Pub Date : 2024-08-08DOI: 10.1021/acsptsci.4c0035610.1021/acsptsci.4c00356
Lucas T. Laudermilk, Joel E. Schlosburg, Elaine A. Gay, Ann M. Decker, Aaron Williams, Rubica Runton, Vineetha Vasukuttan, Archana Kotiya, George S. Amato and Rangan Maitra*,
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally. MASLD is characterized by clinically significant liver steatosis, and a subset of patients progress to more severe metabolic-disorder-associated steatohepatitis (MASH) with liver inflammation and fibrosis. Cannabinoid receptor 1 (CB1) antagonism is a proven therapeutic strategy for the treatment of the phenotypes that underlie MASLD, though work on early centrally penetrant compounds largely ceased following adverse psychiatric indications in humans. We present here preclinical testing of a CB1 neutral antagonist, N-[1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]-4-phenylpiperidin-4l]methanesulfonamide (RTI-348), with minimal brain exposure when administered to mice. In a diet-induced model of MASLD-induced MASH, administration of RTI-348 decreased the total body and liver weight gain. Animals treated with RTI-348 showed reduced steatosis. Furthermore, they produced lower plasma alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), biomarkers associated with liver damage. Mice maintained on the MASH diet had elevated expression of genes associated with profibrogenesis, immune response, and extracellular matrix remodeling, and treatment with RTI-348 mitigated these diet-induced changes in gene expression. Using an intracranial electrical self-stimulation model, we also demonstrated that RTI-348 does not produce an anhedonia response, as seen with the first-generation CB1 inverse agonist rimonabant. Altogether, the results herein point to RTI-348 as a promising neutral antagonist for MASH.
{"title":"Novel Peripherally Selective Cannabinoid Receptor 1 Neutral Antagonist Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice","authors":"Lucas T. Laudermilk, Joel E. Schlosburg, Elaine A. Gay, Ann M. Decker, Aaron Williams, Rubica Runton, Vineetha Vasukuttan, Archana Kotiya, George S. Amato and Rangan Maitra*, ","doi":"10.1021/acsptsci.4c0035610.1021/acsptsci.4c00356","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00356https://doi.org/10.1021/acsptsci.4c00356","url":null,"abstract":"<p >The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally. MASLD is characterized by clinically significant liver steatosis, and a subset of patients progress to more severe metabolic-disorder-associated steatohepatitis (MASH) with liver inflammation and fibrosis. Cannabinoid receptor 1 (CB1) antagonism is a proven therapeutic strategy for the treatment of the phenotypes that underlie MASLD, though work on early centrally penetrant compounds largely ceased following adverse psychiatric indications in humans. We present here preclinical testing of a CB1 neutral antagonist, <i>N</i>-[1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]-4-phenylpiperidin-4l]methanesulfonamide (RTI-348), with minimal brain exposure when administered to mice. In a diet-induced model of MASLD-induced MASH, administration of RTI-348 decreased the total body and liver weight gain. Animals treated with RTI-348 showed reduced steatosis. Furthermore, they produced lower plasma alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), biomarkers associated with liver damage. Mice maintained on the MASH diet had elevated expression of genes associated with profibrogenesis, immune response, and extracellular matrix remodeling, and treatment with RTI-348 mitigated these diet-induced changes in gene expression. Using an intracranial electrical self-stimulation model, we also demonstrated that RTI-348 does not produce an anhedonia response, as seen with the first-generation CB1 inverse agonist rimonabant. Altogether, the results herein point to RTI-348 as a promising neutral antagonist for MASH.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2856–2868 2856–2868"},"PeriodicalIF":4.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1021/acsptsci.4c0029910.1021/acsptsci.4c00299
Núria Nadal-Gratacós*, Martalu D. Pazos, David Pubill, Jorge Camarasa, Elena Escubedo, Xavier Berzosa and Raúl López-Arnau,
The escalating prevalence of new psychoactive substances (NPSs) poses a significant public health challenge, evidenced by the vast chemical diversity, with over 500 substances reported annually to the United Nations Office on Drugs and Crime-Early Warning Advisory (UNODC-EWA) in the past five years. Among NPSs, synthetic cathinones are gaining a lot of popularity among users. Notably, synthetic cathinones accounted for approximately 50% of the total quantity of NPSs reported as seized by EU Member States in 2021. Preliminary data from UNODC indicates that a total of 209 synthetic cathinones have been reported to date. As their popularity grows, studying the structure–activity relationship (SAR) of synthetic cathinones is essential. SAR studies elucidate how structural features impact biological effects, aiding in toxicity prediction, regulatory compliance, and forensic identification. Additionally, SAR studies play a pivotal role in guiding drug policies, aiding authorities in categorizing and regulating newly emerging synthetic cathinones, mitigate public health risks and offer valuable insights into potential therapeutic applications. Thus, our Review consolidates recent findings on the effects of different substitutions in the chemical scaffold of synthetic cathinones on their mechanism of action as well as pharmacological and toxicological effects of synthetic cathinones, thus enhancing understanding of the SAR of synthetic cathinones’ pharmacology and potential implications.
{"title":"Structure–Activity Relationship of Synthetic Cathinones: An Updated Review","authors":"Núria Nadal-Gratacós*, Martalu D. Pazos, David Pubill, Jorge Camarasa, Elena Escubedo, Xavier Berzosa and Raúl López-Arnau, ","doi":"10.1021/acsptsci.4c0029910.1021/acsptsci.4c00299","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00299https://doi.org/10.1021/acsptsci.4c00299","url":null,"abstract":"<p >The escalating prevalence of new psychoactive substances (NPSs) poses a significant public health challenge, evidenced by the vast chemical diversity, with over 500 substances reported annually to the United Nations Office on Drugs and Crime-Early Warning Advisory (UNODC-EWA) in the past five years. Among NPSs, synthetic cathinones are gaining a lot of popularity among users. Notably, synthetic cathinones accounted for approximately 50% of the total quantity of NPSs reported as seized by EU Member States in 2021. Preliminary data from UNODC indicates that a total of 209 synthetic cathinones have been reported to date. As their popularity grows, studying the structure–activity relationship (SAR) of synthetic cathinones is essential. SAR studies elucidate how structural features impact biological effects, aiding in toxicity prediction, regulatory compliance, and forensic identification. Additionally, SAR studies play a pivotal role in guiding drug policies, aiding authorities in categorizing and regulating newly emerging synthetic cathinones, mitigate public health risks and offer valuable insights into potential therapeutic applications. Thus, our Review consolidates recent findings on the effects of different substitutions in the chemical scaffold of synthetic cathinones on their mechanism of action as well as pharmacological and toxicological effects of synthetic cathinones, thus enhancing understanding of the SAR of synthetic cathinones’ pharmacology and potential implications.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2588–2603 2588–2603"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00299","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1021/acsptsci.4c0036210.1021/acsptsci.4c00362
Man-Sha Wu, Ze-Rui Zhou, Xiao-Yuan Wang, Xi-Chen Du, Da-Wei Li and Ruo-Can Qian*,
Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8+ T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell–cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.
基于 DNA 酶的合成结构可实现动态细胞调控。然而,如何设计出一种有效且有针对性的 DNA 酶基结构,以实现可定制的多步骤调控,目前仍有许多研究尚未完成。在此,我们设计了一种基于膜锚定 DNA 酶的分子机器,以实现细胞间和细胞内的动态级联调控,从而实现高效的 T 细胞/癌细胞相互作用以及随后受体介导的癌细胞摄取。我们利用 CD8+ T 细胞和 HeLa 癌细胞作为概念验证,证明所设计的基于 DNA 酶的分子机器可实现定制级联调节,包括:(1)T 细胞和癌细胞之间的特异性识别;(2)对细胞外刺激的特异性响应和荧光感应;以及(3)包括细胞间距离缩短、细胞间通信和抗癌药物细胞内递送在内的级联调节。总之,这项研究工作为基于 DNA 酶的分子机器的定制级联细胞调控提供了一条前景广阔的途径,从而能够通过结合 T 细胞免疫疗法和化疗来加强癌症治疗。
{"title":"Design of a Membrane-Anchored DNAzyme-Based Molecular Machine for Enhanced Cancer Therapy by Customized Cascade Regulation","authors":"Man-Sha Wu, Ze-Rui Zhou, Xiao-Yuan Wang, Xi-Chen Du, Da-Wei Li and Ruo-Can Qian*, ","doi":"10.1021/acsptsci.4c0036210.1021/acsptsci.4c00362","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00362https://doi.org/10.1021/acsptsci.4c00362","url":null,"abstract":"<p >Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8<sup>+</sup> T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell–cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2869–2877 2869–2877"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1021/acsptsci.4c0010810.1021/acsptsci.4c00108
Nagoor Meeran MF , Seenipandi Arunachalam, Azimullah Sheikh, Dhanya Saraswathiamma, Alia Albawardi, Saeeda Al Marzooqi, Niraj Kumar Jha, Sandeep Subramanya, Rami Beiram and Shreesh Ojha*,
The potential for multiorgan toxicities is a significant barrier to the therapeutic use of doxorubicin (DOX) in cancer treatment. With regard to DOX-induced acute cardiotoxicity in rats, the current investigation sought to assess the cardioprotective function of α-bisabolol (BSB) as well as the underlying pharmacological and molecular processes. Acute cardiotoxicity was induced in the rats by the intraperitoneal injection of DOX (12.5 mg/kg, single dosage). Over the course of 5 days, the rats were administered 25 mg/kg of BSB orally twice a day. The DOX administration induced cardiac damage, as evidenced by altered cardiospecific diagnostic markers and macroscopic enzyme mapping assay. The occurrence of mitochondrial oxidative stress was observed by a significant decline in antioxidant defense along with an increase in lipid peroxidation. DOX also perturbed DNA damage, mitochondrial biogenesis, mitochondrial fission and dysfunction, ER stress, Hippo signaling, and caspase-dependent and independent apoptosis including necroptosis and ferroptosis in the myocardium of rats. Conversely, it has been noted that the administration of BSB preserves the myocardium and reverses all cellular, molecular, and structural disruptions in the cardiac tissues of rats exposed to DOX-induced toxicity. The results that are currently available unequivocally show the cardioprotective role of BSB in DOX-induced cardiotoxicity. This effect is attributed to BSB’s strong antioxidant, antilipid peroxidative, and antiapoptotic properties, which are mediated by advantageous changes in multiple signaling pathways.
{"title":"α-Bisabolol: A Dietary Sesquiterpene that Attenuates Apoptotic and Nonapoptotic Cell Death Pathways by Regulating the Mitochondrial Biogenesis and Endoplasmic Reticulum Stress–Hippo Signaling Axis in Doxorubicin-Induced Acute Cardiotoxicity in Rats","authors":"Nagoor Meeran MF , Seenipandi Arunachalam, Azimullah Sheikh, Dhanya Saraswathiamma, Alia Albawardi, Saeeda Al Marzooqi, Niraj Kumar Jha, Sandeep Subramanya, Rami Beiram and Shreesh Ojha*, ","doi":"10.1021/acsptsci.4c0010810.1021/acsptsci.4c00108","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00108https://doi.org/10.1021/acsptsci.4c00108","url":null,"abstract":"<p >The potential for multiorgan toxicities is a significant barrier to the therapeutic use of doxorubicin (DOX) in cancer treatment. With regard to DOX-induced acute cardiotoxicity in rats, the current investigation sought to assess the cardioprotective function of α-bisabolol (BSB) as well as the underlying pharmacological and molecular processes. Acute cardiotoxicity was induced in the rats by the intraperitoneal injection of DOX (12.5 mg/kg, single dosage). Over the course of 5 days, the rats were administered 25 mg/kg of BSB orally twice a day. The DOX administration induced cardiac damage, as evidenced by altered cardiospecific diagnostic markers and macroscopic enzyme mapping assay. The occurrence of mitochondrial oxidative stress was observed by a significant decline in antioxidant defense along with an increase in lipid peroxidation. DOX also perturbed DNA damage, mitochondrial biogenesis, mitochondrial fission and dysfunction, ER stress, Hippo signaling, and caspase-dependent and independent apoptosis including necroptosis and ferroptosis in the myocardium of rats. Conversely, it has been noted that the administration of BSB preserves the myocardium and reverses all cellular, molecular, and structural disruptions in the cardiac tissues of rats exposed to DOX-induced toxicity. The results that are currently available unequivocally show the cardioprotective role of BSB in DOX-induced cardiotoxicity. This effect is attributed to BSB’s strong antioxidant, antilipid peroxidative, and antiapoptotic properties, which are mediated by advantageous changes in multiple signaling pathways.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2694–2705 2694–2705"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1021/acsptsci.3c0039410.1021/acsptsci.3c00394
Moein Ala*,
Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related mortality. Despite different methods of treatment, nearly more than 90% of patients with PDAC die shortly after diagnosis. Contrary to promising results in other cancers, immune checkpoint inhibitors (ICIs) showed limited success in PDAC. Recent studies have shown that noncoding RNAs (ncRNAs) are extensively involved in PDAC cell–immune cell interaction and mediate immune evasion in this vicious cancer. PDAC cells recruit numerous ncRNAs to widely affect the phenotype and function of immune cells through various mechanisms. For instance, PDAC cells upregulate miR-301a and downregulate miR-340 to induce M2 polarization of macrophages or overexpress miR-203, miR-146a, and miR-212-3p to downregulate toll-like receptor 4 (TLR4), CD80, CD86, CD1a, major histocompatibility complex (MHC) II, and CD83, thereby evading recognition by dendritic cells. By downregulating miR-4299 and miR-153, PDAC cells can decrease the expression of NK group 2D (NKG2D) and MHC class I chain-related molecules A and B (MICA/B) to blunt the natural killer (NK) cell response. PDAC cells also highly express lncRNA AL137789.1, hsa_circ_0046523, lncRNA LINC00460, and miR-155-5p to upregulate immune checkpoint proteins and escape T cell cytotoxicity. On the other hand, ncRNAs derived from suppressive immune cells promote proliferation, invasion, and drug resistance in PDAC cells. ncRNAs can be applied to overcome resistance to ICIs, monitor the immune microenvironment of PDAC, and predict response to ICIs. This Review article comprehensively discusses recent findings regarding the roles of ncRNAs in the immune evasion of PDAC.
{"title":"Noncoding Ribonucleic Acids (RNAs) May Improve Response to Immunotherapy in Pancreatic Cancer","authors":"Moein Ala*, ","doi":"10.1021/acsptsci.3c0039410.1021/acsptsci.3c00394","DOIUrl":"https://doi.org/10.1021/acsptsci.3c00394https://doi.org/10.1021/acsptsci.3c00394","url":null,"abstract":"<p >Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related mortality. Despite different methods of treatment, nearly more than 90% of patients with PDAC die shortly after diagnosis. Contrary to promising results in other cancers, immune checkpoint inhibitors (ICIs) showed limited success in PDAC. Recent studies have shown that noncoding RNAs (ncRNAs) are extensively involved in PDAC cell–immune cell interaction and mediate immune evasion in this vicious cancer. PDAC cells recruit numerous ncRNAs to widely affect the phenotype and function of immune cells through various mechanisms. For instance, PDAC cells upregulate miR-301a and downregulate miR-340 to induce M2 polarization of macrophages or overexpress miR-203, miR-146a, and miR-212-3p to downregulate toll-like receptor 4 (TLR4), CD80, CD86, CD1a, major histocompatibility complex (MHC) II, and CD83, thereby evading recognition by dendritic cells. By downregulating miR-4299 and miR-153, PDAC cells can decrease the expression of NK group 2D (NKG2D) and MHC class I chain-related molecules A and B (MICA/B) to blunt the natural killer (NK) cell response. PDAC cells also highly express lncRNA AL137789.1, hsa_circ_0046523, lncRNA LINC00460, and miR-155-5p to upregulate immune checkpoint proteins and escape T cell cytotoxicity. On the other hand, ncRNAs derived from suppressive immune cells promote proliferation, invasion, and drug resistance in PDAC cells. ncRNAs can be applied to overcome resistance to ICIs, monitor the immune microenvironment of PDAC, and predict response to ICIs. This Review article comprehensively discusses recent findings regarding the roles of ncRNAs in the immune evasion of PDAC.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2557–2572 2557–2572"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1021/acsptsci.4c0015210.1021/acsptsci.4c00152
Hayder Ridha-Salman*, Elaf Mahmood Shihab, Hasanain Kamil Hasan, Alaa Hamza Abbas, Shan Mohammed Khorsheed and Salar Ayad Fakhri,
Psoriasis is a chronic, inflammatory dermatosis characterized by thickened, reddened, and scaly skin lesions. Norfloxacin is a fluoroquinolone antibiotic with enhanced antioxidant, anti-inflammatory, and immunomodulatory bioactivities. The aim of this study was to figure out the possible impact of topical norfloxacin on an imiquimod-induced model of psoriasis in mice. Thirty albino-type mice were split into five distinct groups of six animals each. The control group included healthy mice that had not received any treatment. The induction group was given the vehicle 2 h after the topical imiquimod, once daily for 8 days. Two hours after receiving topical imiquimod, the treatment groups including calcipotriol, norfloxacin 2.5%, and norfloxacin 5% were given topical ointments containing calcipotriol 0.005%, norfloxacin 2.5%, and norfloxacin 5%, for 8 days. Topical norfloxacin ointment significantly reduced the severity of imiquimod-exacerbated psoriatic lesions including erythema, shiny-white scaling, and acanthosis and fixed histological abnormalities. Furthermore, imiquimod-subjected mice treated with a higher concentration of norfloxacin ointment exhibited dramatically lower skin levels of inflammation-related biomarkers like IFN-γ, TNF-α, IL-6, IL-17A, IL-23, and TGF-β but higher levels of IL-10. They also demonstrated a notable decrease in angiogenesis parameters such as VEGF and IL-8, a substantial reduction in oxidative indicators like MDA and MPO, and a considerable rise in antioxidant enzymes like SOD and CAT. This study offers novel evidence that norfloxacin may assist in controlling inflammatory dermatoses like psoriasis by minimizing the severity of psoriatic plaques, correcting histological alterations, and diminishing the production of inflammatory, oxidative, and angiogenetic parameters.
{"title":"Mitigative Effects of Topical Norfloxacin on an Imiquimod-Induced Murine Model of Psoriasis","authors":"Hayder Ridha-Salman*, Elaf Mahmood Shihab, Hasanain Kamil Hasan, Alaa Hamza Abbas, Shan Mohammed Khorsheed and Salar Ayad Fakhri, ","doi":"10.1021/acsptsci.4c0015210.1021/acsptsci.4c00152","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00152https://doi.org/10.1021/acsptsci.4c00152","url":null,"abstract":"<p >Psoriasis is a chronic, inflammatory dermatosis characterized by thickened, reddened, and scaly skin lesions. Norfloxacin is a fluoroquinolone antibiotic with enhanced antioxidant, anti-inflammatory, and immunomodulatory bioactivities. The aim of this study was to figure out the possible impact of topical norfloxacin on an imiquimod-induced model of psoriasis in mice. Thirty albino-type mice were split into five distinct groups of six animals each. The control group included healthy mice that had not received any treatment. The induction group was given the vehicle 2 h after the topical imiquimod, once daily for 8 days. Two hours after receiving topical imiquimod, the treatment groups including calcipotriol, norfloxacin 2.5%, and norfloxacin 5% were given topical ointments containing calcipotriol 0.005%, norfloxacin 2.5%, and norfloxacin 5%, for 8 days. Topical norfloxacin ointment significantly reduced the severity of imiquimod-exacerbated psoriatic lesions including erythema, shiny-white scaling, and acanthosis and fixed histological abnormalities. Furthermore, imiquimod-subjected mice treated with a higher concentration of norfloxacin ointment exhibited dramatically lower skin levels of inflammation-related biomarkers like IFN-γ, TNF-α, IL-6, IL-17A, IL-23, and TGF-β but higher levels of IL-10. They also demonstrated a notable decrease in angiogenesis parameters such as VEGF and IL-8, a substantial reduction in oxidative indicators like MDA and MPO, and a considerable rise in antioxidant enzymes like SOD and CAT. This study offers novel evidence that norfloxacin may assist in controlling inflammatory dermatoses like psoriasis by minimizing the severity of psoriatic plaques, correcting histological alterations, and diminishing the production of inflammatory, oxidative, and angiogenetic parameters.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2739–2754 2739–2754"},"PeriodicalIF":4.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1021/acsptsci.4c0032610.1021/acsptsci.4c00326
Liang Xue, Daniel van Kalken, Erika M. James, Giulia Giammo, Matthew T. Labenski, Susan Cantin, Kelly Fahnoe, Karin Worm, Zhigang Wang* and Alan F. Corin,
Establishing target engagement is fundamental to effective target-based drug development. It paves the way for efficient medicinal chemistry design and definitive answers about target validation in the clinic. For irreversible targeted covalent inhibitor (TCI) drugs, there is a unique opportunity to establish and quantify the target engagement or occupancy. This is typically accomplished by using a covalent molecular probe, often a TCI analogue, derivatized to allow unoccupied target sites to be tracked; the difference of total sites minus unoccupied sites yields the occupied sites. When such probes are not available or the target is not readily accessible to covalent probes, another approach is needed. Receptor tyrosine-protein kinase erbB-2 (HER2) occupancy by afatinib presents such a case. Available HER2 covalent probes were unable to consistently modify HER2 after sample preparation, resulting in inadequate data. We demonstrate an alternative quantitative probe-free occupancy (PFO) method. It employs the immunoprecipitation of HER2 and direct mass spectrometer analysis of the cysteine-containing peptide that is targeted and covalently occupied by afatinib. Nontarget HER2 peptides provide normalization to the total protein. We show that HER2 occupancy by afatinib correlates directly to the inhibition of the receptor tyrosine kinase activity in NCI-N87 cells in culture and in vivo using those cells in a mouse tumor xenograft mode.
{"title":"A Probe-Free Occupancy Assay to Assess a Targeted Covalent Inhibitor of Receptor Tyrosine-Protein Kinase erbB-2","authors":"Liang Xue, Daniel van Kalken, Erika M. James, Giulia Giammo, Matthew T. Labenski, Susan Cantin, Kelly Fahnoe, Karin Worm, Zhigang Wang* and Alan F. Corin, ","doi":"10.1021/acsptsci.4c0032610.1021/acsptsci.4c00326","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00326https://doi.org/10.1021/acsptsci.4c00326","url":null,"abstract":"<p >Establishing target engagement is fundamental to effective target-based drug development. It paves the way for efficient medicinal chemistry design and definitive answers about target validation in the clinic. For irreversible targeted covalent inhibitor (TCI) drugs, there is a unique opportunity to establish and quantify the target engagement or occupancy. This is typically accomplished by using a covalent molecular probe, often a TCI analogue, derivatized to allow unoccupied target sites to be tracked; the difference of total sites minus unoccupied sites yields the occupied sites. When such probes are not available or the target is not readily accessible to covalent probes, another approach is needed. Receptor tyrosine-protein kinase erbB-2 (HER2) occupancy by afatinib presents such a case. Available HER2 covalent probes were unable to consistently modify HER2 after sample preparation, resulting in inadequate data. We demonstrate an alternative quantitative probe-free occupancy (PFO) method. It employs the immunoprecipitation of HER2 and direct mass spectrometer analysis of the cysteine-containing peptide that is targeted and covalently occupied by afatinib. Nontarget HER2 peptides provide normalization to the total protein. We show that HER2 occupancy by afatinib correlates directly to the inhibition of the receptor tyrosine kinase activity in NCI-N87 cells in culture and <i>in vivo</i> using those cells in a mouse tumor xenograft mode.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2507–2515 2507–2515"},"PeriodicalIF":4.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141955154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1021/acsptsci.4c0012710.1021/acsptsci.4c00127
Ying-Ju Lai*, Yung-Hsin Yeh, Yen-Lin Huang, Celina De Almeida, Gwo-Jyh Chang, Wei-Jan Chen and Hsao-Hsun Hsu*,
The loss of peroxisome proliferator-activated receptor gamma (PPARγ) exacerbates pulmonary arterial hypertension (PAH), while its upregulation reduces cell proliferation and vascular remodeling, thereby decreasing PAH severity. SGLT2 inhibitors, developed for type 2 diabetes, might also affect signal transduction in addition to modulating sodium-glucose cotransporters. Pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with idiopathic pulmonary arterial hypertension (IPAH) were treated with three SGLT2 inhibitors, canagliflozin (Cana), dapagliflozin (Dapa), and empagliflozin (Empa), to investigate their antiproliferative effects. To assess the impact of Empa on PPARγ, luciferase reporter assays and siRNA-mediated PPARγ knockdown were employed to examine regulation of the γ-secretase complex and its downstream target Notch3. Therapy involving daily administration of Empa was initiated 21 days after inducing hypoxia-induced PAH in mice. Empa exhibited significant antiproliferative effects on fast-growing IPAH PASMCs. Empa activated PPARγ to prevent formation of the γ-secretase complex, with specific impacts on presenilin enhancer 2 (PEN2), which plays a crucial role in maintaining γ-secretase complex stability, thereby inhibiting Notch3. Similar results were obtained in lung tissue of chronically hypoxic mice. Empa attenuated pulmonary arterial remodeling and right ventricle hypertrophy in a hypoxic PAH mouse model. Moreover, PPARγ expression was significantly decreased and PEN2, and Notch3 levels were increased in lung tissue from PAH patients compared with non-PAH lung tissue. Empa reverses vascular remodeling by activating PPARγ to suppress the γ-secretase-Notch3 axis. We propose Empa as a PPARγ activator and potential therapeutic for PAH.
{"title":"Empagliflozin Attenuates Pulmonary Arterial Remodeling Through Peroxisome Proliferator-Activated Receptor Gamma Activation","authors":"Ying-Ju Lai*, Yung-Hsin Yeh, Yen-Lin Huang, Celina De Almeida, Gwo-Jyh Chang, Wei-Jan Chen and Hsao-Hsun Hsu*, ","doi":"10.1021/acsptsci.4c0012710.1021/acsptsci.4c00127","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00127https://doi.org/10.1021/acsptsci.4c00127","url":null,"abstract":"<p >The loss of peroxisome proliferator-activated receptor gamma (PPARγ) exacerbates pulmonary arterial hypertension (PAH), while its upregulation reduces cell proliferation and vascular remodeling, thereby decreasing PAH severity. SGLT2 inhibitors, developed for type 2 diabetes, might also affect signal transduction in addition to modulating sodium-glucose cotransporters. Pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with idiopathic pulmonary arterial hypertension (IPAH) were treated with three SGLT2 inhibitors, canagliflozin (Cana), dapagliflozin (Dapa), and empagliflozin (Empa), to investigate their antiproliferative effects. To assess the impact of Empa on PPARγ, luciferase reporter assays and siRNA-mediated PPARγ knockdown were employed to examine regulation of the γ-secretase complex and its downstream target Notch3. Therapy involving daily administration of Empa was initiated 21 days after inducing hypoxia-induced PAH in mice. Empa exhibited significant antiproliferative effects on fast-growing IPAH PASMCs. Empa activated PPARγ to prevent formation of the γ-secretase complex, with specific impacts on presenilin enhancer 2 (PEN2), which plays a crucial role in maintaining γ-secretase complex stability, thereby inhibiting Notch3. Similar results were obtained in lung tissue of chronically hypoxic mice. Empa attenuated pulmonary arterial remodeling and right ventricle hypertrophy in a hypoxic PAH mouse model. Moreover, PPARγ expression was significantly decreased and PEN2, and Notch3 levels were increased in lung tissue from PAH patients compared with non-PAH lung tissue. Empa reverses vascular remodeling by activating PPARγ to suppress the γ-secretase-Notch3 axis. We propose Empa as a PPARγ activator and potential therapeutic for PAH.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 9","pages":"2725–2738 2725–2738"},"PeriodicalIF":4.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1021/acsptsci.4c0035310.1021/acsptsci.4c00353
Saja Baraghithy, Asaad Gammal, Anna Permyakova, Sharleen Hamad, Radka Kočvarová, Yael Calles and Joseph Tam*,
The escalating prevalence of obesity and its related disorders represents a daunting global health challenge. Unfortunately, current pharmacological interventions for obesity remain limited and are often associated with debilitating side effects. Against this backdrop, the psychoactive aminoindane derivative 5-methoxy-2-aminoindane (MEAI) has gained considerable attention for its ability to induce a pleasurable, alcohol-like sensation while curbing alcohol consumption. Given the potential impact of MEAI on food addiction and energy homeostasis, we examined its metabolic efficacy on appetite regulation, obesity, and related comorbidities under acute and chronic settings, utilizing a mouse model of diet-induced obesity (DIO). Our results demonstrated that MEAI treatment significantly reduced DIO-induced overweight and adiposity by preserving lean mass and decreasing fat mass. Additionally, MEAI treatment exhibited positive effects on glycemic control by attenuating DIO-induced hyperglycemia, glucose intolerance, and hyperinsulinemia. Furthermore, MEAI reduced DIO-induced hepatic steatosis by decreasing hepatic lipid accumulation and lowering liver triglyceride and cholesterol levels, primarily by inhibiting de novo lipid synthesis. Metabolic phenotyping revealed that MEAI increased energy expenditure and fat utilization while maintaining food consumption similar to that of the vehicle-treated group. Lastly, MEAI normalized voluntary locomotion actions without any overstimulatory effects. These findings provide compelling evidence for the antiobesity effects of MEAI treatment and call for further preclinical testing. In conclusion, our study highlights the potential of MEAI as a novel therapeutic approach for treating obesity and its associated metabolic disorders, offering hope for the development of new treatment options for this global health challenge.
{"title":"5-Methoxy-2-aminoindane Reverses Diet-Induced Obesity and Improves Metabolic Parameters in Mice: A Potential New Class of Antiobesity Therapeutics","authors":"Saja Baraghithy, Asaad Gammal, Anna Permyakova, Sharleen Hamad, Radka Kočvarová, Yael Calles and Joseph Tam*, ","doi":"10.1021/acsptsci.4c0035310.1021/acsptsci.4c00353","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00353https://doi.org/10.1021/acsptsci.4c00353","url":null,"abstract":"<p >The escalating prevalence of obesity and its related disorders represents a daunting global health challenge. Unfortunately, current pharmacological interventions for obesity remain limited and are often associated with debilitating side effects. Against this backdrop, the psychoactive aminoindane derivative 5-methoxy-2-aminoindane (MEAI) has gained considerable attention for its ability to induce a pleasurable, alcohol-like sensation while curbing alcohol consumption. Given the potential impact of MEAI on food addiction and energy homeostasis, we examined its metabolic efficacy on appetite regulation, obesity, and related comorbidities under acute and chronic settings, utilizing a mouse model of diet-induced obesity (DIO). Our results demonstrated that MEAI treatment significantly reduced DIO-induced overweight and adiposity by preserving lean mass and decreasing fat mass. Additionally, MEAI treatment exhibited positive effects on glycemic control by attenuating DIO-induced hyperglycemia, glucose intolerance, and hyperinsulinemia. Furthermore, MEAI reduced DIO-induced hepatic steatosis by decreasing hepatic lipid accumulation and lowering liver triglyceride and cholesterol levels, primarily by inhibiting <i>de novo</i> lipid synthesis. Metabolic phenotyping revealed that MEAI increased energy expenditure and fat utilization while maintaining food consumption similar to that of the vehicle-treated group. Lastly, MEAI normalized voluntary locomotion actions without any overstimulatory effects. These findings provide compelling evidence for the antiobesity effects of MEAI treatment and call for further preclinical testing. In conclusion, our study highlights the potential of MEAI as a novel therapeutic approach for treating obesity and its associated metabolic disorders, offering hope for the development of new treatment options for this global health challenge.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2527–2543 2527–2543"},"PeriodicalIF":4.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141958762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1021/acsptsci.4c0029510.1021/acsptsci.4c00295
Nico Bückreiß, Marie Schulz-Fincke, Philipp König, Marco Maccarana, Toin H. van Kuppevelt, Jin-ping Li, Martin Götte and Gerd Bendas*,
The deregulation of cell surface heparan sulfate proteoglycans (HSPGs) is a main issue of cancer cells for increasing their malignancy. In these terms, the sulfation pattern of HS, created by an orchestrated activity of enzymes balancing a site-specific sulfation, is of key importance. These enzymes are often deregulated by epigenetic processes in cancer, e.g., being silenced by DNA hypermethylation. Here, we address this issue in human breast cancer cell lines aiming to target epigenetic processes to reactivate HS sulfation, shifting HS into an antithrombotic phenotype for which 3-O-sulfation is particularly important. Treatment of MCF-7 and MDA-MB-231 cells with nontoxic concentrations of 5-azacytidine (azacytidine) and 5-fluoro-2′-deoxycytidine (FdCyd) as DNMT inhibitors or vorinostat for targeting HDAC increased HS3-O-sulfation remarkably, as confirmed by fluorescence microscopy, by upregulating HS3-O-sulfotransferases, detected by quantitative real-time polymerase chain reaction and Western blot. Flow cytometry and microscopic approaches confirm that upon inhibitor treatment, increased HS3-O-sulfation improves cell binding to antithrombin, leading to an antithrombotic activity. Nevertheless, only azacytidine- and vorinostat-treated cells display anticoagulative properties, represented by attenuated thrombin formation, a lower activation of human platelet aggregation, or ATP release. In contrast, FdCyd additionally upregulated tissue factor expression in both cell lines, overshadowing the anticoagulant effects of HS, leading to an overall prothrombotic phenotype. Our data provide evidence for the first time that targeting epigenetic processes in HS sulfation is a valuable means to foster anticoagulative cell properties for decreasing malignancy and metastatic potency. These data warrant further investigations to fine-tune epigenetic targeting and to search for potential biomarkers attributed to these activities.
细胞表面硫酸肝素蛋白聚糖(HSPGs)的失调是癌细胞增加其恶性程度的一个主要问题。因此,由酶的协调活动平衡特定位点硫酸化作用而形成的硫酸化模式至关重要。在癌症中,这些酶通常会因表观遗传过程而失调,例如因 DNA 超甲基化而沉默。在此,我们在人类乳腺癌细胞系中解决了这一问题,目的是针对表观遗传过程重新激活HS硫酸化,将HS转变为抗血栓表型,其中3-O-硫酸化尤为重要。用无毒浓度的 5-氮杂胞苷(azacytidine)和 5-氟-2′-脱氧胞苷(FdCyd)(作为 DNMT 抑制剂)或伏立诺他(vorinostat)(用于靶向 HDAC)处理 MCF-7 和 MDA-MB-231 细胞,通过上调 HS3-O 磺化转移酶(通过实时定量聚合酶链式反应和 Western 印迹检测到),显著增加了 HS3-O 的硫酸化,荧光显微镜证实了这一点。流式细胞仪和显微镜方法证实,在抑制剂处理后,HS3-O-硫酸化的增加会改善细胞与抗凝血酶的结合,从而产生抗血栓活性。然而,只有阿扎胞苷(azacytidine)和伏立诺司他(vorinostat)处理过的细胞才具有抗凝特性,表现为凝血酶形成减弱、人血小板聚集活化程度降低或 ATP 释放减少。与此相反,FdCyd 会额外上调这两种细胞系中组织因子的表达,从而掩盖了 HS 的抗凝作用,导致整体的促血栓形成表型。我们的数据首次证明,针对 HS 硫酸化过程中的表观遗传过程是促进细胞抗凝特性以降低恶性程度和转移能力的重要手段。这些数据值得进一步研究,以微调表观遗传学靶向,并寻找这些活动的潜在生物标志物。
{"title":"Epigenetic Targeting of Heparan Sulfate 3-O- and 6-O-Sulfation in Breast Cancer Cells: Prospects for Attenuating Prothrombotic Tumor Cell Activities","authors":"Nico Bückreiß, Marie Schulz-Fincke, Philipp König, Marco Maccarana, Toin H. van Kuppevelt, Jin-ping Li, Martin Götte and Gerd Bendas*, ","doi":"10.1021/acsptsci.4c0029510.1021/acsptsci.4c00295","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00295https://doi.org/10.1021/acsptsci.4c00295","url":null,"abstract":"<p >The deregulation of cell surface heparan sulfate proteoglycans (HSPGs) is a main issue of cancer cells for increasing their malignancy. In these terms, the sulfation pattern of HS, created by an orchestrated activity of enzymes balancing a site-specific sulfation, is of key importance. These enzymes are often deregulated by epigenetic processes in cancer, e.g., being silenced by DNA hypermethylation. Here, we address this issue in human breast cancer cell lines aiming to target epigenetic processes to reactivate HS sulfation, shifting HS into an antithrombotic phenotype for which 3-<i>O</i>-sulfation is particularly important. Treatment of MCF-7 and MDA-MB-231 cells with nontoxic concentrations of 5-azacytidine (azacytidine) and 5-fluoro-2′-deoxycytidine (FdCyd) as DNMT inhibitors or vorinostat for targeting HDAC increased HS3-<i>O</i>-sulfation remarkably, as confirmed by fluorescence microscopy, by upregulating HS3-<i>O</i>-sulfotransferases, detected by quantitative real-time polymerase chain reaction and Western blot. Flow cytometry and microscopic approaches confirm that upon inhibitor treatment, increased HS3-<i>O</i>-sulfation improves cell binding to antithrombin, leading to an antithrombotic activity. Nevertheless, only azacytidine- and vorinostat-treated cells display anticoagulative properties, represented by attenuated thrombin formation, a lower activation of human platelet aggregation, or ATP release. In contrast, FdCyd additionally upregulated tissue factor expression in both cell lines, overshadowing the anticoagulant effects of HS, leading to an overall prothrombotic phenotype. Our data provide evidence for the first time that targeting epigenetic processes in HS sulfation is a valuable means to foster anticoagulative cell properties for decreasing malignancy and metastatic potency. These data warrant further investigations to fine-tune epigenetic targeting and to search for potential biomarkers attributed to these activities.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2484–2495 2484–2495"},"PeriodicalIF":4.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141958853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}