首页 > 最新文献

Cell Stress最新文献

英文 中文
The evolution of the concept of stress and the framework of the stress system. 应力概念的演变和应力系统的框架。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-04-26 DOI: 10.15698/cst2021.06.250
Siyu Lu, Fang Wei, Guolin Li

Stress is a central concept in biology and has now been widely used in psychological, physiological, social, and even environmental fields. However, the concept of stress was cross-utilized to refer to different elements of the stress system including stressful stimulus, stressor, stress response, and stress effect. Here, we summarized the evolution of the concept of stress and the framework of the stress system. We find although the concept of stress is developed from Selye's "general adaptation syndrome", it has now expanded and evolved significantly. Stress is now defined as a state of homeostasis being challenged, including both system stress and local stress. A specific stressor may potentially bring about specific local stress, while the intensity of stress beyond a threshold may commonly activate the hypothalamic-pituitary-adrenal axis and result in a systematic stress response. The framework of the stress system indicates that stress includes three types: sustress (inadequate stress), eustress (good stress), and distress (bad stress). Both sustress and distress might impair normal physiological functions and even lead to pathological conditions, while eustress might benefit health through hormesis-induced optimization of homeostasis. Therefore, an optimal stress level is essential for building biological shields to guarantee normal life processes.

压力是生物学中的一个核心概念,目前已广泛应用于心理、生理、社会甚至环境等领域。然而,压力的概念被交叉用来指压力系统的不同元素,包括压力刺激、压力源、压力反应和压力效应。本文综述了应力概念的演变和应力系统的框架。我们发现,虽然压力的概念是从Selye的“一般适应综合征”发展而来的,但它现在已经得到了显著的扩展和演变。压力现在被定义为一种自我平衡受到挑战的状态,包括系统压力和局部压力。特定的应激源可能带来特定的局部应激,而超过阈值的应激强度通常会激活下丘脑-垂体-肾上腺轴并导致系统性应激反应。应激系统的框架表明,应激包括三种类型:应激(不充分的应激)、应激(良好的应激)和应激(不良的应激)。压力和痛苦都可能损害正常的生理功能,甚至导致病理状况,而良性压力可能通过激效诱导的体内平衡优化而有益于健康。因此,一个最佳的压力水平是必不可少的建立生物屏障,以保证正常的生命过程。
{"title":"The evolution of the concept of stress and the framework of the stress system.","authors":"Siyu Lu, Fang Wei, Guolin Li","doi":"10.15698/cst2021.06.250","DOIUrl":"10.15698/cst2021.06.250","url":null,"abstract":"<p><p>Stress is a central concept in biology and has now been widely used in psychological, physiological, social, and even environmental fields. However, the concept of stress was cross-utilized to refer to different elements of the stress system including stressful stimulus, stressor, stress response, and stress effect. Here, we summarized the evolution of the concept of stress and the framework of the stress system. We find although the concept of stress is developed from Selye's \"general adaptation syndrome\", it has now expanded and evolved significantly. Stress is now defined as a state of homeostasis being challenged, including both system stress and local stress. A specific stressor may potentially bring about specific local stress, while the intensity of stress beyond a threshold may commonly activate the hypothalamic-pituitary-adrenal axis and result in a systematic stress response. The framework of the stress system indicates that stress includes three types: sustress (inadequate stress), eustress (good stress), and distress (bad stress). Both sustress and distress might impair normal physiological functions and even lead to pathological conditions, while eustress might benefit health through hormesis-induced optimization of homeostasis. Therefore, an optimal stress level is essential for building biological shields to guarantee normal life processes.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 6","pages":"76-85"},"PeriodicalIF":6.4,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39092559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 47
Coping with the calcium overload caused by cell injury: ER to the rescue. 应对细胞损伤引起的钙超载:ER的救星。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-04-16 DOI: 10.15698/cst2021.05.249
Goutam Chandra, Davi A G Mázala, Jyoti K Jaiswal

Cells maintain their cytosolic calcium (Ca2+) in nanomolar range and use controlled increase in Ca2+ for intracellular signaling. With the extracellular Ca2+ in the millimolar range, there is a steep Ca2+ gradient across the plasma membrane (PM). Thus, injury that damages PM, leads to a cytosolic Ca2+ overload, which helps activate PM repair (PMR) response. However, in order to survive, the cells must cope with the Ca2+ overload. In a recent study (Chandra et al. J Cell Biol, doi: 10.1083/jcb.202006035) we have examined how cells cope with injury-induced cytosolic Ca2+ overload. By monitoring Ca2+ dynamics in the cytosol and endoplasmic reticulum (ER), we found that PM injury-triggered increase in cytosolic Ca2+ is taken up by the ER. Pharmacological inhibition of ER Ca2+ uptake interferes with this process and compromises the repair ability of the injured cells. Muscle cells from patients and mouse model for the muscular dystrophy showed that lack of Anoctamin 5 (ANO5)/Transmembrane protein 16E (TMEM16E), an ER-resident putative Ca2+-activated chloride channel (CaCC), are poor at coping with cytosolic Ca2+ overload. Pharmacological inhibition of CaCC and lack of ANO5, both prevent Ca2+ uptake into ER. These studies identify a requirement of Cl- uptake by the ER in sequestering injury-triggered cytosolic Ca2+ increase in the ER. Further, these studies show that ER helps injured cells cope with Ca2+ overload during PMR, lack of which contributes to muscular dystrophy due to mutations in the ANO5 protein.

细胞维持其胞质钙(Ca2+)在纳摩尔范围内,并使用Ca2+的控制增加细胞内信号传导。随着细胞外Ca2+在毫摩尔范围内,有一个陡峭的Ca2+梯度穿过质膜(PM)。因此,损伤PM,导致细胞质Ca2+超载,这有助于激活PM修复(PMR)反应。然而,为了生存,细胞必须应对Ca2+超载。在最近的一项研究中(钱德拉等人)。J细胞生物学,doi: 10.1083/jcb.202006035),我们已经研究了细胞如何应对损伤诱导的细胞质Ca2+超载。通过监测细胞质和内质网(ER)中的Ca2+动态,我们发现PM损伤引发的细胞质Ca2+增加被ER吸收。ER Ca2+摄取的药理学抑制干扰了这一过程,损害了受损细胞的修复能力。来自肌肉萎缩症患者和小鼠模型的肌肉细胞显示,缺乏氨基五(ANO5)/跨膜蛋白16E (TMEM16E),一种驻扎在er的假定的Ca2+激活氯离子通道(CaCC),在应对胞质Ca2+过载方面表现不佳。CaCC的药理抑制和ANO5的缺乏,都阻止Ca2+摄取到内质网。这些研究确定了内质网对Cl-摄取的要求,以隔离内质网中损伤引发的胞质Ca2+增加。此外,这些研究表明,内质网有助于受损细胞在PMR期间应对Ca2+超载,由于ANO5蛋白突变,缺乏Ca2+会导致肌肉萎缩。
{"title":"Coping with the calcium overload caused by cell injury: ER to the rescue.","authors":"Goutam Chandra,&nbsp;Davi A G Mázala,&nbsp;Jyoti K Jaiswal","doi":"10.15698/cst2021.05.249","DOIUrl":"https://doi.org/10.15698/cst2021.05.249","url":null,"abstract":"<p><p>Cells maintain their cytosolic calcium (Ca<sup>2+</sup>) in nanomolar range and use controlled increase in Ca<sup>2+</sup> for intracellular signaling. With the extracellular Ca<sup>2+</sup> in the millimolar range, there is a steep Ca<sup>2+</sup> gradient across the plasma membrane (PM). Thus, injury that damages PM, leads to a cytosolic Ca<sup>2+</sup> overload, which helps activate PM repair (PMR) response. However, in order to survive, the cells must cope with the Ca<sup>2+</sup> overload. In a recent study (Chandra <i>et al.</i> J Cell Biol, doi: 10.1083/jcb.202006035) we have examined how cells cope with injury-induced cytosolic Ca<sup>2+</sup> overload. By monitoring Ca<sup>2+</sup> dynamics in the cytosol and endoplasmic reticulum (ER), we found that PM injury-triggered increase in cytosolic Ca<sup>2+</sup> is taken up by the ER. Pharmacological inhibition of ER Ca<sup>2+</sup> uptake interferes with this process and compromises the repair ability of the injured cells. Muscle cells from patients and mouse model for the muscular dystrophy showed that lack of Anoctamin 5 (ANO5)/Transmembrane protein 16E (TMEM16E), an ER-resident putative Ca<sup>2+</sup>-activated chloride channel (CaCC), are poor at coping with cytosolic Ca<sup>2+</sup> overload. Pharmacological inhibition of CaCC and lack of ANO5, both prevent Ca<sup>2+</sup> uptake into ER. These studies identify a requirement of Cl<sup>-</sup> uptake by the ER in sequestering injury-triggered cytosolic Ca<sup>2+</sup> increase in the ER. Further, these studies show that ER helps injured cells cope with Ca<sup>2+</sup> overload during PMR, lack of which contributes to muscular dystrophy due to mutations in the ANO5 protein.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 5","pages":"73-75"},"PeriodicalIF":6.4,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38979703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cellular mechanisms linking cancers to obesity. 癌症和肥胖之间的细胞机制。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-04-12 DOI: 10.15698/cst2021.05.248
Xiao-Zheng Liu, Line Pedersen, Nils Halberg

Obesity is epidemiologically linked to 13 forms of cancer. The local and systemic obese environment is complex and likely affect tumors through multiple avenues. This includes modulation of cancer cell phenotypes and the composition of the tumor microenvironment. A molecular understanding of how obesity links to cancer holds promise for identifying candidate genes for targeted therapy for obese cancer patient. Herein, we review both the cell-autonomous and non-cell-autonomous mechanisms linking obesity and cancer as well as provide an overview of the mouse model systems applied to study this.

在流行病学上,肥胖与13种癌症有关。局部和全身性肥胖环境是复杂的,可能通过多种途径影响肿瘤。这包括癌细胞表型的调节和肿瘤微环境的组成。对肥胖与癌症之间关系的分子理解,为确定针对肥胖癌症患者的靶向治疗的候选基因带来了希望。在此,我们回顾了连接肥胖和癌症的细胞自主和非细胞自主机制,并提供了用于研究这一问题的小鼠模型系统的概述。
{"title":"Cellular mechanisms linking cancers to obesity.","authors":"Xiao-Zheng Liu,&nbsp;Line Pedersen,&nbsp;Nils Halberg","doi":"10.15698/cst2021.05.248","DOIUrl":"https://doi.org/10.15698/cst2021.05.248","url":null,"abstract":"<p><p>Obesity is epidemiologically linked to 13 forms of cancer. The local and systemic obese environment is complex and likely affect tumors through multiple avenues. This includes modulation of cancer cell phenotypes and the composition of the tumor microenvironment. A molecular understanding of how obesity links to cancer holds promise for identifying candidate genes for targeted therapy for obese cancer patient. Herein, we review both the cell-autonomous and non-cell-autonomous mechanisms linking obesity and cancer as well as provide an overview of the mouse model systems applied to study this.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 5","pages":"55-72"},"PeriodicalIF":6.4,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8090860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38979704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Inhibitory DAMPs in immunogenic cell death and its clinical implications. 免疫原性细胞死亡中的抑制性DAMPs及其临床意义。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-03-22 DOI: 10.15698/cst2021.04.247
Kazukuni Hayashi, Fotis Nikolos, Keith S Chan

Dying (or dead) cells are increasingly recognized to impose significant biological influence within their tissues of residence-exerting paracrine effects through proteins and metabolites that are expressed or secreted during cellular demise. For example, certain molecules function as potent mitogens, promoting the repopulation of neighboring epithelial cells. And other myriad of factors-classified as damage-associated molecular patterns (DAMPs)-function as "find me" (attractant), "eat me" (engulfment), or "danger" (activation) signals for recruiting and activating effector immune cells (e.g., dendritic cells) to initiate inflammation. Since the discovery of immunogenic cell death (ICD), the current dogma posits DAMPs as immunological adjuvants for innate immune cell mobilization and activation, which ultimately leads to the antitumoral cross-priming of CD8+ T cells. However, what is currently unknown is how these immunostimulatory DAMPs are counteracted to avoid immune-overactivation. Our recent work builds on these fundamentals and introduces prostaglandin E2 (PGE2) as an 'inhibitory' DAMP-a new variable to the ICD equation. Prostaglandin E2 functions as an immunosuppressive counterpoise of adjuvant DAMPs; and thus, mechanistically precludes ICD. Furthermore, the long-debated immunogenicity of gemcitabine chemotherapy was revealed to be contingent on inhibitory DAMP blockade and not due to its inability to promote DAMP expression (i.e., calreticulin) as previously reported. These findings were intriguing. First, despite the presence of gemcitabine-induced hallmark DAMPs, the inhibitory DAMP (i.e., PGE2) was sufficient to hinder the ICD-induced antitumoral immune response (Fig. 1a). And second, rather than pharmacologically substantiating immunostimulatory DAMPs as conventionally approached, the mitigation of the inhibitory DAMP-tipping the immunostimulatory and inhibitory DAMP balance in favor of immunostimulatory DAMPs-was sufficient to render the cell death immunogenic and converted gemcitabine into an ICD-inducing therapy (Fig. 1b). In this microreview, we extrapolate our findings and implicate the value of inhibitory DAMP(s) in drug discovery, its use for clinical prognosis, and as target(s) for therapeutic intervention.

人们越来越认识到,死亡(或死亡)细胞对其所在组织产生重大的生物学影响——通过细胞死亡过程中表达或分泌的蛋白质和代谢物发挥旁分泌作用。例如,某些分子作为有效的有丝分裂原,促进邻近上皮细胞的再生。而其他被归类为损伤相关分子模式(DAMPs)的无数因素,其功能是“找到我”(引诱物)、“吃掉我”(吞噬)或“危险”(激活)信号,用于招募和激活效应免疫细胞(如树突状细胞),从而引发炎症。自从免疫原性细胞死亡(ICD)被发现以来,目前的观点认为DAMPs是先天免疫细胞动员和激活的免疫佐剂,最终导致CD8+ T细胞的抗肿瘤交叉启动。然而,目前尚不清楚这些免疫刺激DAMPs如何被抵消以避免免疫过度激活。我们最近的工作建立在这些基础之上,并引入了前列腺素E2 (PGE2)作为“抑制性”damp——ICD方程的一个新变量。前列腺素E2作为佐剂DAMPs的免疫抑制平衡;因此,从机制上排除了ICD。此外,长期争论的吉西他滨化疗的免疫原性被揭示是取决于抑制性DAMP阻断,而不是由于它不能促进DAMP表达(即钙网蛋白)。这些发现很有趣。首先,尽管存在吉西他滨诱导的标记DAMP,但抑制性DAMP(即PGE2)足以阻碍icd诱导的抗肿瘤免疫反应(图1a)。其次,与常规方法的免疫刺激DAMPs的药理学证实不同,抑制性DAMPs的缓解——将免疫刺激和抑制性DAMPs的平衡向免疫刺激DAMPs倾斜——足以使细胞死亡具有免疫原性,并将吉西他滨转化为icd诱导疗法(图1b)。在这篇微观综述中,我们推断了我们的发现,并暗示了抑制性DAMP(s)在药物发现、临床预后和治疗干预中的价值。
{"title":"Inhibitory DAMPs in immunogenic cell death and its clinical implications.","authors":"Kazukuni Hayashi,&nbsp;Fotis Nikolos,&nbsp;Keith S Chan","doi":"10.15698/cst2021.04.247","DOIUrl":"https://doi.org/10.15698/cst2021.04.247","url":null,"abstract":"<p><p>Dying (or dead) cells are increasingly recognized to impose significant biological influence within their tissues of residence-exerting paracrine effects through proteins and metabolites that are expressed or secreted during cellular demise. For example, certain molecules function as potent mitogens, promoting the repopulation of neighboring epithelial cells. And other myriad of factors-classified as damage-associated molecular patterns (DAMPs)-function as \"find me\" (attractant), \"eat me\" (engulfment), or \"danger\" (activation) signals for recruiting and activating effector immune cells (e.g., dendritic cells) to initiate inflammation. Since the discovery of immunogenic cell death (ICD), the current dogma posits DAMPs as immunological adjuvants for innate immune cell mobilization and activation, which ultimately leads to the antitumoral cross-priming of CD8<sup>+</sup> T cells. However, what is currently unknown is how these immunostimulatory DAMPs are counteracted to avoid immune-overactivation. Our recent work builds on these fundamentals and introduces prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) as an 'inhibitory' DAMP-a new variable to the ICD equation. Prostaglandin E<sub>2</sub> functions as an immunosuppressive counterpoise of adjuvant DAMPs; and thus, mechanistically precludes ICD. Furthermore, the long-debated immunogenicity of gemcitabine chemotherapy was revealed to be contingent on inhibitory DAMP blockade and not due to its inability to promote DAMP expression (i.e., calreticulin) as previously reported. These findings were intriguing. First, despite the presence of gemcitabine-induced hallmark DAMPs, the inhibitory DAMP (i.e., PGE<sub>2</sub>) was sufficient to hinder the ICD-induced antitumoral immune response (Fig. 1a). And second, rather than pharmacologically substantiating immunostimulatory DAMPs as conventionally approached, the mitigation of the inhibitory DAMP-tipping the immunostimulatory and inhibitory DAMP balance in favor of immunostimulatory DAMPs-was sufficient to render the cell death immunogenic and converted gemcitabine into an ICD-inducing therapy (Fig. 1b). In this microreview, we extrapolate our findings and implicate the value of inhibitory DAMP(s) in drug discovery, its use for clinical prognosis, and as target(s) for therapeutic intervention.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 4","pages":"52-54"},"PeriodicalIF":6.4,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25574052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. 磷脂酰肌醇3激酶γ (PI3Kγ)在呼吸系统疾病中的作用
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-03-08 DOI: 10.15698/cst2021.04.246
Valentina Sala, Angela Della Sala, Alessandra Ghigo, Emilio Hirsch

Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.

磷脂酰肌醇3激酶γ (PI3Kγ)在参与气道炎症和疾病的所有细胞类型中表达,不仅包括白细胞,还包括结构细胞,在生理条件下表达水平非常低,而在应激后显着上调。在气道中,PI3Kγ作为触发器或控制器,取决于病理环境。在这篇综述中,PI3Kγ在多种呼吸系统疾病中的作用,包括急性肺损伤、肺纤维化、哮喘、囊性纤维化和对细菌和病毒病原体的反应,将被评论。
{"title":"Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases.","authors":"Valentina Sala,&nbsp;Angela Della Sala,&nbsp;Alessandra Ghigo,&nbsp;Emilio Hirsch","doi":"10.15698/cst2021.04.246","DOIUrl":"https://doi.org/10.15698/cst2021.04.246","url":null,"abstract":"<p><p>Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 4","pages":"40-51"},"PeriodicalIF":6.4,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25574051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Spermidine supplementation in rare translation-associated disorders. 在罕见的翻译相关疾病中补充精胺。
IF 4.1 Q2 CELL BIOLOGY Pub Date : 2021-03-08 DOI: 10.15698/cst2021.03.243
Andreas Zimmermann, Didac Carmona-Gutierrez, Frank Madeo

The polyamine spermidine is essential for protein translation in eukaryotes, both as a substrate for the hypusination of the translation initiation factor eIF5A as well as general translational fidelity. Dwindling spermidine levels during aging have been implicated in reduced immune cell function through insufficient eIF5A hypusination, which can be restored by external supplementation. Recent findings characterize a group of novel Mendelian disorders linked to EIF5A missense and nonsense variants that cause protein translation defects. In model organisms that recapitulate these mutations, spermidine supplementation was able to alleviate at least some of the concomitant protein translation defects. Here, we discuss the role of spermidine in protein translation and possible therapeutic avenues for translation-associated disorders.

多胺亚精胺对真核生物的蛋白质翻译至关重要,它既是翻译起始因子 eIF5A 低度化的底物,也是一般翻译保真度的底物。在衰老过程中,由于 eIF5A 低通透性不足,导致免疫细胞功能下降,而外部补充可恢复免疫细胞功能。最近的研究结果表明,一组新型孟德尔疾病与导致蛋白质翻译缺陷的 EIF5A 错义和无义变体有关。在重现这些变异的模式生物中,补充亚精胺至少能缓解部分伴随的蛋白质翻译缺陷。在此,我们讨论了亚精胺在蛋白质翻译中的作用以及翻译相关疾病的可能治疗途径。
{"title":"Spermidine supplementation in rare translation-associated disorders.","authors":"Andreas Zimmermann, Didac Carmona-Gutierrez, Frank Madeo","doi":"10.15698/cst2021.03.243","DOIUrl":"10.15698/cst2021.03.243","url":null,"abstract":"<p><p>The polyamine spermidine is essential for protein translation in eukaryotes, both as a substrate for the hypusination of the translation initiation factor eIF5A as well as general translational fidelity. Dwindling spermidine levels during aging have been implicated in reduced immune cell function through insufficient eIF5A hypusination, which can be restored by external supplementation. Recent findings characterize a group of novel Mendelian disorders linked to <i>EIF5A</i> missense and nonsense variants that cause protein translation defects. In model organisms that recapitulate these mutations, spermidine supplementation was able to alleviate at least some of the concomitant protein translation defects. Here, we discuss the role of spermidine in protein translation and possible therapeutic avenues for translation-associated disorders.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 3","pages":"29-32"},"PeriodicalIF":4.1,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25451089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting FBXO44/SUV39H1 elicits tumor cell-specific DNA replication stress and viral mimicry. 靶向FBXO44/SUV39H1引发肿瘤细胞特异性DNA复制应激和病毒模仿。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-02-18 DOI: 10.15698/cst2021.03.245
Jia Z Shen, Charles Spruck

Repetitive elements (REs) are normally transcriptionally silenced in somatic cells by repressive epigenetic modifications, which are thought to include DNA methylation and histone modifications such as deacetylation, H3K9me3, and H4K20me3. Although, it is unclear how RE silencing is maintained through DNA replication cycles in rapidly growing cancer cells. On the other hand, the reactivation of endogenous retroelements beyond a threshold level of tolerance in cancer cells, such as by treatment with DNA demethylating agents or HDAC or LSD1 inhibitors, can induce viral mimicry responses that augment certain cancer therapies, including immunotherapy. However, these agents can also affect normal cells presenting obvious side effects. Therefore, uncovering cancer cell-specific RE silencing mechanisms could provide a basis for the development of a new generation of cancer immunotherapy drugs. In our study (Shen et al. (2020), Cell, doi: 10.1016/j.cell.2020.11.042), through a high-content RNAi screen we identified FBXO44 as a key regulator of H3K9me3-mediated transcriptional silencing of REs in cancer cells. Inhibition of FBXO44 or its co-factor SUV39H1 stimulated antiviral pathways and interferon (IFN) signaling and induced replication stress and DNA double-strand breaks (DSBs) in cancer cells, leading to restricted tumor growth and synergy with anti-PD-1 therapy (Figure 1). Figure 1FIGURE 1: Graphical representation of this study.FBXO44/SUV39H1 targeting activates REs that elicit DNA replication stress and viral mimicry in cancer cells, leading to tumor growth arrest and enhanced immunotherapy response.

重复元件(REs)通常通过抑制表观遗传修饰在体细胞中转录沉默,这些修饰被认为包括DNA甲基化和组蛋白修饰,如去乙酰化、H3K9me3和H4K20me3。然而,目前尚不清楚在快速生长的癌细胞中,RE沉默是如何通过DNA复制周期维持的。另一方面,癌细胞中超过耐受阈值水平的内源性逆转录因子的再激活,如用DNA去甲基化剂或HDAC或LSD1抑制剂治疗,可以诱导病毒模仿反应,从而增强某些癌症治疗,包括免疫治疗。然而,这些药物也会影响正常细胞,并呈现明显的副作用。因此,揭示癌细胞特异性RE沉默机制可以为开发新一代癌症免疫治疗药物提供基础。在我们的研究中(Shen et al. (2020), Cell, doi: 10.1016/j.c ells. 2020.11.042),通过高含量RNAi筛选,我们发现FBXO44是h3k9me3介导的肿瘤细胞REs转录沉默的关键调节因子。抑制FBXO44或其辅助因子SUV39H1刺激了癌细胞中的抗病毒途径和干扰素(IFN)信号传导,诱导复制应激和DNA双链断裂(DSBs),从而限制了肿瘤生长和与抗pd -1治疗的协同作用(图1)。FBXO44/SUV39H1靶向激活肿瘤细胞中引起DNA复制应激和病毒模仿的REs,导致肿瘤生长停滞和增强免疫治疗反应。
{"title":"Targeting FBXO44/SUV39H1 elicits tumor cell-specific DNA replication stress and viral mimicry.","authors":"Jia Z Shen,&nbsp;Charles Spruck","doi":"10.15698/cst2021.03.245","DOIUrl":"https://doi.org/10.15698/cst2021.03.245","url":null,"abstract":"<p><p>Repetitive elements (REs) are normally transcriptionally silenced in somatic cells by repressive epigenetic modifications, which are thought to include DNA methylation and histone modifications such as deacetylation, H3K9me3, and H4K20me3. Although, it is unclear how RE silencing is maintained through DNA replication cycles in rapidly growing cancer cells. On the other hand, the reactivation of endogenous retroelements beyond a threshold level of tolerance in cancer cells, such as by treatment with DNA demethylating agents or HDAC or LSD1 inhibitors, can induce viral mimicry responses that augment certain cancer therapies, including immunotherapy. However, these agents can also affect normal cells presenting obvious side effects. Therefore, uncovering cancer cell-specific RE silencing mechanisms could provide a basis for the development of a new generation of cancer immunotherapy drugs. In our study (Shen <i>et al.</i> (2020), Cell, doi: 10.1016/j.cell.2020.11.042), through a high-content RNAi screen we identified FBXO44 as a key regulator of H3K9me3-mediated transcriptional silencing of REs in cancer cells. Inhibition of FBXO44 or its co-factor SUV39H1 stimulated antiviral pathways and interferon (IFN) signaling and induced replication stress and DNA double-strand breaks (DSBs) in cancer cells, leading to restricted tumor growth and synergy with anti-PD-1 therapy (Figure 1). Figure 1FIGURE 1: Graphical representation of this study.FBXO44/SUV39H1 targeting activates REs that elicit DNA replication stress and viral mimicry in cancer cells, leading to tumor growth arrest and enhanced immunotherapy response.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 3","pages":"37-39"},"PeriodicalIF":6.4,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25446418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The OFD1 protein is a novel player in selective autophagy: another tile to the cilia/autophagy puzzle. OFD1蛋白是选择性自噬中的一个新角色:这是纤毛/自噬之谜的另一个拼图。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-02-17 DOI: 10.15698/cst2021.03.244
Manuela Morleo, Brunella Franco

The autophagy-lysosomal pathway is one of the main degradative routes which cells use to balance sources of energy. A number of proteins orchestrate the formation of autophagosomes, membranous organelles instrumental in autophagy. Selective autophagy, involving the recognition and removal of specific targets, is mediated by autophagy receptors, which recognize cargos and the autophagosomal membrane protein LC3 for lysosomal degradation. Recently, bidirectional crosstalk has emerged between autophagy and primary cilia, microtubule-based sensory organelles extending from cells and anchored by the basal body, derived from the mother centriole of the centrosome. The molecular mechanisms underlying the direct role of autophagic proteins in cilia biology and, conversely, the impact of this organelle in autophagy remains elusive. Recently, we uncovered the molecular mechanism by which the centrosomal/basal body protein OFD1 controls the LC3-mediated autophagic cascade. In particular, we demonstrated that OFD1 acts as a selective autophagy receptor by regulating the turnover of unc-51-like kinase (ULK1) complex, which plays a crucial role in the initiation steps of autophagosome biogenesis. Moreover, we showed that patients with a genetic condition caused by mutations in OFD1 and associated with cilia dysfunction, display excessive autophagy and we demonstrated that autophagy inhibition significantly ameliorates the renal cystic phenotype in a conditional mouse model recapitulating the features of the disease (Morleo et al. 2020, EMBO J, doi: 10.15252/embj.2020105120). We speculate that abnormal autophagy may underlie some of the clinical manifestations observed in the disorders ascribed to cilia dysfunction.

自噬-溶酶体途径是细胞用来平衡能量来源的主要降解途径之一。许多蛋白质协调自噬体的形成,自噬体是有助于自噬的膜细胞器。选择性自噬涉及特异性靶标的识别和去除,由自噬受体介导,自噬受体识别货物和自噬体膜蛋白LC3进行溶酶体降解。最近,自噬和初级纤毛之间出现了双向串扰,初级纤毛是基于微管的感觉细胞器,从细胞中延伸出来,由基底体锚定,源自中心体的母中心粒。自噬蛋白在纤毛生物学中的直接作用的分子机制,以及相反,这种细胞器在自噬中的影响仍然是难以捉摸的。最近,我们揭示了中心体/基底体蛋白OFD1控制lc3介导的自噬级联的分子机制。特别是,我们证明了OFD1通过调节unc-51样激酶(ULK1)复合物的周转,作为一种选择性自噬受体,在自噬体生物发生的起始步骤中起着至关重要的作用。此外,我们发现,由OFD1突变引起的与纤毛功能障碍相关的遗传病患者表现出过度的自噬,我们发现自噬抑制显著改善了重现该疾病特征的条件小鼠模型中的肾囊表型(Morleo et al. 2020, EMBO J, doi: 10.15252/embj.2020105120)。我们推测异常自噬可能是纤毛功能障碍引起的疾病的一些临床表现的基础。
{"title":"The OFD1 protein is a novel player in selective autophagy: another tile to the cilia/autophagy puzzle.","authors":"Manuela Morleo,&nbsp;Brunella Franco","doi":"10.15698/cst2021.03.244","DOIUrl":"https://doi.org/10.15698/cst2021.03.244","url":null,"abstract":"<p><p>The autophagy-lysosomal pathway is one of the main degradative routes which cells use to balance sources of energy. A number of proteins orchestrate the formation of autophagosomes, membranous organelles instrumental in autophagy. Selective autophagy, involving the recognition and removal of specific targets, is mediated by autophagy receptors, which recognize cargos and the autophagosomal membrane protein LC3 for lysosomal degradation. Recently, bidirectional crosstalk has emerged between autophagy and primary cilia, microtubule-based sensory organelles extending from cells and anchored by the basal body, derived from the mother centriole of the centrosome. The molecular mechanisms underlying the direct role of autophagic proteins in cilia biology and, conversely, the impact of this organelle in autophagy remains elusive. Recently, we uncovered the molecular mechanism by which the centrosomal/basal body protein OFD1 controls the LC3-mediated autophagic cascade. In particular, we demonstrated that OFD1 acts as a selective autophagy receptor by regulating the turnover of unc-51-like kinase (ULK1) complex, which plays a crucial role in the initiation steps of autophagosome biogenesis. Moreover, we showed that patients with a genetic condition caused by mutations in <i>OFD1</i> and associated with cilia dysfunction, display excessive autophagy and we demonstrated that autophagy inhibition significantly ameliorates the renal cystic phenotype in a conditional mouse model recapitulating the features of the disease (Morleo et al. 2020, EMBO J, doi: 10.15252/embj.2020105120). We speculate that abnormal autophagy may underlie some of the clinical manifestations observed in the disorders ascribed to cilia dysfunction.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 3","pages":"33-36"},"PeriodicalIF":6.4,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25446417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Innate RIG-I signaling restores antigen presentation in tumors and overcomes T cell resistance. 先天rig - 1信号恢复肿瘤中的抗原呈递并克服T细胞抵抗。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-01-18 DOI: 10.15698/cst2021.02.242
Beatrice Thier, Annette Paschen

In recent years, therapy with immune modulating antibodies, termed immune checkpoint blockade (ICB), has revolutionized the treatment of advanced metastatic melanoma, yielding long-lasting clinical responses in a subgroup of patients. But despite this remarkable progress, resistance to therapy represents a major clinical challenge. ICB efficacy is critically dependent on cytotoxic CD8+ T cells targeting tumor cells in an HLA class I (HLA-I) antigen-dependent manner. Transcriptional suppression of the HLA-I antigen processing and presentation machinery (HLA-I APM) in melanoma cells leads to HLA-I-low/-negative tumor cell phenotypes escaping CD8+ T cell recognition and contributing to ICB resistance. In general, HLA-I-low/-negative tumor cells can be re-sensitized to T cells by interferons (IFN), augmenting HLA-I APM expression. However, this mechanism fails when melanoma cells acquire resistance to IFN, which recently turned out as a key resistance mechanism in ICB, besides HLA-I APM suppression. Seeking for a strategy to overcome these barriers, we identified a novel mechanism that restores HLA-I antigen presentation in tumor cells independent of IFN (Such et al. (2020) J Clin Invest, doi: 10.1172/JCI131572). We demonstrated that tumor cell-intrinsic activation of the cytosolic innate immunoreceptor RIG-I by its synthetic ligand 3pRNA overcomes transcriptional HLA-I APM suppression in patient-derived IFN-resistant melanoma cells. De novo HLA-I APM expression is IRF1/IRF3-dependent and re-sensitizes melanoma cells to autologous cytotoxic CD8+ T cells. Notably, synthetic RIG-I ligands and ICB synergize in T cell activation, suggesting combinational therapy could be an efficient strategy to improve patient outcomes in melanoma.

近年来,免疫调节抗体治疗,称为免疫检查点阻断(ICB),已经彻底改变了晚期转移性黑色素瘤的治疗,在一个亚组患者中产生了持久的临床反应。但是,尽管取得了这些显著的进展,对治疗的耐药性仍然是一个重大的临床挑战。ICB的疗效严重依赖于细胞毒性CD8+ T细胞以HLA-I类(HLA-I)抗原依赖的方式靶向肿瘤细胞。黑色素瘤细胞中HLA-I抗原加工和递呈机制(HLA-I APM)的转录抑制导致HLA-I低/阴性肿瘤细胞表型逃避CD8+ T细胞识别并促进ICB抵抗。一般来说,HLA-I低/阴性肿瘤细胞可以通过干扰素(IFN)对T细胞重新敏感,增加HLA-I APM的表达。然而,当黑色素瘤细胞获得对IFN的耐药性时,这种机制就失效了,IFN最近被证明是除了HLA-I APM抑制外,ICB的关键耐药机制。为了寻找克服这些障碍的策略,我们确定了一种新的机制,可以恢复肿瘤细胞中独立于IFN的hla - 1抗原呈递(Such et al. (2020) J clininvest, doi: 10.1172/JCI131572)。我们证明,在患者源性ifn耐药黑色素瘤细胞中,肿瘤细胞通过其合成配体3pRNA对胞质先天免疫受体RIG-I的内在激活克服了转录HLA-I APM抑制。从头开始hla - 1 APM的表达是IRF1/ irf3依赖性的,并且使黑色素瘤细胞对自体细胞毒性CD8+ T细胞再敏感。值得注意的是,合成RIG-I配体和ICB在T细胞活化中协同作用,表明联合治疗可能是改善黑色素瘤患者预后的有效策略。
{"title":"Innate RIG-I signaling restores antigen presentation in tumors and overcomes T cell resistance.","authors":"Beatrice Thier,&nbsp;Annette Paschen","doi":"10.15698/cst2021.02.242","DOIUrl":"https://doi.org/10.15698/cst2021.02.242","url":null,"abstract":"<p><p>In recent years, therapy with immune modulating antibodies, termed immune checkpoint blockade (ICB), has revolutionized the treatment of advanced metastatic melanoma, yielding long-lasting clinical responses in a subgroup of patients. But despite this remarkable progress, resistance to therapy represents a major clinical challenge. ICB efficacy is critically dependent on cytotoxic CD8+ T cells targeting tumor cells in an HLA class I (HLA-I) antigen-dependent manner. Transcriptional suppression of the HLA-I antigen processing and presentation machinery (HLA-I APM) in melanoma cells leads to HLA-I-low/-negative tumor cell phenotypes escaping CD8+ T cell recognition and contributing to ICB resistance. In general, HLA-I-low/-negative tumor cells can be re-sensitized to T cells by interferons (IFN), augmenting HLA-I APM expression. However, this mechanism fails when melanoma cells acquire resistance to IFN, which recently turned out as a key resistance mechanism in ICB, besides HLA-I APM suppression. Seeking for a strategy to overcome these barriers, we identified a novel mechanism that restores HLA-I antigen presentation in tumor cells independent of IFN (Such <i>et al.</i> (2020) J Clin Invest, doi: 10.1172/JCI131572). We demonstrated that tumor cell-intrinsic activation of the cytosolic innate immunoreceptor RIG-I by its synthetic ligand 3pRNA overcomes transcriptional HLA-I APM suppression in patient-derived IFN-resistant melanoma cells. <i>De novo</i> HLA-I APM expression is IRF1/IRF3-dependent and re-sensitizes melanoma cells to autologous cytotoxic CD8+ T cells. Notably, synthetic RIG-I ligands and ICB synergize in T cell activation, suggesting combinational therapy could be an efficient strategy to improve patient outcomes in melanoma.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 2","pages":"26-28"},"PeriodicalIF":6.4,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25342854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving glucose and lipids metabolism: drug development based on bile acid related targets. 改善葡萄糖和脂质代谢:基于胆汁酸相关靶点的药物开发。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2021-01-05 DOI: 10.15698/cst2021.01.239
Hanchen Shen, Lili Ding, Mehdi Baig, Jingyan Tian, Yang Wang, Wendong Huang

Bariatric surgery is one of the most effective treatment options for severe obesity and its comorbidities. However, it is a major surgery that poses several side effects and risks which impede its clinical use. Therefore, it is urgent to develop alternative safer pharmacological approaches to mimic bariatric surgery. Recent studies suggest that bile acids are key players in mediating the metabolic benefits of bariatric surgery. Bile acids can function as signaling molecules by targeting bile acid nuclear receptors and membrane receptors, like FXR and TGR5 respectively. In addition, the composition of bile acids is regulated by either the hepatic sterol enzymes such as CYP8B1 or the gut microbiome. These bile acid related targets all play important roles in regulating metabolism. Drug development based on these targets could provide new hope for patients without the risks of surgery and at a lower cost. In this review, we summarize the most updated progress on bile acid related targets and development of small molecules as drug candidates based on these targets.

减肥手术是治疗严重肥胖及其合并症最有效的方法之一。然而,这是一项大手术,有一些副作用和风险,阻碍了它的临床应用。因此,迫切需要开发替代的更安全的药物方法来模拟减肥手术。最近的研究表明,胆汁酸在减肥手术的代谢益处中起着关键作用。胆汁酸可作为信号分子,分别靶向胆汁酸核受体和胆汁酸膜受体,如FXR和TGR5。此外,胆汁酸的组成受到肝脏固醇酶(如CYP8B1)或肠道微生物组的调节。这些胆汁酸相关靶点都在调节代谢中发挥重要作用。基于这些靶点的药物开发可以为患者提供新的希望,无需手术风险,成本更低。本文综述了胆汁酸相关靶点的最新研究进展,以及基于这些靶点的小分子候选药物的开发。
{"title":"Improving glucose and lipids metabolism: drug development based on bile acid related targets.","authors":"Hanchen Shen,&nbsp;Lili Ding,&nbsp;Mehdi Baig,&nbsp;Jingyan Tian,&nbsp;Yang Wang,&nbsp;Wendong Huang","doi":"10.15698/cst2021.01.239","DOIUrl":"https://doi.org/10.15698/cst2021.01.239","url":null,"abstract":"<p><p>Bariatric surgery is one of the most effective treatment options for severe obesity and its comorbidities. However, it is a major surgery that poses several side effects and risks which impede its clinical use. Therefore, it is urgent to develop alternative safer pharmacological approaches to mimic bariatric surgery. Recent studies suggest that bile acids are key players in mediating the metabolic benefits of bariatric surgery. Bile acids can function as signaling molecules by targeting bile acid nuclear receptors and membrane receptors, like FXR and TGR5 respectively. In addition, the composition of bile acids is regulated by either the hepatic sterol enzymes such as CYP8B1 or the gut microbiome. These bile acid related targets all play important roles in regulating metabolism. Drug development based on these targets could provide new hope for patients without the risks of surgery and at a lower cost. In this review, we summarize the most updated progress on bile acid related targets and development of small molecules as drug candidates based on these targets.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"5 1","pages":"1-18"},"PeriodicalIF":6.4,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38821304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Cell Stress
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1