Pub Date : 2023-06-01DOI: 10.1016/j.cdev.2023.203839
Johanna M.S. Streubel, Gislene Pereira
Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carries appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.
{"title":"Control of centrosome distal appendages assembly and disassembly","authors":"Johanna M.S. Streubel, Gislene Pereira","doi":"10.1016/j.cdev.2023.203839","DOIUrl":"10.1016/j.cdev.2023.203839","url":null,"abstract":"<div><p><span>Centrosomes are </span>microtubule organizing centers<span><span><span><span> involved in chromosome segregation, spindle orientation, </span>cell motility<span> and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two </span></span>centrioles<span> that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carries appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of </span></span>signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.</span></p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"174 ","pages":"Article 203839"},"PeriodicalIF":3.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9536690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.cdev.2023.203846
Thomas W. Holstein
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
{"title":"The Hydra stem cell system – Revisited","authors":"Thomas W. Holstein","doi":"10.1016/j.cdev.2023.203846","DOIUrl":"10.1016/j.cdev.2023.203846","url":null,"abstract":"<div><p>Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from <em>Hydra</em>, the genomes of all major clades of Cnidaria have been uncovered (e.g. <em>Aurelia</em>, <em>Clytia</em>, <em>Nematostella</em> and <em>Acropora</em>) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is <em>Hydra</em>, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the <em>Hydra</em> stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though <em>Hydra</em> is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that <em>Hydra</em> with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of <em>Hydra</em>.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"174 ","pages":"Article 203846"},"PeriodicalIF":3.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9542950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.cdev.2023.203841
Andromachi Karakatsani , María I. Álvarez-Vergara , Carmen Ruiz de Almodóvar
In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.
{"title":"The vasculature of neurogenic niches: Properties and function","authors":"Andromachi Karakatsani , María I. Álvarez-Vergara , Carmen Ruiz de Almodóvar","doi":"10.1016/j.cdev.2023.203841","DOIUrl":"10.1016/j.cdev.2023.203841","url":null,"abstract":"<div><p>In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"174 ","pages":"Article 203841"},"PeriodicalIF":3.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9544428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.1016/j.cdev.2023.203829
John J. Williamson
{"title":"An interview with Jeremy Carlton","authors":"John J. Williamson","doi":"10.1016/j.cdev.2023.203829","DOIUrl":"10.1016/j.cdev.2023.203829","url":null,"abstract":"","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"176 ","pages":"Article 203829"},"PeriodicalIF":3.9,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290123000050/pdfft?md5=eaf6f3b21bbbce5daf58e41249289ca7&pid=1-s2.0-S2667290123000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9081832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Mexican tetra (Astyanax mexicanus) is one of the fresh water teleost fish models in evolutionary developmental biology. The existence of two morphs: eyed, pigmented surface fish and blind depigmented cavefish from multiple cave populations, provides a unique system to study adaptive radiation. Compared to the adult surface fish, cavefish have large oral jaws with an increased number of structurally-complex teeth. Early tooth development has not been studied in detail in cavefish populations. In this study, bone-stained growth series and vital dye staining was used to trace the development and replacement of dentitions in Pachón cavefish. Our results show that first tooth eruption was delayed in cavefish compared to the surface fish. In particular, the first tooth eruption cycle persisted until 35 days post fertilization (dpf). Unlike surface fish, there are multicuspid teeth in cavefish first generation dentition. In addition to the teeth in the marginal oral jaw bones, Pachón cavefish have teeth in the ectopterygoid bone of the palatine roof. Next, we characterised the expression of ectodysplasin signalling pathway genes in tooth-forming regions of surface and cavefish. Interestingly, higher expression of Eda and Edar was found in cavefish compared to the surface fish. The altered ectodysplasin expression needs further investigation to confirm the different molecular mechanisms for tooth development in the oral and pharyngeal regions of surface fish and cavefish.
{"title":"Divergent tooth development mechanisms of Mexican tetra fish (Astyanax mexicanus) of Pachón cave origin","authors":"Devi Atukorallaya, Vikram Bhatia, Jessica Gonzales","doi":"10.1016/j.cdev.2022.203823","DOIUrl":"10.1016/j.cdev.2022.203823","url":null,"abstract":"<div><p>The Mexican tetra (<em>Astyanax mexicanus</em>) is one of the fresh water teleost fish models in evolutionary developmental biology. The existence of two morphs: eyed, pigmented surface fish and blind depigmented cavefish from multiple cave populations, provides a unique system to study adaptive radiation. Compared to the adult surface fish, cavefish have large oral jaws with an increased number of structurally-complex teeth. Early tooth development has not been studied in detail in cavefish populations. In this study, bone-stained growth series and vital dye staining was used to trace the development and replacement of dentitions in Pachón cavefish. Our results show that first tooth eruption was delayed in cavefish compared to the surface fish. In particular, the first tooth eruption cycle persisted until 35 days post fertilization (dpf). Unlike surface fish, there are multicuspid teeth in cavefish first generation dentition. In addition to the teeth in the marginal oral jaw bones, Pachón cavefish have teeth in the ectopterygoid bone of the palatine roof. Next, we characterised the expression of ectodysplasin signalling pathway genes in tooth-forming regions of surface and cavefish. Interestingly, higher expression of Eda and Edar was found in cavefish compared to the surface fish. The altered ectodysplasin expression needs further investigation to confirm the different molecular mechanisms for tooth development in the oral and pharyngeal regions of surface fish and cavefish.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"173 ","pages":"Article 203823"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9152393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We previously reported that knocking down GPD2 (glycerol-3-phosphate dehydrogenase 2), responsible for the glycerol-phosphate shuttle, causes human hepatocarcinoma-derived HuH-7 cells, lowering the cancer stemness. After examining whether GPD2 expression in the other cell lines could affect their cancer stemness, this study showed that human neuroblastoma-derived SH-SY5Y cells also lower the ability of sphere formation by knocking down GPD2. This suggests that GPD2 relates to the common mechanism for maintaining cancer stem cells, as in the cases like SH-SY5Y and HuH-7 cells. In addition, knocking down GPD2 in SH-SY5Y cells showed a morphological change and increasing tendency of neuronal marker genes, including GAP43, NeuN, and TUBB3, indicating that GPD2 may contribute to not only cancer but also neural stem cell maintenance. After all, GPD2 may play a role in maintaining cancer and neural stemness, although further rigorous studies are essential to conclude this. It is expected that GPD2 will be a novel target gene for cancer therapy, stem cell research, and development.
{"title":"GPD2: The relationship with cancer and neural stemness","authors":"Maimaiti Mikeli , Makoto Fujikawa , Tsutomu Tanabe","doi":"10.1016/j.cdev.2022.203824","DOIUrl":"10.1016/j.cdev.2022.203824","url":null,"abstract":"<div><p>We previously reported that knocking down GPD2 (glycerol-3-phosphate dehydrogenase 2), responsible for the glycerol-phosphate shuttle, causes human hepatocarcinoma-derived HuH-7 cells, lowering the cancer stemness. After examining whether GPD2 expression in the other cell lines could affect their cancer stemness, this study showed that human neuroblastoma-derived SH-SY5Y cells also lower the ability of sphere formation by knocking down GPD2. This suggests that GPD2 relates to the common mechanism for maintaining cancer stem cells, as in the cases like SH-SY5Y and HuH-7 cells. In addition, knocking down GPD2 in SH-SY5Y cells showed a morphological change and increasing tendency of neuronal marker genes, including GAP43, NeuN, and TUBB3, indicating that GPD2 may contribute to not only cancer but also neural stem cell maintenance. After all, GPD2 may play a role in maintaining cancer and neural stemness, although further rigorous studies are essential to conclude this. It is expected that GPD2 will be a novel target gene for cancer therapy, stem cell research, and development.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"173 ","pages":"Article 203824"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9158182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.cdev.2023.203826
Behnaz Mirza Ahmadi , Afshin Noori , Mohammad Kazemi Ashtiani , Sarah Rajabi , Mahmood Talkhabi
Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.
{"title":"5-Azacytidine incorporated skeletal muscle-derived hydrogel promotes rat skeletal muscle regeneration","authors":"Behnaz Mirza Ahmadi , Afshin Noori , Mohammad Kazemi Ashtiani , Sarah Rajabi , Mahmood Talkhabi","doi":"10.1016/j.cdev.2023.203826","DOIUrl":"10.1016/j.cdev.2023.203826","url":null,"abstract":"<div><p>Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) <em>in vitro</em> and muscle regeneration <em>in vivo</em>. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"173 ","pages":"Article 203826"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9208355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.cdev.2022.203822
Nastaran Mues, Kenneth Hammer, Judith Leatherman
Regulation of the rate of stem cell division is one of the key determinants of the abundance of differentiating progeny in stem cell-supported tissues, and mis-regulation can lead to tumorigenesis. The well-studied Drosophila testis niche is an excellent model system to study the regulation of stem cell division in vivo. This niche supports two stem cell populations—the germline stem cells (GSCs) and cyst stem cells (CySCs), which cluster around a group of cells called the hub. The differentiating cells of these two stem cell populations cooperate together to produce sperm. Signal transduction initiated by the epidermal growth factor receptor (Egfr) is a key regulatory pathway in the cyst lineage, and much of the study of this stem cell population has centered around understanding the complexities of the requirements for Egfr signaling. We examined another receptor tyrosine kinase, Pvr, the sole Drosophila PDGF/VEGF homolog, and found that it accumulates in the cyst lineage cells of the testis, while its ligand Pvf1 accumulates in the hub. Pvr inhibition caused a reduction in both CySC numbers and the proportion of CySCs in S phase, similar to Egfr inhibition. However, testes with Pvr inhibition exhibited a low-penetrance non-autonomous germ cell differentiation defect distinct from that observed with Egfr inhibition. Cyst cells with constitutively activated Pvr failed to support germ cell differentiation, as observed with constitutively activated Egfr. However, constitutively activated Pvr promoted tumorous accumulation of cyst cells outside of the niche, a phenotype not observed with constitutively activated Egfr. Thus, Egfr and Pvr have some receptor-specific functions and some shared functions in the cyst lineage cells of the testis.
{"title":"Pvr regulates cyst stem cell division in the Drosophila testis niche, and has functions distinct from Egfr","authors":"Nastaran Mues, Kenneth Hammer, Judith Leatherman","doi":"10.1016/j.cdev.2022.203822","DOIUrl":"10.1016/j.cdev.2022.203822","url":null,"abstract":"<div><p>Regulation of the rate of stem cell division is one of the key determinants of the abundance of differentiating progeny in stem cell-supported tissues, and mis-regulation can lead to tumorigenesis. The well-studied <em>Drosophila</em> testis niche is an excellent model system to study the regulation of stem cell division in vivo. This niche supports two stem cell populations—the germline stem cells (GSCs) and cyst stem cells (CySCs), which cluster around a group of cells called the hub. The differentiating cells of these two stem cell populations cooperate together to produce sperm. Signal transduction initiated by the epidermal growth factor receptor (Egfr) is a key regulatory pathway in the cyst lineage, and much of the study of this stem cell population has centered around understanding the complexities of the requirements for Egfr signaling. We examined another receptor tyrosine kinase, Pvr, the sole <em>Drosophila</em> PDGF/VEGF homolog, and found that it accumulates in the cyst lineage cells of the testis, while its ligand Pvf1 accumulates in the hub. Pvr inhibition caused a reduction in both CySC numbers and the proportion of CySCs in S phase, similar to Egfr inhibition. However, testes with Pvr inhibition exhibited a low-penetrance non-autonomous germ cell differentiation defect distinct from that observed with Egfr inhibition. Cyst cells with constitutively activated Pvr failed to support germ cell differentiation, as observed with constitutively activated Egfr. However, constitutively activated Pvr promoted tumorous accumulation of cyst cells outside of the niche, a phenotype not observed with constitutively activated Egfr. Thus, Egfr and Pvr have some receptor-specific functions and some shared functions in the cyst lineage cells of the testis.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"173 ","pages":"Article 203822"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9162998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.cdev.2023.203828
John Williamson
{"title":"Celebrating Spemann-Mangold at 100: An interview with Eddy De Robertis","authors":"John Williamson","doi":"10.1016/j.cdev.2023.203828","DOIUrl":"10.1016/j.cdev.2023.203828","url":null,"abstract":"","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"173 ","pages":"Article 203828"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9081831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.cdev.2023.203825
Evan J. Curcio, Sharon R. Lubkin
The physical and geometric aspects of notochords are investigated using a model of finite-length notochords, with interior vacuolated cells arranged in two common packing configurations, and sheath modeled as homogeneous and thin. The key ratios governing packing patterns and eccentricity are number of cells per unit length λ and cell tension ratio Γ. By analyzing simulations that vary Γ and total number of cells N, we find that eccentricity, λ, and internal pressure approach consistent asymptotic values away from the tapering ends, as N increases. The length of the tapering ends is quantified as a function of Γ and pattern. Formulas are derived for geometric ratios, pressure, and energy as functions of Γ and pattern. These observations on the relationship between mechanics, geometry, and pattern provide a framework for further work which may provide insight into the roles of mechanosensing and pressure-volume regulation in the notochord.
{"title":"Physical models of notochord cell packing reveal how tension ratios determine morphometry","authors":"Evan J. Curcio, Sharon R. Lubkin","doi":"10.1016/j.cdev.2023.203825","DOIUrl":"10.1016/j.cdev.2023.203825","url":null,"abstract":"<div><p>The physical and geometric aspects of notochords are investigated using a model of finite-length notochords, with interior vacuolated cells arranged in two common packing configurations, and sheath modeled as homogeneous and thin. The key ratios governing packing patterns and eccentricity are number of cells per unit length <em>λ</em> and cell tension ratio <em>Γ</em>. By analyzing simulations that vary <em>Γ</em> and total number of cells <em>N</em>, we find that eccentricity, <em>λ</em>, and internal pressure approach consistent asymptotic values away from the tapering ends, as <em>N</em> increases. The length of the tapering ends is quantified as a function of <em>Γ</em> and pattern. Formulas are derived for geometric ratios, pressure, and energy as functions of <em>Γ</em> and pattern. These observations on the relationship between mechanics, geometry, and pattern provide a framework for further work which may provide insight into the roles of mechanosensing and pressure-volume regulation in the notochord.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"173 ","pages":"Article 203825"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9523284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}