Pub Date : 2024-06-24DOI: 10.1021/acsptsci.4c00021
Longyu Xu, Ruonan Ning, Xueqing Du, Yuxin Zhang, Changwei Gu, Baofeng Wang, Liuguan Bian, Qingfang Sun*, Yuhao Sun* and Jie Ren*,
Corticotroph pituitary neuroendocrine tumors (PitNETs), associated with Cushing’s disease (CD), have limited treatment options other than surgical resection. Bone morphogenetic protein 4 (BMP4), a potential therapeutic target, is decreased in patients with CD. Previous studies have identified BMPSB4 as a potent agonist of the BMP4 signaling pathway. Here, we investigated the effect of BMPSB4 on the corticotroph PitNET cell line AtT20/D16v-F2 and explored the underlying mechanisms and therapeutic potential. We verified the low expression patterns of BMP4 and downstream p-SMAD1/5/9 in CD samples at the transcriptional and protein levels. In addition, BMPSB4 activated SMAD1/5/9 in a time- and concentration-dependent manner, with concomitant inhibitory effects on AtT20/D16v-F2 cells. Further RNA sequencing, transmission electron microscopy (TEM), and transfection with the mRFP-EGFP-LC3 adenoviral vector revealed that BMPSB4 induced cellular autophagy, which was the basis for the inhibitory effect of BMPSB4. Moreover, we demonstrated that autophagy induced by BMPSB4 was achieved through the SMADs-dependent pathway. In vivo, BMPSB4 inhibited tumor growth and significantly reduced adrenocorticotrophin (ACTH) and corticosterone (CORT) secretion, thereby alleviating the CD phenotype. In conclusion, this study identified BMPSB4 as an effective therapeutic agent for CD. BMPSB4 activates autophagy through a SMADs-dependent pathway, which in turn promotes autophagy-mediated cell death. Our work further elucidates the mechanism of the BMP4 signaling pathway in CD and suggests broad prospects for the development and application of BMPSB4 in CD therapy.
与库欣病(CD)相关的皮质垂体神经内分泌肿瘤(PitNETs),除手术切除外,治疗方案有限。骨形态发生蛋白 4 (BMP4)是一种潜在的治疗靶点,但 CD 患者体内的骨形态发生蛋白 4 减少。先前的研究发现 BMPSB4 是 BMP4 信号通路的一种强效激动剂。在此,我们研究了 BMPSB4 对皮质营养 PitNET 细胞系 AtT20/D16v-F2 的影响,并探讨了其潜在机制和治疗潜力。我们在转录和蛋白水平上验证了 BMP4 和下游 p-SMAD1/5/9 在 CD 样本中的低表达模式。此外,BMPSB4以时间和浓度依赖的方式激活了SMAD1/5/9,同时对ATT20/D16v-F2细胞产生了抑制作用。进一步的 RNA 测序、透射电子显微镜(TEM)和转染 mRFP-EGFP-LC3 腺病毒载体发现,BMPSB4 能诱导细胞自噬,这是 BMPSB4 抑制作用的基础。此外,我们还证明了BMPSB4诱导的自噬是通过SMADs依赖途径实现的。在体内,BMPSB4 可抑制肿瘤生长并显著减少肾上腺皮质激素(ACTH)和皮质酮(CORT)的分泌,从而缓解 CD 表型。总之,本研究发现 BMPSB4 是治疗 CD 的有效药物。BMPSB4 通过 SMADs 依赖性途径激活自噬,进而促进自噬介导的细胞死亡。我们的研究进一步阐明了 BMP4 信号通路在 CD 中的作用机制,为 BMPSB4 在 CD 治疗中的开发和应用提供了广阔的前景。
{"title":"Bone Morphogenetic Protein Signaling Agonist SB4 (BMPSB4) Inhibits Corticotroph Pituitary Neuroendocrine Tumors by Activation of Autophagy via a BMP4/SMADs-Dependent Pathway","authors":"Longyu Xu, Ruonan Ning, Xueqing Du, Yuxin Zhang, Changwei Gu, Baofeng Wang, Liuguan Bian, Qingfang Sun*, Yuhao Sun* and Jie Ren*, ","doi":"10.1021/acsptsci.4c00021","DOIUrl":"10.1021/acsptsci.4c00021","url":null,"abstract":"<p >Corticotroph pituitary neuroendocrine tumors (PitNETs), associated with Cushing’s disease (CD), have limited treatment options other than surgical resection. Bone morphogenetic protein 4 (BMP4), a potential therapeutic target, is decreased in patients with CD. Previous studies have identified BMPSB4 as a potent agonist of the BMP4 signaling pathway. Here, we investigated the effect of BMPSB4 on the corticotroph PitNET cell line AtT20/D16v-F2 and explored the underlying mechanisms and therapeutic potential. We verified the low expression patterns of BMP4 and downstream p-SMAD1/5/9 in CD samples at the transcriptional and protein levels. In addition, BMPSB4 activated SMAD1/5/9 in a time- and concentration-dependent manner, with concomitant inhibitory effects on AtT20/D16v-F2 cells. Further RNA sequencing, transmission electron microscopy (TEM), and transfection with the mRFP-EGFP-LC3 adenoviral vector revealed that BMPSB4 induced cellular autophagy, which was the basis for the inhibitory effect of BMPSB4. Moreover, we demonstrated that autophagy induced by BMPSB4 was achieved through the SMADs-dependent pathway. In vivo, BMPSB4 inhibited tumor growth and significantly reduced adrenocorticotrophin (ACTH) and corticosterone (CORT) secretion, thereby alleviating the CD phenotype. In conclusion, this study identified BMPSB4 as an effective therapeutic agent for CD. BMPSB4 activates autophagy through a SMADs-dependent pathway, which in turn promotes autophagy-mediated cell death. Our work further elucidates the mechanism of the BMP4 signaling pathway in CD and suggests broad prospects for the development and application of BMPSB4 in CD therapy.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"1951–1970"},"PeriodicalIF":4.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1021/acsptsci.4c00098
Angela Corvino, Giuseppe Caliendo, Ferdinando Fiorino, Francesco Frecentese, Valeria Valsecchi, Giovanna Lombardi, Serenella Anzilotti, Giorgia Andreozzi, Antonia Scognamiglio, Rosa Sparaco, Elisa Perissutti, Beatrice Severino, Michele Gargiulo, Vincenzo Santagada and Giuseppe Pignataro*,
The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an N-methyl-D-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II–IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to β-N-methylamino-l-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II–IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.
肌萎缩性脊髓侧索硬化症(ALS)是一种使人衰弱的神经退行性疾病,其特征是大脑、脊髓和运动皮层中运动神经元(MN)的逐渐丧失。ALS 神经炎症成分的特征正在显现,包括诱导型一氧化氮合酶(iNOS)和肿瘤坏死因子-α(TNF-α)等介质的过度表达。目前,尚无有效的 ALS 治疗方法。事实上,N-甲基-D-天冬氨酸(NMDA)谷氨酸受体阻断剂利鲁唑和活性氧(ROS)清除剂依达拉奉是目前唯一两种获准用于 ALS 治疗的药物。然而,这两种药物在延长预期寿命方面的疗效通常只有几个月。为了改进治疗神经退行性疾病(尤其是 ALS)的药物,我们开发了新型取代的 2-甲基-3-吲哚乙酸衍生物(化合物 II-IV),将两种小分子(即含有 4-哌啶基环的阿片类药物和吲哚美辛)的重要部分结合在一起。我们对合成的化合物进行了评估,以确定它们在体外和体内的渐冻症临床前模型中减缓与渐冻症进展相关的神经退行性变的潜在能力。值得注意的是,我们得出的数据表明,用新合成的化合物 III 治疗:(1)防止了暴露于毒素脂多糖(LPS)的 BV-2 小胶质细胞中观察到的 TNF-α 的上调;(2)保护了暴露于 β-N-甲基氨基-1-丙氨酸(L-BMAA)神经毒素的 SHSY-5Y 细胞的存活;以及(3)减轻了 SOD1G93A ALS 小鼠的运动症状并提高了其存活率。总之,本研究的结果证明了合成的吲哚乙酸衍生物 II-IV 在治疗 ALS 方面的潜力。事实上,为了实现两种活性分子之间的结合,我们认为将两种小分子(含有 4-哌啶基环的阿片类药物和 FANS 吲哚美辛)中不可或缺的分子结合在一起,可能会产生治疗肌萎缩性脊髓侧索硬化症的新药物。
{"title":"Newly Synthesized Indolylacetic Derivatives Reduce Tumor Necrosis Factor-Mediated Neuroinflammation and Prolong Survival in Amyotrophic Lateral Sclerosis Mice","authors":"Angela Corvino, Giuseppe Caliendo, Ferdinando Fiorino, Francesco Frecentese, Valeria Valsecchi, Giovanna Lombardi, Serenella Anzilotti, Giorgia Andreozzi, Antonia Scognamiglio, Rosa Sparaco, Elisa Perissutti, Beatrice Severino, Michele Gargiulo, Vincenzo Santagada and Giuseppe Pignataro*, ","doi":"10.1021/acsptsci.4c00098","DOIUrl":"10.1021/acsptsci.4c00098","url":null,"abstract":"<p >The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an <i>N</i>-methyl-<span>D</span>-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II–IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to β-<i>N</i>-methylamino-<span>l</span>-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II–IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"1996–2005"},"PeriodicalIF":4.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1021/acsptsci.4c00133
Albert Dahan*, Simone Jansen, Rutger van der Schrier, Elise Sarton, David Dadiomov, Monique van Velzen, Erik Olofsen and Marieke Niesters,
The anesthetic, analgesic and antidepressant drug ketamine produces dissociation with symptoms of psychosis and anxiety, an effect attributed to neuronal nitric oxide depletion following N-methyl-d-aspartate blockade. There is evidence that dissociation induced by racemic ketamine, containing both ketamine enantiomers (S- and R-ketamine) but not esketamine (the S-isomer) is inhibited by nitric oxide (NO) donor sodium nitroprusside (SNP). We tested whether a similar intervention would reduce racemic and esketamine-induced analgesia in a randomized double-blind placebo-controlled trial. Seventeen healthy volunteers were treated with 0.5 μg.kg–1.min–1 SNP or placebo during a 3-h infusion of escalating doses of racemic ketamine (total dose 140 mg) or esketamine (70 mg). Pain pressure threshold (PPT) and arterial blood samples for measurement of S- and R-ketamine and their metabolites, S- and R-norketamine, were obtained. The data were analyzed with a population pharmacokinetic-pharmacodynamic model that incorporated the measured S- and R- ketamine and S- and R-norketamine isomers as input and PPT as output to the model. The potency of the 2 formulations in increasing PPT from baseline by 100% was 0.47 ± 0.12 (median ± standard error of the estimate) nmol/mL for esketamine and 0.62 ± 0.19 nmol/mL for racemic ketamine, reflecting the 52 ± 27% lower analgesic potency of R-ketamine versus S-ketamine. Modeling showed that SNP had no effect on S-ketamine potency but abolished the R-ketamine analgesic effect. Similar observations were made for S- and R-norketamine. Since SNP had no effect on S-ketamine analgesia, we conclude that SNP interacts on R-ketamine nociceptive pathways, possibly similar to its effects on R-ketamine activated dissociation pathways.
{"title":"Nitric Oxide Donor Sodium Nitroprusside Reduces Racemic Ketamine─But Not Esketamine-Induced Pain Relief","authors":"Albert Dahan*, Simone Jansen, Rutger van der Schrier, Elise Sarton, David Dadiomov, Monique van Velzen, Erik Olofsen and Marieke Niesters, ","doi":"10.1021/acsptsci.4c00133","DOIUrl":"10.1021/acsptsci.4c00133","url":null,"abstract":"<p >The anesthetic, analgesic and antidepressant drug ketamine produces dissociation with symptoms of psychosis and anxiety, an effect attributed to neuronal nitric oxide depletion following <i>N</i>-methyl-<span>d</span>-aspartate blockade. There is evidence that dissociation induced by racemic ketamine, containing both ketamine enantiomers (S- and R-ketamine) but not esketamine (the S-isomer) is inhibited by nitric oxide (NO) donor sodium nitroprusside (SNP). We tested whether a similar intervention would reduce racemic and esketamine-induced analgesia in a randomized double-blind placebo-controlled trial. Seventeen healthy volunteers were treated with 0.5 μg.kg<sup>–1</sup>.min<sup>–1</sup> SNP or placebo during a 3-h infusion of escalating doses of racemic ketamine (total dose 140 mg) or esketamine (70 mg). Pain pressure threshold (PPT) and arterial blood samples for measurement of S- and R-ketamine and their metabolites, S- and R-norketamine, were obtained. The data were analyzed with a population pharmacokinetic-pharmacodynamic model that incorporated the measured S- and R- ketamine and S- and R-norketamine isomers as input and PPT as output to the model. The potency of the 2 formulations in increasing PPT from baseline by 100% was 0.47 ± 0.12 (median ± standard error of the estimate) nmol/mL for esketamine and 0.62 ± 0.19 nmol/mL for racemic ketamine, reflecting the 52 ± 27% lower analgesic potency of R-ketamine versus S-ketamine. Modeling showed that SNP had no effect on S-ketamine potency but abolished the R-ketamine analgesic effect. Similar observations were made for S- and R-norketamine. Since SNP had no effect on S-ketamine analgesia, we conclude that SNP interacts on R-ketamine nociceptive pathways, possibly similar to its effects on R-ketamine activated dissociation pathways.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2044–2053"},"PeriodicalIF":4.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1021/acsptsci.4c00182
Lara Toy, Max E. Huber, Minhee Lee, Ana Alonso Bartolomé, Natalia V. Ortiz Zacarías, Sherif Nasser, Stephan Scholl, Darius P. Zlotos, Yasmine M. Mandour, Laura H. Heitman, Martyna Szpakowska, Andy Chevigné and Matthias Schiedel*,
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
{"title":"Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1","authors":"Lara Toy, Max E. Huber, Minhee Lee, Ana Alonso Bartolomé, Natalia V. Ortiz Zacarías, Sherif Nasser, Stephan Scholl, Darius P. Zlotos, Yasmine M. Mandour, Laura H. Heitman, Martyna Szpakowska, Andy Chevigné and Matthias Schiedel*, ","doi":"10.1021/acsptsci.4c00182","DOIUrl":"10.1021/acsptsci.4c00182","url":null,"abstract":"<p >In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (<b>12</b>) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with <b>12</b>, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with <b>12</b>. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied <b>12</b> for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (<i>i.e.</i>, <b>23</b>), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand <b>12</b> represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2080–2092"},"PeriodicalIF":4.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00182","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1021/acsptsci.4c00234
Xiao Zhang, Jingxin Wang and Ming-Hao Hu*,
G-quadruplexes (G4s) are potential drug targets in cancer treatment. However, the G4-targeted ligands seem to lack sufficient selectivity between tumors and normal tissues, appealing for a new modified anticancer strategy on the basis of them. Type-1 photodynamic therapy (PDT) is a promising strategy possessing excellent spatiotemporal precision for solid tumors with a hypoxic microenvironment. However, type-1 photosensitizers that target G4s and induce in situ photodamage have never been previously reported. In this study, we reported a promising type-1 photosensitizer based on a G4-targeted, high-contrast fluorescent ligand (TR2). The subsequent studies demonstrated that TR2 could transfer from lysosomes to nuclei and induce elevated G4 formation as well as DNA damage upon irradiation. Notably, it was observed that TR2 may not activate DNA damage repair machinery upon irradiation, suggesting a durable, strong effect on inducing DNA damage. Consequently, light-irradiated TR2 exhibited excellent photocytotoxicity on triple-negative breast cancer cell proliferation (at nanomolar concentration) and showed obvious inhibition on the growth of three-dimensional (3D) tumor spheroids. Finally, RNA-seq analysis demonstrated that TR2-mediated PDT may have a negative impact on enhancing the DNA damage repair machinery and may activate the antitumor immunity pathways. Overall, this study provided a promising chemical tool for image-guided PDT.
G-四倍体(G4s)是治疗癌症的潜在药物靶点。然而,G4 靶向配体似乎在肿瘤和正常组织之间缺乏足够的选择性,因此需要在此基础上开发新的改良抗癌策略。1型光动力疗法(PDT)是一种前景广阔的策略,对缺氧微环境中的实体瘤具有极佳的时空精确性。然而,针对 G4s 并诱导原位光损伤的 1 型光敏剂此前从未有过报道。在这项研究中,我们报道了一种基于 G4 靶向高对比度荧光配体(TR2)的前景广阔的 1 型光敏剂。随后的研究表明,TR2 可以从溶酶体转移到细胞核,并在照射时诱导 G4 的形成和 DNA 损伤。值得注意的是,据观察,TR2 在辐照后可能不会激活 DNA 损伤修复机制,这表明它在诱导 DNA 损伤方面具有持久而强大的作用。因此,经过光照射的TR2对三阴性乳腺癌细胞的增殖(纳摩尔浓度)有很好的光细胞毒性,并对三维(3D)肿瘤球体的生长有明显的抑制作用。最后,RNA-seq分析表明,TR2-介导的PDT可能会对DNA损伤修复机制产生负面影响,并可能激活抗肿瘤免疫途径。总之,这项研究为图像引导的光导放疗提供了一种前景广阔的化学工具。
{"title":"Promising G-Quadruplex-Targeted Dibenzoquinoxaline Type-1 Photosensitizer Triggers DNA Damage in Triple-Negative Breast Cancer Cells","authors":"Xiao Zhang, Jingxin Wang and Ming-Hao Hu*, ","doi":"10.1021/acsptsci.4c00234","DOIUrl":"10.1021/acsptsci.4c00234","url":null,"abstract":"<p >G-quadruplexes (G4s) are potential drug targets in cancer treatment. However, the G4-targeted ligands seem to lack sufficient selectivity between tumors and normal tissues, appealing for a new modified anticancer strategy on the basis of them. Type-1 photodynamic therapy (PDT) is a promising strategy possessing excellent spatiotemporal precision for solid tumors with a hypoxic microenvironment. However, type-1 photosensitizers that target G4s and induce in situ photodamage have never been previously reported. In this study, we reported a promising type-1 photosensitizer based on a G4-targeted, high-contrast fluorescent ligand (<b>TR2</b>). The subsequent studies demonstrated that <b>TR2</b> could transfer from lysosomes to nuclei and induce elevated G4 formation as well as DNA damage upon irradiation. Notably, it was observed that <b>TR2</b> may not activate DNA damage repair machinery upon irradiation, suggesting a durable, strong effect on inducing DNA damage. Consequently, light-irradiated <b>TR2</b> exhibited excellent photocytotoxicity on triple-negative breast cancer cell proliferation (at nanomolar concentration) and showed obvious inhibition on the growth of three-dimensional (3D) tumor spheroids. Finally, RNA-seq analysis demonstrated that <b>TR2</b>-mediated PDT may have a negative impact on enhancing the DNA damage repair machinery and may activate the antitumor immunity pathways. Overall, this study provided a promising chemical tool for image-guided PDT.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2174–2184"},"PeriodicalIF":4.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1021/acsptsci.4c00255
Zeping Yang, Bin Guo, Zihao Jiao, Xinan Wang, Liyu Huang, Chu Tang* and Fu Wang*,
Histone deacetylase 6 (HDAC6) enzyme plays a crucial role in a variety of cellular processes related to cancer, and inhibition of HDAC6 is emerging as an effective strategy for cancer treatment. Although several hydroxamate-based HDAC6 inhibitors showed promising anticancer activities, the intrinsic defects such as poor selectivity, stability, and pharmacokinetics limited their application. In this study, a potent selenocyanide-bearing HDAC6 inhibitor, 5-phenylcarbamoylpentyl selenocyanide (SelSA), was evaluated for its antihepatocellular carcinoma (HCC) activity and further explored for its antitumor mechanisms. In vitro studies demonstrated that SelSA exhibited excellent antiproliferative activity against three HCC cells HepG2 (2.3 ± 0.29 μM), Huh7 (0.83 ± 0.48 μM), and LM3 (2.6 ± 0.24 μM). Further studies indicated that SelSA could downregulate the expression of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, inhibit the growth, invasion, and migration of Huh7 cells, and promote their apoptosis. Moreover, SelSA significantly suppressed tumor growth in Huh7 xenograft mouse models. Our findings suggest that SelSA could be a potential therapeutic agent for HCC.
{"title":"Histone Deacetylase 6 Inhibitor 5-Phenylcarbamoylpentyl Selenocyanide (SelSA) Suppresses Hepatocellular Carcinoma by Downregulating Phosphorylation of the Extracellular Signal-Regulated Kinase 1/2 Pathway","authors":"Zeping Yang, Bin Guo, Zihao Jiao, Xinan Wang, Liyu Huang, Chu Tang* and Fu Wang*, ","doi":"10.1021/acsptsci.4c00255","DOIUrl":"10.1021/acsptsci.4c00255","url":null,"abstract":"<p >Histone deacetylase 6 (HDAC6) enzyme plays a crucial role in a variety of cellular processes related to cancer, and inhibition of HDAC6 is emerging as an effective strategy for cancer treatment. Although several hydroxamate-based HDAC6 inhibitors showed promising anticancer activities, the intrinsic defects such as poor selectivity, stability, and pharmacokinetics limited their application. In this study, a potent selenocyanide-bearing HDAC6 inhibitor, 5-phenylcarbamoylpentyl selenocyanide (SelSA), was evaluated for its antihepatocellular carcinoma (HCC) activity and further explored for its antitumor mechanisms. In vitro studies demonstrated that SelSA exhibited excellent antiproliferative activity against three HCC cells HepG2 (2.3 ± 0.29 μM), Huh7 (0.83 ± 0.48 μM), and LM3 (2.6 ± 0.24 μM). Further studies indicated that SelSA could downregulate the expression of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, inhibit the growth, invasion, and migration of Huh7 cells, and promote their apoptosis. Moreover, SelSA significantly suppressed tumor growth in Huh7 xenograft mouse models. Our findings suggest that SelSA could be a potential therapeutic agent for HCC.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2196–2203"},"PeriodicalIF":4.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1021/acsptsci.4c00163
Kushvinder Kumar, Binita Sihag, Madhuri T. Patil, Rahul Singh, Isaac G. Sakala, Yoshikazu Honda-Okubo, Kamal Nain Singh, Nikolai Petrovsky* and Deepak B. Salunke*,
TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure–function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC50 = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for 12b, all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound 12b was 5-fold more potent (EC50 = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound 12c (EC50 = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound 12d exhibited low TLR7 activity (EC50 = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.
{"title":"Design and Synthesis of Polyphenolic Imidazo[4,5-c]quinoline Derivatives to Modulate Toll Like Receptor-7 Agonistic Activity and Adjuvanticity","authors":"Kushvinder Kumar, Binita Sihag, Madhuri T. Patil, Rahul Singh, Isaac G. Sakala, Yoshikazu Honda-Okubo, Kamal Nain Singh, Nikolai Petrovsky* and Deepak B. Salunke*, ","doi":"10.1021/acsptsci.4c00163","DOIUrl":"10.1021/acsptsci.4c00163","url":null,"abstract":"<p >TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure–function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC<sub>50</sub> = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for <b>12b</b>, all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound <b>12b</b> was 5-fold more potent (EC<sub>50</sub> = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound <b>12c</b> (EC<sub>50</sub> = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound <b>12d</b> exhibited low TLR7 activity (EC<sub>50</sub> = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2063–2079"},"PeriodicalIF":4.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1021/acsptsci.4c00114
Meriem Bejaoui, Aprill Kee Oliva Mizushima, Tran Ngoc Linh, Takashi Arimura, Kenichi Tominaga and Hiroko Isoda*,
De novo hair follicle (HF) regeneration, achieved through the replenishment of the dermal papilla (DP), acknowledged as the principal orchestrator of the hair growth cycle, is emerging as a prospective therapeutic intervention for alopecia. Nonetheless, multiple attempts have shown that these cells lose key inductive properties when cultured in a two-dimensional (2D) monolayer, leading to precocious senescence engendered by oxidative stress and inflammatory processes. Consequently, the three-dimensional (3D) spheroid technique is presently widely employed for DP cell culture. Nevertheless, substantiating the regenerative potential of these cells within the hair follicle (HF) milieu remains a challenge. In this current study, we aim to find a new approach to activate the inductive properties of DP cells. This involves the application of hair-growth-stimulating agents that not only exhibit concurrent protective efficacy against the aging process but also induce HF regeneration. To achieve this objective, we initially synthesized a novel highly amphiphilic derivative derived from squalene (SQ), named triethylene glycol squalene (Tri-SQ). Squalene itself is a potent antioxidant and anti-inflammatory compound traditionally employed as a drug carrier for alopecia treatment. However, its application is limited due to its low solubility. Subsequently, we applied this newly synthesized derivative to DP cells. The data obtained demonstrated that the derivative exhibits robust antioxidant and anti-inflammatory activities while concurrently promoting the expression of genes associated with hair growth. Moreover, to further assess the hair regrowth inductive properties of DP cells, we cultured the cells and treated them with Tri-SQ within a 3D spheroid system. Subsequently, these treated cells were injected into the previously depilated dorsal area of six-week-old male C57BL/6 mice. Results revealed that 20 days postinjection, a complete regrowth of hair in the previously hairless area, particularly evident in the case of 3D spheroids treated with the derivative, was observed. Additionally, histological and molecular analyses demonstrated an upregulation of markers associated with hair growth and a concurrent decrease in aging hallmarks, specifically in the 3D spheroids treated with the compound. In summary, our approach, which involves the treatment of Tri-SQ combined with a 3D spheroid system, exhibited a notably robust stimulating effect. This effect was observed in the induction of inductive properties in DP cells, leading to HF regeneration, and concurrently, it demonstrated an inhibitory effect on cellular and follicular aging.
{"title":"Triethylene Glycol Squalene Improves Hair Regeneration by Maintaining the Inductive Capacity of Human Dermal Papilla Cells and Preventing Premature Aging","authors":"Meriem Bejaoui, Aprill Kee Oliva Mizushima, Tran Ngoc Linh, Takashi Arimura, Kenichi Tominaga and Hiroko Isoda*, ","doi":"10.1021/acsptsci.4c00114","DOIUrl":"10.1021/acsptsci.4c00114","url":null,"abstract":"<p >De novo hair follicle (HF) regeneration, achieved through the replenishment of the dermal papilla (DP), acknowledged as the principal orchestrator of the hair growth cycle, is emerging as a prospective therapeutic intervention for alopecia. Nonetheless, multiple attempts have shown that these cells lose key inductive properties when cultured in a two-dimensional (2D) monolayer, leading to precocious senescence engendered by oxidative stress and inflammatory processes. Consequently, the three-dimensional (3D) spheroid technique is presently widely employed for DP cell culture. Nevertheless, substantiating the regenerative potential of these cells within the hair follicle (HF) milieu remains a challenge. In this current study, we aim to find a new approach to activate the inductive properties of DP cells. This involves the application of hair-growth-stimulating agents that not only exhibit concurrent protective efficacy against the aging process but also induce HF regeneration. To achieve this objective, we initially synthesized a novel highly amphiphilic derivative derived from squalene (SQ), named triethylene glycol squalene (Tri-SQ). Squalene itself is a potent antioxidant and anti-inflammatory compound traditionally employed as a drug carrier for alopecia treatment. However, its application is limited due to its low solubility. Subsequently, we applied this newly synthesized derivative to DP cells. The data obtained demonstrated that the derivative exhibits robust antioxidant and anti-inflammatory activities while concurrently promoting the expression of genes associated with hair growth. Moreover, to further assess the hair regrowth inductive properties of DP cells, we cultured the cells and treated them with Tri-SQ within a 3D spheroid system. Subsequently, these treated cells were injected into the previously depilated dorsal area of six-week-old male C57BL/6 mice. Results revealed that 20 days postinjection, a complete regrowth of hair in the previously hairless area, particularly evident in the case of 3D spheroids treated with the derivative, was observed. Additionally, histological and molecular analyses demonstrated an upregulation of markers associated with hair growth and a concurrent decrease in aging hallmarks, specifically in the 3D spheroids treated with the compound. In summary, our approach, which involves the treatment of Tri-SQ combined with a 3D spheroid system, exhibited a notably robust stimulating effect. This effect was observed in the induction of inductive properties in DP cells, leading to HF regeneration, and concurrently, it demonstrated an inhibitory effect on cellular and follicular aging.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2006–2022"},"PeriodicalIF":4.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1021/acsptsci.4c00207
Elandia A. Santos*, Janayne L. Silva, Paola C. L. Leocádio, Maria Emilia R. Andrade, Celso M. Queiroz-Junior, Nathan S. S. Oliveira, Juliana L. Alves, Jamil S. Oliveira, Edenil C. Aguilar, Kennedy Boujour, Bruno Cogliati, Valbert N. Cardoso, Simone Odilia A. Fernandes, Ana Maria C. Faria and Jacqueline I. Alvarez-Leite,
Capsaicin, a pungent compound in chili peppers, is described as having potent anti-inflammatory, antioxidant, and antimicrobial properties. It is also described as a potential modulator of the immune system and intestinal microbiota. Oral or rectal administration of capsaicin has been studied to treat or prevent colitis. However, those vias are often not well accepted due to the burning sensation that capsaicin can cause. Our objective was to evaluate whether the application of capsaicin skin creams (0.075%) would be effective in improving inflammation and epithelial barrier function as well as the composition of the gut microbiota in a model of mild colitis induced by dextran sulfate sodium (1.5%). The results showed that the cutaneous application of capsaicin reversed weight loss and decreased colon shortening and diarrhea, all typical signs of colitis. There was also an improvement in the intestinal epithelial barrier, preserving proteins from tight junctions. We also evaluated the biodistribution of 99mtechnetium-radiolabeled capsaicin (99mTc-CAPS) applied to the back skin of the animals. We found significant concentrations of 99 mTc-Cap in the colon and small intestine after 2 and 4 h of administration. In addition, there was an increased expression of capsaicin receptor TRPV1 in the colon. Moreover, animals with colitis receiving cutaneous capsaicin presented a better short-chain fatty acid profile and increased levels of SIgA, suggesting increased microbiota diversity. In conclusion, our work opens avenues for further studies to better understand capsaicin’s potential benefits and mechanisms in addressing colitis through cutaneous application.
{"title":"Cutaneous Application of Capsaicin Cream Reduces Clinical Signs of Experimental Colitis and Repairs Intestinal Barrier Integrity by Modulating the Gut Microbiota and Tight Junction Proteins","authors":"Elandia A. Santos*, Janayne L. Silva, Paola C. L. Leocádio, Maria Emilia R. Andrade, Celso M. Queiroz-Junior, Nathan S. S. Oliveira, Juliana L. Alves, Jamil S. Oliveira, Edenil C. Aguilar, Kennedy Boujour, Bruno Cogliati, Valbert N. Cardoso, Simone Odilia A. Fernandes, Ana Maria C. Faria and Jacqueline I. Alvarez-Leite, ","doi":"10.1021/acsptsci.4c00207","DOIUrl":"10.1021/acsptsci.4c00207","url":null,"abstract":"<p >Capsaicin, a pungent compound in chili peppers, is described as having potent anti-inflammatory, antioxidant, and antimicrobial properties. It is also described as a potential modulator of the immune system and intestinal microbiota. Oral or rectal administration of capsaicin has been studied to treat or prevent colitis. However, those vias are often not well accepted due to the burning sensation that capsaicin can cause. Our objective was to evaluate whether the application of capsaicin skin creams (0.075%) would be effective in improving inflammation and epithelial barrier function as well as the composition of the gut microbiota in a model of mild colitis induced by dextran sulfate sodium (1.5%). The results showed that the cutaneous application of capsaicin reversed weight loss and decreased colon shortening and diarrhea, all typical signs of colitis. There was also an improvement in the intestinal epithelial barrier, preserving proteins from tight junctions. We also evaluated the biodistribution of <sup>99m</sup>technetium-radiolabeled capsaicin (<sup>99m</sup>Tc-CAPS) applied to the back skin of the animals. We found significant concentrations of 99 mTc-Cap in the colon and small intestine after 2 and 4 h of administration. In addition, there was an increased expression of capsaicin receptor TRPV1 in the colon. Moreover, animals with colitis receiving cutaneous capsaicin presented a better short-chain fatty acid profile and increased levels of SIgA, suggesting increased microbiota diversity. In conclusion, our work opens avenues for further studies to better understand capsaicin’s potential benefits and mechanisms in addressing colitis through cutaneous application.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2143–2153"},"PeriodicalIF":4.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1021/acsptsci.4c00183
Katharina Rox, Annett Kühne, Jennifer Herrmann, Rolf Jansen, Stephan Hüttel, Steffen Bernecker, Yohannes Hagos, Mark Brönstrup, Marc Stadler, Thomas Hesterkamp and Rolf Müller*,
Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against E. coli. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.
{"title":"Interaction of the Atypical Tetracyclines Chelocardin and Amidochelocardin with Renal Drug Transporters","authors":"Katharina Rox, Annett Kühne, Jennifer Herrmann, Rolf Jansen, Stephan Hüttel, Steffen Bernecker, Yohannes Hagos, Mark Brönstrup, Marc Stadler, Thomas Hesterkamp and Rolf Müller*, ","doi":"10.1021/acsptsci.4c00183","DOIUrl":"10.1021/acsptsci.4c00183","url":null,"abstract":"<p >Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against <i>E. coli</i>. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2093–2109"},"PeriodicalIF":4.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141357046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}