition, we determine the position of the inversion point versus different values ofthe mass (M), the charge (Q) and the parameter (b) for such black hole. At this point, the Joule-Thomson coefficient (mu) vanishes, an import feature that we used to obtain the cooling-heating regions by scrutinizing the sign of the (mu) quantity.
本文研究了(f(R))重力下带电AdS黑洞的焦耳-汤姆逊膨胀。我们得到了反演温度和反演曲线,并研究了在(f(R))重力下范德瓦尔斯流体和带电AdS黑洞的异同。此外,我们还确定了反演点的位置与不同的质量(M)、电荷(Q)和参数(b)值之间的关系。在这一点上,焦耳-汤姆逊系数(mu)消失了,这是我们用来通过仔细检查(mu)量的符号来获得冷却-加热区域的一个重要特征。
{"title":"Joule-Thomson Expansion of Reissner-Nordstrom AdS Black Holes in $f(R)$ gravity","authors":"M. Chabab, High Energy, H. E. Moumni, S. Iraoui, K. Masmar, S. Zhizeh","doi":"10.31526/LHEP.2.2018.02","DOIUrl":"https://doi.org/10.31526/LHEP.2.2018.02","url":null,"abstract":"In this paper, we study Joule-Thomson expansion for charged AdS black holes in (f(R)) gravity. We obtain the inversiontemperatures as well as inversion curves, and investigate similarities and differences between van der Waals fluidsand charged AdS black holes in (f(R)) gravity for this expansion.In addition, we determine the position of the inversion point versus different values ofthe mass (M), the charge (Q) and the parameter (b) for such black hole. At this point, the Joule-Thomson coefficient (mu) vanishes, an import feature that we used to obtain the cooling-heating regions by scrutinizing the sign of the (mu) quantity.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47854395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Dark $SU(2)$ Antecedents of the $U(1)$ Higgs Model $U(1)$Higgs模型的Dark$SU(2)$Antecents
Q2 Physics and Astronomy Pub Date : 2018-04-02 DOI: 10.31526/LHEP.2.2018.03
E. Ma
The original spontaneously broken U(1) gauge model with one complex Higgs scalar field has been known in recent years as a possible prototype dark-matter model. Its antecedents in the context of SU(2) are discussed. Three specific examples are described, with one dubbed "quantum scotodynamics".
近年来,具有一个复杂希格斯标量场的原始自发破缺U(1)规范模型被认为是一个可能的暗物质原型模型。在SU(2)的上下文中讨论了它的前因。描述了三个具体的例子,其中一个被称为“量子暗动力学”。
{"title":"Dark $SU(2)$ Antecedents of the $U(1)$ Higgs Model","authors":"E. Ma","doi":"10.31526/LHEP.2.2018.03","DOIUrl":"https://doi.org/10.31526/LHEP.2.2018.03","url":null,"abstract":"The original spontaneously broken U(1) gauge model with one complex Higgs scalar field has been known in recent years as a possible prototype dark-matter model. Its antecedents in the context of SU(2) are discussed. Three specific examples are described, with one dubbed \"quantum scotodynamics\".","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46977251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Search for more sensitive observables to charged scalar in $B rightarrow D^{(*)}taunu_{tau}$ decays. 在$B rightarrow D^{(*)}taunu_{tau}$衰变中寻找对带电标量更敏感的可观测物。
Q2 Physics and Astronomy Pub Date : 2017-03-31 DOI: 10.31526/LHEP.2.2019.108
L. Dhargyal
It has been known that $B rightarrow D^{(*)} tau nu_{tau}$ are good observables in the search for the charged Higgs. The recent obervation of deviation from standard-model by almost 4$sigma$ by Babar, Belle and LHCb in $R(D^{(*)})$ revived the interest in possible signal of presence of charged Higgs in these modes. But such a large deviation in the rates, where standard-model has tree level contribution, coming from a charged Higgs alone is highly unlikely. However these decay modes are good probes to search for small charged Higgs signal if we can construct sensitive observables in these modes. In this work we would like to propose four new observables which shows much more sensitivity to the presence of charged Higgs than the usual observables such as $A_{lambda}^{D^{(*)}}$ and $A_{theta}^{D^{(*)}}$. These four observable are (1) $frac{1}{A_{lambda}^{D}}$, (2) $Y_{1}(q^{2}) = frac{A^{D}_{theta}}{A^{D}_{lambda}}$, (3) $Y_{2}(q^{2}) = frac{dGamma(B rightarrow D^{*}taunu_{tau})}{dGamma_{D}(lambda_{tau}=+1/2) - dGamma_{D}(lambda_{tau}=-1/2)}$ and (4) $Y_{3}(q^{2}) = (frac{q^{2}}{m^{2}_{tau}})(A^{D}_{lambda} + 1)frac{1}{A^{D}_{lambda}}$.
众所周知,$B rightarrow D^{(*)} tau nu_{tau}$是寻找带电希格斯粒子的良好观测对象。最近Babar、Belle和LHCb在$R(D^{(*)})$观测到的与标准模型偏差近4 $sigma$,重新唤起了人们对这些模式中带电希格斯粒子存在的可能信号的兴趣。但是如此大的速率偏差,标准模型有树水平的贡献,仅仅来自带电的希格斯粒子是极不可能的。然而,如果我们能够在这些模式中构建敏感的可观测物,这些衰变模式是寻找小荷电希格斯信号的良好探针。在这项工作中,我们想提出四个新的观测值,它们对带电希格斯粒子的存在比通常的观测值(如$A_{lambda}^{D^{(*)}}$和$A_{theta}^{D^{(*)}}$)更敏感。这四个可观测值是(1)$frac{1}{A_{lambda}^{D}}$, (2) $Y_{1}(q^{2}) = frac{A^{D}_{theta}}{A^{D}_{lambda}}$, (3) $Y_{2}(q^{2}) = frac{dGamma(B rightarrow D^{*}taunu_{tau})}{dGamma_{D}(lambda_{tau}=+1/2) - dGamma_{D}(lambda_{tau}=-1/2)}$和(4)$Y_{3}(q^{2}) = (frac{q^{2}}{m^{2}_{tau}})(A^{D}_{lambda} + 1)frac{1}{A^{D}_{lambda}}$。
{"title":"Search for more sensitive observables to charged scalar in $B rightarrow D^{(*)}taunu_{tau}$ decays.","authors":"L. Dhargyal","doi":"10.31526/LHEP.2.2019.108","DOIUrl":"https://doi.org/10.31526/LHEP.2.2019.108","url":null,"abstract":"It has been known that $B rightarrow D^{(*)} tau nu_{tau}$ are good observables in the search for the charged Higgs. The recent obervation of deviation from standard-model by almost 4$sigma$ by Babar, Belle and LHCb in $R(D^{(*)})$ revived the interest in possible signal of presence of charged Higgs in these modes. But such a large deviation in the rates, where standard-model has tree level contribution, coming from a charged Higgs alone is highly unlikely. However these decay modes are good probes to search for small charged Higgs signal if we can construct sensitive observables in these modes. In this work we would like to propose four new observables which shows much more sensitivity to the presence of charged Higgs than the usual observables such as $A_{lambda}^{D^{(*)}}$ and $A_{theta}^{D^{(*)}}$. These four observable are (1) $frac{1}{A_{lambda}^{D}}$, (2) $Y_{1}(q^{2}) = frac{A^{D}_{theta}}{A^{D}_{lambda}}$, (3) $Y_{2}(q^{2}) = frac{dGamma(B rightarrow D^{*}taunu_{tau})}{dGamma_{D}(lambda_{tau}=+1/2) - dGamma_{D}(lambda_{tau}=-1/2)}$ and (4) $Y_{3}(q^{2}) = (frac{q^{2}}{m^{2}_{tau}})(A^{D}_{lambda} + 1)frac{1}{A^{D}_{lambda}}$.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41699929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full angular spectrum analysis of tensor current contribution to $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$. 张量电流贡献的全角谱分析$A_{cp}(tau rightarrow K_{s} pi nu_{tau})$。
Q2 Physics and Astronomy Pub Date : 2016-05-02 DOI: 10.31526/LHEP.3.2018.03
L. Dhargyal
Babar collaboration has reported an intriguing opposite sign in the integrated decay rate asymmetry $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ than that of SM prediction from the known $K^{0}$ - $bar{K^{0}}$ mixing. Babar's result deviate from the SM prediction by about 2.7$sigma$. If the result stands with higher precision in the future experiments, the observed sign anomaly in the $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ can most likely come only from a NP. In this work we present a full angular spectrum analysis on the contribution to $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ coming from the tensorial term. Assuming the real part of the NP tensorial coupling is negligible compare to its imaginary part and with $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ and $Br(tau rightarrow K_{s} pi nu_{tau})$ as data points to fit the imaginary part of the NP coupling, we have been able to fit the result within 1$sigma$ of the experimental values.
Babar合作报告了一个有趣的综合衰变率不对称性$A_{cp}(tau rightarrow K_{s} pi nu_{tau})$,与已知的$K^{0}$ - $bar{K^{0}}$混合的SM预测相反。Babar的结果与SM预测偏差约2.7 $sigma$。如果该结果在未来的实验中具有更高的精度,则在$A_{cp}(tau rightarrow K_{s} pi nu_{tau})$中观察到的符号异常很可能仅来自NP。在这项工作中,我们提出了一个完整的角谱分析对$A_{cp}(tau rightarrow K_{s} pi nu_{tau})$的贡献来自张量项。假设NP张量耦合的实部与其虚部相比可以忽略不计,并且使用$A_{cp}(tau rightarrow K_{s} pi nu_{tau})$和$Br(tau rightarrow K_{s} pi nu_{tau})$作为数据点来拟合NP耦合的虚部,我们已经能够在实验值的1 $sigma$内拟合结果。
{"title":"Full angular spectrum analysis of tensor current contribution to $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$.","authors":"L. Dhargyal","doi":"10.31526/LHEP.3.2018.03","DOIUrl":"https://doi.org/10.31526/LHEP.3.2018.03","url":null,"abstract":"Babar collaboration has reported an intriguing opposite sign in the integrated decay rate asymmetry $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ than that of SM prediction from the known $K^{0}$ - $bar{K^{0}}$ mixing. Babar's result deviate from the SM prediction by about 2.7$sigma$. If the result stands with higher precision in the future experiments, the observed sign anomaly in the $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ can most likely come only from a NP. In this work we present a full angular spectrum analysis on the contribution to $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ coming from the tensorial term. Assuming the real part of the NP tensorial coupling is negligible compare to its imaginary part and with $A_{cp}(tau rightarrow K_{s} pi nu_{tau})$ and $Br(tau rightarrow K_{s} pi nu_{tau})$ as data points to fit the imaginary part of the NP coupling, we have been able to fit the result within 1$sigma$ of the experimental values.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69996545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Letters in High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1