首页 > 最新文献

Cell Stress最新文献

英文 中文
Mitochondrial dynamics links PINCH-1 signaling to proline metabolic reprogramming and tumor growth. 线粒体动力学将PINCH-1信号与脯氨酸代谢重编程和肿瘤生长联系起来。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-12-10 DOI: 10.15698/cst2021.02.241
Ling Guo, Chuanyue Wu

Proline metabolism is critical for cellular response to microenvironmental stress in living organisms across different kingdoms, ranging from bacteria, plants to animals. In bacteria and plants, proline is known to accrue in response to osmotic and other stresses. In higher organisms such as human, proline metabolism plays important roles in physiology as well as pathological processes including cancer. The importance of proline metabolism in physiology and diseases lies in the fact that the products of proline metabolism are intimately involved in essential cellular processes including protein synthesis, energy production and redox signaling. A surge of protein synthesis in fast proliferating cancer cells, for example, results in markedly increased demand for proline. Proline synthesis is frequently unable to meet the demand in fast proliferating cancer cells. The inadequacy of proline or "proline vulnerability" in cancer may provide an opportunity for therapeutic control of cancer progression. To this end, it is important to understand the signaling mechanism through which proline synthesis is regulated. In a recent study (Guo et al., Nat Commun 11(1):4913, doi: 10.1038/s41467-020-18753-6), we have identified PINCH-1, a component of cell-extracellular matrix (ECM) adhesions, as an important regulator of proline synthesis and cancer progression.

脯氨酸代谢是细胞对微环境应激反应的关键,在不同的生物王国中,从细菌、植物到动物。在细菌和植物中,脯氨酸是在对渗透和其他压力的反应中积累的。在人类等高等生物中,脯氨酸代谢在包括癌症在内的生理和病理过程中起着重要的作用。脯氨酸代谢在生理和疾病中的重要性在于,脯氨酸代谢的产物密切参与包括蛋白质合成、能量产生和氧化还原信号传导在内的基本细胞过程。例如,在快速增殖的癌细胞中,蛋白质合成的激增导致对脯氨酸的需求显著增加。脯氨酸的合成常常不能满足快速增殖癌细胞的需要。癌症中脯氨酸的不足或“脯氨酸易感性”可能为癌症进展的治疗控制提供了机会。为此,了解脯氨酸合成调控的信号机制是很重要的。在最近的一项研究中(Guo et al., Nat comm11 (1):4913, doi: 10.1038/s41467-020-18753-6),我们发现细胞-细胞外基质(ECM)粘附的一个成分PINCH-1是脯氨酸合成和癌症进展的重要调节因子。
{"title":"Mitochondrial dynamics links PINCH-1 signaling to proline metabolic reprogramming and tumor growth.","authors":"Ling Guo,&nbsp;Chuanyue Wu","doi":"10.15698/cst2021.02.241","DOIUrl":"https://doi.org/10.15698/cst2021.02.241","url":null,"abstract":"<p><p>Proline metabolism is critical for cellular response to microenvironmental stress in living organisms across different kingdoms, ranging from bacteria, plants to animals. In bacteria and plants, proline is known to accrue in response to osmotic and other stresses. In higher organisms such as human, proline metabolism plays important roles in physiology as well as pathological processes including cancer. The importance of proline metabolism in physiology and diseases lies in the fact that the products of proline metabolism are intimately involved in essential cellular processes including protein synthesis, energy production and redox signaling. A surge of protein synthesis in fast proliferating cancer cells, for example, results in markedly increased demand for proline. Proline synthesis is frequently unable to meet the demand in fast proliferating cancer cells. The inadequacy of proline or \"proline vulnerability\" in cancer may provide an opportunity for therapeutic control of cancer progression. To this end, it is important to understand the signaling mechanism through which proline synthesis is regulated. In a recent study (Guo <i>et al.</i>, Nat Commun 11(1):4913, doi: 10.1038/s41467-020-18753-6), we have identified PINCH-1, a component of cell-extracellular matrix (ECM) adhesions, as an important regulator of proline synthesis and cancer progression.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 2","pages":"23-25"},"PeriodicalIF":6.4,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25342853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
To promote or inhibit glioma progression, that is the question for IL-33. 促进或抑制胶质瘤的进展,这是IL-33的问题。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-12-03 DOI: 10.15698/cst2021.01.240
Stephen M Robbins, Donna L Senger

IL-33, a member of the IL-1 cytokine family has been shown to play a dual role within the body. First IL-33, similar to other IL-1 family members, is a secreted cytokine that binds to the cell surface receptor ST2 to induce a number of cell signaling pathways. Second, IL-33 enters the nucleus where it binds chromatin and directs transcriptional control of an array of growth factors and cytokines. Consistent with its complex cellular regulation, IL-33 mediates an array of biological functions by acting on a wide range of innate and adaptive immune cells. Recently, we found that IL-33 is expressed in a large number of human glioma patient specimens where its expression within the tumor correlates with the increased presence of Iba+ cells that include both resident microglia and recruited monocyte and macrophages. Strikingly, glioma derived expression of IL-33 correlates with a dramatic decrease in overall survival of tumor-bearing animals and thus supports its role as an influential factor in gliomagenesis. Notably however, when the nuclear localization function of IL-33 is crippled, the tumor microenvironment is programmed to be anti-tumorigenic and results in prolonged overall survival suggesting that when educated appropriately this could represent a novel therapeutic strategy for glioma (De Boeck et al. (2020), Nat Commun, doi: 10.1038/s41467-020-18569-4).

IL-33是IL-1细胞因子家族的一员,已被证明在体内发挥双重作用。首先,IL-33与其他IL-1家族成员相似,是一种分泌性细胞因子,与细胞表面受体ST2结合,诱导多种细胞信号通路。其次,IL-33进入细胞核,与染色质结合,指导一系列生长因子和细胞因子的转录控制。与其复杂的细胞调控一致,IL-33通过作用于广泛的先天和适应性免疫细胞介导一系列生物学功能。最近,我们发现IL-33在大量人类胶质瘤患者标本中表达,其在肿瘤内的表达与Iba+细胞(包括常驻小胶质细胞和募集的单核细胞和巨噬细胞)的增加相关。引人注目的是,胶质瘤源性IL-33的表达与荷瘤动物总存活率的急剧下降相关,因此支持其作为胶质瘤形成的一个影响因素的作用。然而,值得注意的是,当IL-33的核定位功能被破坏时,肿瘤微环境被编程为抗致瘤性,并导致延长总生存期,这表明,如果教育得当,这可能代表一种新的治疗胶质瘤的策略(De Boeck等人(2020),Nat common, doi: 10.1038/s41467-020-18569-4)。
{"title":"To promote or inhibit glioma progression, that is the question for IL-33.","authors":"Stephen M Robbins,&nbsp;Donna L Senger","doi":"10.15698/cst2021.01.240","DOIUrl":"https://doi.org/10.15698/cst2021.01.240","url":null,"abstract":"<p><p>IL-33, a member of the IL-1 cytokine family has been shown to play a dual role within the body. First IL-33, similar to other IL-1 family members, is a secreted cytokine that binds to the cell surface receptor ST2 to induce a number of cell signaling pathways. Second, IL-33 enters the nucleus where it binds chromatin and directs transcriptional control of an array of growth factors and cytokines. Consistent with its complex cellular regulation, IL-33 mediates an array of biological functions by acting on a wide range of innate and adaptive immune cells. Recently, we found that IL-33 is expressed in a large number of human glioma patient specimens where its expression within the tumor correlates with the increased presence of Iba+ cells that include both resident microglia and recruited monocyte and macrophages. Strikingly, glioma derived expression of IL-33 correlates with a dramatic decrease in overall survival of tumor-bearing animals and thus supports its role as an influential factor in gliomagenesis. Notably however, when the nuclear localization function of IL-33 is crippled, the tumor microenvironment is programmed to be anti-tumorigenic and results in prolonged overall survival suggesting that when educated appropriately this could represent a novel therapeutic strategy for glioma (De Boeck <i>et al.</i> (2020), Nat Commun, doi: 10.1038/s41467-020-18569-4).</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 1","pages":"19-22"},"PeriodicalIF":6.4,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38821303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMPK maintains TCA cycle through sequential phosphorylation of PDHA to promote tumor metastasis. AMPK通过顺序磷酸化PDHA维持TCA循环,促进肿瘤转移。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-11-25 DOI: 10.15698/cst2020.12.238
Zhen Cai, Danni Peng, Hui-Kuan Lin

Cancer represents the leading public health problem throughout the world. Globally, about one out of six deaths is related to cancer, which is largely due to the metastatic lesions. However, there are no effective strategies for targeting cancer metastasis. Identification of the key druggable targets maintaining metastasis is crucial for cancer treatment. In our recent study (Cai et al. (2020), Mol Cell, doi: 10.1016/j.molcel.2020.09.018), we found that activity of AMPK was enriched in metastatic tumors compared to primary tumors. Depletion of AMPK rendered cancer cells more sensitive to metabolic and oxidative stress, leading to the impairment of breast cancer lung metastasis. Activation of AMPK rewired cancer metabolism towards TCA cycle, which protects disseminated cancer cells from both metabolic and oxidative stress-induced cell death, and facilitates cancer metastasis. Further, AMPK critically maintained the activity of pyruvate dehydrogenase complex (PDH), the rate limiting enzyme involved in TCA cycle, thus favoring the pyruvate metabolism towards TCA cycle rather than converting it to lactate. Mechanistically, AMPK was shown to co-localize with PDHA, the catalytic subunit of PDH, in the mitochondrial matrix and directly triggered the phosphorylation of PDHA on Ser295 and Ser314. Hyper-phosphorylation of Ser295 and Ser314 of PDHA promotes lung metastasis through elevating activity of PDH. Of note, PDHA Ser314 phosphorylation abrogated the interaction between PDHA and PDHKs leading to the dephosphorylation on previously reported S293 site, whose phosphorylation serves as a negative signal for PDH activation, while S295 phosphorylation serves as an intrinsic catalytic site required for pyruvate metabolism. Our study presented the first evidence for the pro-metastatic property of the AMPK-PDH axis and advance our current understanding of how PDH is activated under physiological and pathological conditions.

癌症是全世界最主要的公共卫生问题。在全球范围内,大约六分之一的死亡与癌症有关,这主要是由于转移性病变。然而,目前尚无针对肿瘤转移的有效策略。确定维持转移的关键药物靶点对癌症治疗至关重要。在我们最近的研究中(Cai et al. (2020), Mol Cell, doi: 10.1016/j.molcel.2020.09.018),我们发现与原发肿瘤相比,AMPK在转移性肿瘤中的活性更丰富。AMPK的缺失使癌细胞对代谢和氧化应激更加敏感,导致乳腺癌肺转移受损。AMPK的激活将癌症代谢重新连接到TCA循环,从而保护弥散性癌细胞免受代谢和氧化应激诱导的细胞死亡,并促进癌症转移。此外,AMPK关键地维持了丙酮酸脱氢酶复合物(PDH)的活性,这是参与TCA循环的限速酶,从而有利于丙酮酸向TCA循环代谢,而不是将其转化为乳酸。在机制上,AMPK被证明与PDHA (PDH的催化亚基)在线粒体基质中共定位,并直接触发PDHA在Ser295和Ser314上的磷酸化。PDHA的Ser295和Ser314的超磷酸化通过提高PDH活性促进肺转移。值得注意的是,PDHA Ser314磷酸化消除了PDHA与pdhk之间的相互作用,导致先前报道的S293位点的去磷酸化,其磷酸化是PDH激活的负信号,而S295磷酸化是丙酮酸代谢所需的内在催化位点。我们的研究为AMPK-PDH轴的促转移性提供了第一个证据,并推进了我们目前对PDH在生理和病理条件下如何被激活的理解。
{"title":"AMPK maintains TCA cycle through sequential phosphorylation of PDHA to promote tumor metastasis.","authors":"Zhen Cai,&nbsp;Danni Peng,&nbsp;Hui-Kuan Lin","doi":"10.15698/cst2020.12.238","DOIUrl":"https://doi.org/10.15698/cst2020.12.238","url":null,"abstract":"<p><p>Cancer represents the leading public health problem throughout the world. Globally, about one out of six deaths is related to cancer, which is largely due to the metastatic lesions. However, there are no effective strategies for targeting cancer metastasis. Identification of the key druggable targets maintaining metastasis is crucial for cancer treatment. In our recent study (Cai et al. (2020), Mol Cell, doi: 10.1016/j.molcel.2020.09.018), we found that activity of AMPK was enriched in metastatic tumors compared to primary tumors. Depletion of AMPK rendered cancer cells more sensitive to metabolic and oxidative stress, leading to the impairment of breast cancer lung metastasis. Activation of AMPK rewired cancer metabolism towards TCA cycle, which protects disseminated cancer cells from both metabolic and oxidative stress-induced cell death, and facilitates cancer metastasis. Further, AMPK critically maintained the activity of pyruvate dehydrogenase complex (PDH), the rate limiting enzyme involved in TCA cycle, thus favoring the pyruvate metabolism towards TCA cycle rather than converting it to lactate. Mechanistically, AMPK was shown to co-localize with PDHA, the catalytic subunit of PDH, in the mitochondrial matrix and directly triggered the phosphorylation of PDHA on Ser295 and Ser314. Hyper-phosphorylation of Ser295 and Ser314 of PDHA promotes lung metastasis through elevating activity of PDH. Of note, PDHA Ser314 phosphorylation abrogated the interaction between PDHA and PDHKs leading to the dephosphorylation on previously reported S293 site, whose phosphorylation serves as a negative signal for PDH activation, while S295 phosphorylation serves as an intrinsic catalytic site required for pyruvate metabolism. Our study presented the first evidence for the pro-metastatic property of the AMPK-PDH axis and advance our current understanding of how PDH is activated under physiological and pathological conditions.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 12","pages":"273-277"},"PeriodicalIF":6.4,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38736467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A sympathetic gut connection drives the metabolic benefits of Roux-en-Y gastric bypass. 交感肠连接驱动Roux-en-Y胃旁路术的代谢益处。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-11-24 DOI: 10.15698/cst2020.12.236
Mohammed K Hankir

Surgery is regarded by many as the go-to treatment option for severe obesity; yet how physically altering the gastrointestinal tract produces such striking results on body weight and overall metabolic health is poorly understood. In a recent issue of Cell Reports Ye et al. (2020) compare mouse models of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), the two most commonly performed weight loss surgeries in the clinic today, to show that the former reconfiguring procedure selectively increases resting metabolic rate through splanchnic nerve-mediated browning of mesenteric white fat. More significantly, they demonstrate that this effect for RYGB is required for the maintained negative energy balance and improved glycemic control that it confers.

许多人认为手术是治疗严重肥胖的首选方法;然而,在身体上改变胃肠道是如何对体重和整体代谢健康产生如此显著的影响的,人们知之甚少。在最近一期的《细胞报告》(Cell Reports)中,Ye等人(2020)比较了Roux-en-Y胃旁路手术(RYGB)和袖胃切除术(SG)的小鼠模型,这是目前临床上最常用的两种减肥手术,结果表明,前者的重新配置手术通过内脏神经介导的肠系膜白色脂肪褐化选择性地增加静息代谢率。更重要的是,他们证明了RYGB的这种作用是维持负能量平衡和改善血糖控制所必需的。
{"title":"A sympathetic gut connection drives the metabolic benefits of Roux-en-Y gastric bypass.","authors":"Mohammed K Hankir","doi":"10.15698/cst2020.12.236","DOIUrl":"https://doi.org/10.15698/cst2020.12.236","url":null,"abstract":"<p><p>Surgery is regarded by many as the go-to treatment option for severe obesity; yet how physically altering the gastrointestinal tract produces such striking results on body weight and overall metabolic health is poorly understood. In a recent issue of <i>Cell Reports</i> Ye <i>et al.</i> (2020) compare mouse models of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), the two most commonly performed weight loss surgeries in the clinic today, to show that the former reconfiguring procedure selectively increases resting metabolic rate through splanchnic nerve-mediated browning of mesenteric white fat. More significantly, they demonstrate that this effect for RYGB is required for the maintained negative energy balance and improved glycemic control that it confers.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 12","pages":"265-269"},"PeriodicalIF":6.4,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38736465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
TLR4: the fall guy in sepsis? TLR4:败血症的替罪羊?
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-11-09 DOI: 10.15698/cst2020.12.237
Joseph Menassa, Christina Nedeva, Corey Pollock, Hamsa Puthalakath

Sepsis and its impact on human health can be traced back to 1000 BC and continues to be a major health burden today. It causes about 11 million deaths world-wide of which, more than a third are due to neonatal sepsis. There is no effective treatment other than fluid resuscitation therapy and antibiotic treatment that leave patients immunosuppressed and vulnerable to nosocomial infections. Added to that, ageing population and the emergence of antibiotic resistant bacteria pose new challenges. Most of the deleterious effects of sepsis are due to the host response to the systemic infection. In the initial phase of infection, hyper activation of the immune system leads to cytokine storm, which could lead to organ failure and this accounts for about 15% of overall deaths. However, the subsequent immune paralysis phase (mostly attributed to apoptotic death of immune cells) accounts for about 85% of all deaths. Past clinical trials (more than 100 in the last 30 years) all targeted the inflammatory phase with little success, predictably, for inflammation is a necessary process to fight infection. In order to identify the regulators of immune cell death during sepsis, we carried out an unbiased, whole genome CRISPR screening in mice and identified Trigger Receptor Expressed in Myeloid-like 4 (Treml4) as the receptor that controls both the inflammatory phase and the immune suppression phase in sepsis (Nedeva et al. (2020) Nature Immunol, doi: 10.1038/s41590-020-0789-z). Characterising the Treml4 gene knockout mice revealed new insights into the relative roles of TLR4 and TREML4 in inducing the inflammatory cytokine storm during sepsis.

败血症及其对人类健康的影响可追溯到公元前1000年,至今仍是一个主要的健康负担。它在全世界造成约1100万人死亡,其中三分之一以上是由于新生儿败血症。除了液体复苏疗法和抗生素治疗之外,没有其他有效的治疗方法,这使得患者免疫抑制,容易受到医院感染。此外,人口老龄化和抗生素耐药细菌的出现也构成了新的挑战。大多数败血症的有害影响是由于宿主对全身感染的反应。在感染的初始阶段,免疫系统的过度激活导致细胞因子风暴,这可能导致器官衰竭,这占总死亡人数的15%左右。然而,随后的免疫麻痹阶段(主要归因于免疫细胞凋亡)约占所有死亡的85%。过去的临床试验(在过去的30年里超过100次)都是针对炎症阶段的,但几乎没有成功,因为炎症是对抗感染的必要过程。为了确定脓毒症期间免疫细胞死亡的调节因子,我们在小鼠中进行了无偏的全基因组CRISPR筛选,并鉴定出髓样细胞4表达的触发受体(trem14)是脓毒症中控制炎症期和免疫抑制期的受体(Nedeva et al. (2020) Nature Immunol, doi: 10.1038/s41590-020-0789-z)。Treml4基因敲除小鼠的特征揭示了TLR4和Treml4在脓毒症期间诱导炎症细胞因子风暴中的相对作用。
{"title":"TLR4: the fall guy in sepsis?","authors":"Joseph Menassa,&nbsp;Christina Nedeva,&nbsp;Corey Pollock,&nbsp;Hamsa Puthalakath","doi":"10.15698/cst2020.12.237","DOIUrl":"https://doi.org/10.15698/cst2020.12.237","url":null,"abstract":"<p><p>Sepsis and its impact on human health can be traced back to 1000 BC and continues to be a major health burden today. It causes about 11 million deaths world-wide of which, more than a third are due to neonatal sepsis. There is no effective treatment other than fluid resuscitation therapy and antibiotic treatment that leave patients immunosuppressed and vulnerable to nosocomial infections. Added to that, ageing population and the emergence of antibiotic resistant bacteria pose new challenges. Most of the deleterious effects of sepsis are due to the host response to the systemic infection. In the initial phase of infection, hyper activation of the immune system leads to cytokine storm, which could lead to organ failure and this accounts for about 15% of overall deaths. However, the subsequent immune paralysis phase (mostly attributed to apoptotic death of immune cells) accounts for about 85% of all deaths. Past clinical trials (more than 100 in the last 30 years) all targeted the inflammatory phase with little success, predictably, for inflammation is a necessary process to fight infection. In order to identify the regulators of immune cell death during sepsis, we carried out an unbiased, whole genome CRISPR screening in mice and identified Trigger Receptor Expressed in Myeloid-like 4 (Treml4) as the receptor that controls both the inflammatory phase and the immune suppression phase in sepsis (Nedeva <i>et al.</i> (2020) Nature Immunol, doi: 10.1038/s41590-020-0789-z). Characterising the <i>Treml4</i> gene knockout mice revealed new insights into the relative roles of TLR4 and TREML4 in inducing the inflammatory cytokine storm during sepsis.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 12","pages":"270-272"},"PeriodicalIF":6.4,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38736466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A mutant p53/Hif1α/miR-30d axis reprograms the secretory pathway promoting the release of a prometastatic secretome. 突变的p53/Hif1α/miR-30d轴重编程分泌途径,促进原转移性分泌组的释放。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-10-05 DOI: 10.15698/cst2020.11.235
Valeria Capaci, Fiamma Mantovani, Giannino Del Sal

TP53 missense mutations are frequent driver events during tumorigenesis. The majority of TP53 mutations are missense and occur within the DNA binding domain of p53, leading to expression of mutant p53 (mut-p53) proteins that not only lose the tumor suppressive functions of the wild-type (wt-p53) form, but can also acquire novel oncogenic features fostering tumor growth, metastasis and chemoresistance. Mut-p53 affects fundamental cellular pathways and functions through different mechanisms, a major one being the alteration of gene expression. In our recent work (Capaci et al., 2020, Nat Commun) we found that mut-p53, via miR-30d, modifies structure and function of the Golgi apparatus (GA) and induces increased rate of trafficking. This culminates in the release of a pro-malignant secretome, which is capable of remodeling the tumor microenvironment (TME), to increase stiffness of the extracellular matrix (ECM), favouring metastatic colonization, as shown by cell-based assays and experiments of metastatic niche preconditioning in mouse xenograft models. This study provides new insights into the mechanisms by which mut-p53, through induction of non-coding RNAs, can exert pro-tumorigenic functions in a non-cell-autonomous fashion, and highlights potential non-invasive biomarkers and therapeutic targets to treat tumors harboring mut-p53 (Figure 1).

TP53错义突变是肿瘤发生过程中常见的驱动事件。大多数TP53突变是错义的,发生在p53的DNA结合域内,导致突变型p53 (mutt -p53)蛋白的表达,不仅失去野生型(wt-p53)的肿瘤抑制功能,而且还可以获得新的致癌特征,促进肿瘤生长、转移和化疗耐药。mut53通过不同的机制影响细胞的基本途径和功能,其中最主要的是基因表达的改变。在我们最近的工作(Capaci et al., 2020, Nat comm)中,我们发现mut53通过miR-30d修饰高尔基体(GA)的结构和功能,并诱导运输速率增加。这最终导致了一种促恶性分泌组的释放,这种分泌组能够重塑肿瘤微环境(TME),从而增加细胞外基质(ECM)的硬度,有利于转移性定植,这一点在小鼠异种移植模型中基于细胞的检测和转移性生态位预处理实验中得到了证实。这项研究为mutp53通过诱导非编码rna以非细胞自主方式发挥促肿瘤功能的机制提供了新的见解,并强调了潜在的非侵入性生物标志物和治疗靶点,以治疗含有mutp53的肿瘤(图1)。
{"title":"A mutant p53/Hif1α/miR-30d axis reprograms the secretory pathway promoting the release of a prometastatic secretome.","authors":"Valeria Capaci,&nbsp;Fiamma Mantovani,&nbsp;Giannino Del Sal","doi":"10.15698/cst2020.11.235","DOIUrl":"https://doi.org/10.15698/cst2020.11.235","url":null,"abstract":"<p><p><i>TP53</i> missense mutations are frequent driver events during tumorigenesis. The majority of <i>TP53</i> mutations are missense and occur within the DNA binding domain of p53, leading to expression of mutant p53 (mut-p53) proteins that not only lose the tumor suppressive functions of the wild-type (wt-p53) form, but can also acquire novel oncogenic features fostering tumor growth, metastasis and chemoresistance. Mut-p53 affects fundamental cellular pathways and functions through different mechanisms, a major one being the alteration of gene expression. In our recent work (Capaci <i>et al.</i>, 2020, Nat Commun) we found that mut-p53, via miR-30d, modifies structure and function of the Golgi apparatus (GA) and induces increased rate of trafficking. This culminates in the release of a pro-malignant secretome, which is capable of remodeling the tumor microenvironment (TME), to increase stiffness of the extracellular matrix (ECM), favouring metastatic colonization, as shown by cell-based assays and experiments of metastatic niche preconditioning in mouse xenograft models. This study provides new insights into the mechanisms by which mut-p53, through induction of non-coding RNAs, can exert pro-tumorigenic functions in a non-cell-autonomous fashion, and highlights potential non-invasive biomarkers and therapeutic targets to treat tumors harboring mut-p53 (Figure 1).</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 11","pages":"261-264"},"PeriodicalIF":6.4,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38569855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Targeting the TGFβ pathway in uterine carcinosarcoma. 靶向子宫癌肉瘤中TGFβ通路。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-08-25 DOI: 10.15698/cst2020.11.234
Shailendra Kumar Dhar Dwivedi, Geeta Rao, Anindya Dey, Megan Buechel, Yushan Zhang, Min Zhang, Da Yang, Priyabrata Mukherjee, Resham Bhattacharya

Uterine carcinosarcoma (UCS) is a relatively infrequent, but extremely aggressive endometrial malignancy. Although surgery and chemotherapy have improved outcomes, overall survival (OS) remains dismal due to the lack of targeted therapy and biphasic (epithelial and mesenchymal) nature that renders the tumor aggressive and difficult to manage. Here we report a role of transforming growth factor-β (TGFβ) in maintaining epithelial to mesenchymal transition (EMT) phenotype and aggressiveness in UCS. Using a 3D-culture system, we evaluated the efficacy of the transforming growth factor-β receptor-I (TGFβR1) kinase inhibitor Galunisertib (GLT), alone and in combination with standard chemotherapeutic drugs used for the management of UCS. We demonstrate that GLT by inhibiting canonical and non-canonical signaling emanating from transforming growth factor-β1 (TGFβ1) reduces cellular viability, invasion, clonal growth and differentiation. Interestingly, GLT sensitizes UCS cells to chemotherapy both in vitro and in in vivo preclinical tumor model. Hence, targeting TGFβ signaling, in combination with standard chemotherapy, may be exploited as an important strategy to manage the clinically challenging UCS.

子宫癌肉瘤(UCS)是一种相对罕见但极具侵袭性的子宫内膜恶性肿瘤。尽管手术和化疗已经改善了结果,但由于缺乏靶向治疗和双相(上皮和间充质)性质,使肿瘤具有侵袭性且难以控制,总生存率(OS)仍然令人沮丧。在此,我们报道了转化生长因子-β(TGFβ)在UCS中维持上皮-间质转化(EMT)表型和侵袭性的作用。使用3D培养系统,我们评估了转化生长因子-β受体-I(TGFβR1)激酶抑制剂Galuniserib(GLT)单独使用和与用于治疗UCS的标准化疗药物联合使用的疗效。我们证明,GLT通过抑制转化生长因子-β1(TGFβ1)发出的经典和非经典信号降低了细胞活力、侵袭、克隆生长和分化。有趣的是,GLT在体外和体内临床前肿瘤模型中都能使UCS细胞对化疗敏感。因此,靶向TGFβ信号传导,结合标准化疗,可以作为治疗临床挑战性UCS的重要策略。
{"title":"Targeting the TGFβ pathway in uterine carcinosarcoma.","authors":"Shailendra Kumar Dhar Dwivedi,&nbsp;Geeta Rao,&nbsp;Anindya Dey,&nbsp;Megan Buechel,&nbsp;Yushan Zhang,&nbsp;Min Zhang,&nbsp;Da Yang,&nbsp;Priyabrata Mukherjee,&nbsp;Resham Bhattacharya","doi":"10.15698/cst2020.11.234","DOIUrl":"10.15698/cst2020.11.234","url":null,"abstract":"<p><p>Uterine carcinosarcoma (UCS) is a relatively infrequent, but extremely aggressive endometrial malignancy. Although surgery and chemotherapy have improved outcomes, overall survival (OS) remains dismal due to the lack of targeted therapy and biphasic (epithelial and mesenchymal) nature that renders the tumor aggressive and difficult to manage. Here we report a role of transforming growth factor-β (TGFβ) in maintaining epithelial to mesenchymal transition (EMT) phenotype and aggressiveness in UCS. Using a 3D-culture system, we evaluated the efficacy of the transforming growth factor-β receptor-I (TGFβR1) kinase inhibitor Galunisertib (GLT), alone and in combination with standard chemotherapeutic drugs used for the management of UCS. We demonstrate that GLT by inhibiting canonical and non-canonical signaling emanating from transforming growth factor-β1 (TGFβ1) reduces cellular viability, invasion, clonal growth and differentiation. Interestingly, GLT sensitizes UCS cells to chemotherapy both <i>in vitro</i> and in <i>in vivo</i> preclinical tumor model. Hence, targeting TGFβ signaling, in combination with standard chemotherapy, may be exploited as an important strategy to manage the clinically challenging UCS.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 11","pages":"252-260"},"PeriodicalIF":6.4,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38569856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Endocytosis in the adaptation to cellular stress. 胞吞作用在适应细胞应激中的作用。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-08-18 DOI: 10.15698/cst2020.10.232
Tania López-Hernández, Volker Haucke, Tanja Maritzen

Cellular life is challenged by a multitude of stress conditions, triggered for example by alterations in osmolarity, oxygen or nutrient supply. Hence, cells have developed sophisticated stress responses to cope with these challenges. Some of these stress programs such as the heat shock response are understood in great detail, while other aspects remain largely elusive including potential stress-dependent adaptations of the plasma membrane proteome. The plasma membrane is not only the first point of encounter for many types of environmental stress, but given the diversity of receptor proteins and their associated molecules also represents the site at which many cellular signal cascades originate. Since these signaling pathways affect virtually all aspects of cellular life, changes in the plasma membrane proteome appear ideally suited to contribute to the cellular adaptation to stress. The most rapid means to alter the cell surface proteome in response to stress is by alterations in endocytosis. Changes in the overall endocytic flux or in the endocytic regulation of select proteins conceivably can help to counteract adverse environmental conditions. In this review we summarize recent data regarding stress-induced changes in endocytosis and discuss how these changes might contribute to the cellular adaptation to stress in different systems. Future studies will be needed to uncover the underlying mechanisms in detail and to arrive at a coherent picture.

细胞生命受到多种应激条件的挑战,例如由渗透压、氧气或营养供应的变化引发。因此,细胞已经发展出复杂的应激反应来应对这些挑战。其中一些应激程序,如热休克反应,已经得到了非常详细的了解,而其他方面,包括质膜蛋白质组潜在的应激依赖性适应,在很大程度上仍然是难以捉摸的。质膜不仅是许多类型的环境胁迫的第一个接触点,而且考虑到受体蛋白及其相关分子的多样性,质膜也代表了许多细胞信号级联产生的位点。由于这些信号通路几乎影响细胞生命的所有方面,质膜蛋白质组的变化似乎非常适合于促进细胞适应压力。改变细胞表面蛋白质组以应对压力的最快速方法是改变内吞作用。总的内吞通量或内吞调节选择蛋白质的变化可以帮助抵消不利的环境条件。在这篇综述中,我们总结了最近关于应激诱导的内吞作用变化的数据,并讨论了这些变化如何有助于不同系统的细胞适应应激。未来的研究将需要详细揭示潜在的机制,并得出一个连贯的画面。
{"title":"Endocytosis in the adaptation to cellular stress.","authors":"Tania López-Hernández, Volker Haucke, Tanja Maritzen","doi":"10.15698/cst2020.10.232","DOIUrl":"10.15698/cst2020.10.232","url":null,"abstract":"<p><p>Cellular life is challenged by a multitude of stress conditions, triggered for example by alterations in osmolarity, oxygen or nutrient supply. Hence, cells have developed sophisticated stress responses to cope with these challenges. Some of these stress programs such as the heat shock response are understood in great detail, while other aspects remain largely elusive including potential stress-dependent adaptations of the plasma membrane proteome. The plasma membrane is not only the first point of encounter for many types of environmental stress, but given the diversity of receptor proteins and their associated molecules also represents the site at which many cellular signal cascades originate. Since these signaling pathways affect virtually all aspects of cellular life, changes in the plasma membrane proteome appear ideally suited to contribute to the cellular adaptation to stress. The most rapid means to alter the cell surface proteome in response to stress is by alterations in endocytosis. Changes in the overall endocytic flux or in the endocytic regulation of select proteins conceivably can help to counteract adverse environmental conditions. In this review we summarize recent data regarding stress-induced changes in endocytosis and discuss how these changes might contribute to the cellular adaptation to stress in different systems. Future studies will be needed to uncover the underlying mechanisms in detail and to arrive at a coherent picture.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 10","pages":"230-247"},"PeriodicalIF":6.4,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38462553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Exocytotic fusion pore under stress. 压力下的外吞融合孔。
IF 4.1 Q2 CELL BIOLOGY Pub Date : 2020-08-10 DOI: 10.15698/cst2020.09.230
Helena Haque Chowdhury, Robert Zorec

Exocytosis is a universal process of eukaryotic cells, consisting of fusion between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel through which vesicle cargo exits into the extracellular space. In 1986, Rand and Parsegian proposed several stages to explain the nature of membrane fusion. Following stimulation, it starts with focused stress destabilization of membranes in contact, followed by the coalescence of two membrane surfaces. In the next fraction of a millisecond, restabilization of fused membranes is considered to occur to maintain the cell's integrity. This view predicted that once a fusion pore is formed, it must widen abruptly, irreversibly and fully, whereby the vesicle membrane completely integrates with and collapses into the plasma membrane (full fusion exocytosis). However, recent experimental evidence has revealed that once the fusion pore opens, it may also reversibly close (transient or kiss-and-run exocytosis). Here, we present a historical perspective on understanding the mechanisms that initiate the membrane merger and fusion pore formation. Next, post-fusion mechanisms that regulate fusion pore stability are considered, reflecting the state in which the forces of widening and constriction of fusion pores are balanced. Although the mechanisms generating these forces are unclear, they may involve lipids and proteins, including SNAREs, which play a role not only in the pre-fusion but also post-fusion stages of exocytosis. How molecules stabilize the fusion pore in the open state is key for a better understanding of fusion pore physiology in health and disease.

外吞是真核细胞的一个普遍过程,包括囊泡和质膜之间的融合,从而形成一个融合孔,囊泡货物通过这个通道进入细胞外空间。1986 年,Rand 和 Parsegian 提出了几个阶段来解释膜融合的本质。在受到刺激后,首先是接触膜的聚焦应力不稳定,然后是两个膜表面的凝聚。在接下来的几毫秒内,融合的膜会重新稳定,以保持细胞的完整性。这种观点认为,融合孔一旦形成,就必须突然、不可逆地完全扩大,囊泡膜由此完全与质膜结合并塌陷到质膜中(完全融合外渗)。然而,最近的实验证据表明,一旦融合孔打开,它也可能可逆地关闭(瞬时或亲吻-运行外渗)。在此,我们将从历史的角度来了解启动膜合并和融合孔形成的机制。接下来,我们考虑了调节融合孔稳定性的融合后机制,它反映了融合孔扩大和收缩的力量达到平衡的状态。虽然这些力量的产生机制尚不清楚,但可能涉及脂质和蛋白质,包括 SNAREs,它们不仅在外渗的融合前阶段发挥作用,而且在融合后阶段也发挥作用。分子如何将融合孔稳定在开放状态,是更好地了解融合孔在健康和疾病中的生理作用的关键。
{"title":"Exocytotic fusion pore under stress.","authors":"Helena Haque Chowdhury, Robert Zorec","doi":"10.15698/cst2020.09.230","DOIUrl":"10.15698/cst2020.09.230","url":null,"abstract":"<p><p>Exocytosis is a universal process of eukaryotic cells, consisting of fusion between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel through which vesicle cargo exits into the extracellular space. In 1986, Rand and Parsegian proposed several stages to explain the nature of membrane fusion. Following stimulation, it starts with focused stress destabilization of membranes in contact, followed by the coalescence of two membrane surfaces. In the next fraction of a millisecond, restabilization of fused membranes is considered to occur to maintain the cell's integrity. This view predicted that once a fusion pore is formed, it must widen abruptly, irreversibly and fully, whereby the vesicle membrane completely integrates with and collapses into the plasma membrane (full fusion exocytosis). However, recent experimental evidence has revealed that once the fusion pore opens, it may also reversibly close (transient or kiss-and-run exocytosis). Here, we present a historical perspective on understanding the mechanisms that initiate the membrane merger and fusion pore formation. Next, post-fusion mechanisms that regulate fusion pore stability are considered, reflecting the state in which the forces of widening and constriction of fusion pores are balanced. Although the mechanisms generating these forces are unclear, they may involve lipids and proteins, including SNAREs, which play a role not only in the pre-fusion but also post-fusion stages of exocytosis. How molecules stabilize the fusion pore in the open state is key for a better understanding of fusion pore physiology in health and disease.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 9","pages":"218-226"},"PeriodicalIF":4.1,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38362456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting immune-checkpoint inhibitor resistance mechanisms by MEK inhibitor and agonist anti-CD40 antibody combination therapy. 靶向免疫检查点抑制剂MEK抑制剂与激动剂抗cd40抗体联合治疗的耐药机制。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-08-06 DOI: 10.15698/cst2020.10.233
Daniel Baumann, Rienk Offringa

The widespread application of immune-checkpoint blockade (ICB) has resulted in unprecedented response rates in patients with immunogenic cancers, such as melanoma and lung cancer. However, sub-groups of patients with these indications do not respond to ICB, and the same applies to patients with other cancer types. Mechanisms of resistance to ICB include low tumor immunogenicity associated with low T cell infiltration ('cold' tumors), suppression of anti-tumor immunity by immunosuppressive cells in the tumor microenvironment (TME), lack of antigen-presentation and immune escape (e.g. by downregulation of MHC-I on tumor cells) as well as oncologic pathways that suppress immune responses. Combination strategies, involving cytostatic drugs, harbor the potential to overcome refractoriness to immunotherapy. However, suppression of immune cell function by cytostatic drugs may limit the efficacy. In our study, we show that combination treatment of targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) and agonist immunostimulatory anti-CD40 antibody (Ab) is particularly suitable in counteracting aforementioned ICB resistance mechanisms (Fig. 1).

免疫检查点阻断(ICB)的广泛应用在免疫原性癌症(如黑色素瘤和肺癌)患者中产生了前所未有的应答率。然而,具有这些适应症的患者亚组对ICB没有反应,这同样适用于其他癌症类型的患者。对ICB的耐药机制包括与低T细胞浸润(“冷”肿瘤)相关的低肿瘤免疫原性,肿瘤微环境(TME)中免疫抑制细胞对抗肿瘤免疫的抑制,缺乏抗原呈递和免疫逃逸(例如通过肿瘤细胞上MHC-I的下调)以及抑制免疫反应的肿瘤途径。包括细胞抑制药物在内的联合治疗策略,有可能克服免疫治疗的难治性。然而,细胞抑制药物对免疫细胞功能的抑制可能会限制其疗效。在我们的研究中,我们发现靶向抑制丝裂原活化蛋白激酶(MAPK)激酶(MEK)和激动剂免疫刺激抗cd40抗体(Ab)的联合治疗特别适合对抗上述ICB耐药机制(图1)。
{"title":"Targeting immune-checkpoint inhibitor resistance mechanisms by MEK inhibitor and agonist anti-CD40 antibody combination therapy.","authors":"Daniel Baumann,&nbsp;Rienk Offringa","doi":"10.15698/cst2020.10.233","DOIUrl":"https://doi.org/10.15698/cst2020.10.233","url":null,"abstract":"<p><p>The widespread application of immune-checkpoint blockade (ICB) has resulted in unprecedented response rates in patients with immunogenic cancers, such as melanoma and lung cancer. However, sub-groups of patients with these indications do not respond to ICB, and the same applies to patients with other cancer types. Mechanisms of resistance to ICB include low tumor immunogenicity associated with low T cell infiltration ('cold' tumors), suppression of anti-tumor immunity by immunosuppressive cells in the tumor microenvironment (TME), lack of antigen-presentation and immune escape (e.g. by downregulation of MHC-I on tumor cells) as well as oncologic pathways that suppress immune responses. Combination strategies, involving cytostatic drugs, harbor the potential to overcome refractoriness to immunotherapy. However, suppression of immune cell function by cytostatic drugs may limit the efficacy. In our study, we show that combination treatment of targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) and agonist immunostimulatory anti-CD40 antibody (Ab) is particularly suitable in counteracting aforementioned ICB resistance mechanisms (Fig. 1).</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 10","pages":"248-251"},"PeriodicalIF":6.4,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38462552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Cell Stress
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1