Pub Date : 2023-07-08DOI: 10.21924/cst.8.1.2023.1082
N. Chuong
Chemical fertilizers, which contain a nitrogen (N) element, has been intensively used to increase the peanut productivity. However, the unstable and high cost of N fertilizer, and the great demand for N fertilizer sources have strongly increased the strategical plan of nitrogen fixation (NF). Therefore, the field research was carried out to appraise the ability of Rhizobium sp. trains and chicken manure (CM) on the quality and yield of peanuts. This research has four ratios, which valued from 0.0, 2.0, 4.0 to 6.0 t CM per ha in the combination with the Rhizobium sp. inoculum, expect control treatment (without CM and Rhizobium sp.). Different rates of CM combined with Rhizobium sp. inoculation was added by using 6.0 tons CM/ ha, which had number of the highest peanut nodules. Research results observed that the inoculant of Rhizobium sp. strain combined with CM remarkably increased the yield components per plant such as biomass, number of nodules, weight of dry nodules, weight of fill and empty pods and fresh yield of groundnut. The highest yield and quality of peanut (7.60 t/ha), oil % (50.6%), seed protein percentage (26.8%), as well as NPK content in seed (4.32, 0.912 and 0.999%, respectively) were obtained under the application of NPK+6.0 t CM/ha+ Rhizobium sp. inoculation. Co-application of 6t CM/ha and Rhizobium sp. inoculation increased by 20.5% when compared without CM application and no Rhizobium sp. inoculation. The study showed that both possibility of nitrogen fixation of peanut and nitrogen uptake of the sandy soil were raised by field inoculant with effectiveness of Rhizobium sp. with animal manure application. In really, Rhizobium sp. inoculation and CM proved a great method to increase soil nutrients for subsequent crops and it helped to enhance the taking of nitrogen from the air into the crop soil.
{"title":"Response of peanut quality and yield to chicken manure combined with Rhizobium inoculation in sandy soil","authors":"N. Chuong","doi":"10.21924/cst.8.1.2023.1082","DOIUrl":"https://doi.org/10.21924/cst.8.1.2023.1082","url":null,"abstract":"Chemical fertilizers, which contain a nitrogen (N) element, has been intensively used to increase the peanut productivity. However, the unstable and high cost of N fertilizer, and the great demand for N fertilizer sources have strongly increased the strategical plan of nitrogen fixation (NF). Therefore, the field research was carried out to appraise the ability of Rhizobium sp. trains and chicken manure (CM) on the quality and yield of peanuts. This research has four ratios, which valued from 0.0, 2.0, 4.0 to 6.0 t CM per ha in the combination with the Rhizobium sp. inoculum, expect control treatment (without CM and Rhizobium sp.). Different rates of CM combined with Rhizobium sp. inoculation was added by using 6.0 tons CM/ ha, which had number of the highest peanut nodules. Research results observed that the inoculant of Rhizobium sp. strain combined with CM remarkably increased the yield components per plant such as biomass, number of nodules, weight of dry nodules, weight of fill and empty pods and fresh yield of groundnut. The highest yield and quality of peanut (7.60 t/ha), oil % (50.6%), seed protein percentage (26.8%), as well as NPK content in seed (4.32, 0.912 and 0.999%, respectively) were obtained under the application of NPK+6.0 t CM/ha+ Rhizobium sp. inoculation. Co-application of 6t CM/ha and Rhizobium sp. inoculation increased by 20.5% when compared without CM application and no Rhizobium sp. inoculation. The study showed that both possibility of nitrogen fixation of peanut and nitrogen uptake of the sandy soil were raised by field inoculant with effectiveness of Rhizobium sp. with animal manure application. In really, Rhizobium sp. inoculation and CM proved a great method to increase soil nutrients for subsequent crops and it helped to enhance the taking of nitrogen from the air into the crop soil.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49497004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-08DOI: 10.21924/cst.8.1.2023.1119
H. Wijayanti, P. Mardina, A. Tuhuloula, Lidya Tri Ananda, Zahwa Syafa Aulia Rauf, Auliyani Lutfi, Syahril Fadil Riyadi
This study aims to develop an efficient separation method for phenolic compounds derived from the heavy phase of bio-oil produced by the pyrolysis of palm kernel shell. Two variables were investigated during phenolic compound extraction using dichloromethane, i.e., stirring rate and pH of the solution. In both variables, the composition, yield, and distribution coefficient of the extracted phase were investigated. The results showed that the phenolic compounds' extraction favors high stirring rate and it obtained more results at more acidic conditions (lower pH). The best conditions for phenolic compounds were at 300 rpm of stirring rate and pH 4, which resulted in 77.88 % of yield and a 1.13 distribution of coefficient for the total phenols. The findings of this research will contribute to the better separation of phenolic compounds in bio-oil for improving its fuel characteristics as well as producing value-added chemicals.
{"title":"Evaluation of stirring rate and pH on phenolic compounds recovery from palm kernel shell heavy phase bio-oil","authors":"H. Wijayanti, P. Mardina, A. Tuhuloula, Lidya Tri Ananda, Zahwa Syafa Aulia Rauf, Auliyani Lutfi, Syahril Fadil Riyadi","doi":"10.21924/cst.8.1.2023.1119","DOIUrl":"https://doi.org/10.21924/cst.8.1.2023.1119","url":null,"abstract":"This study aims to develop an efficient separation method for phenolic compounds derived from the heavy phase of bio-oil produced by the pyrolysis of palm kernel shell. Two variables were investigated during phenolic compound extraction using dichloromethane, i.e., stirring rate and pH of the solution. In both variables, the composition, yield, and distribution coefficient of the extracted phase were investigated. The results showed that the phenolic compounds' extraction favors high stirring rate and it obtained more results at more acidic conditions (lower pH). The best conditions for phenolic compounds were at 300 rpm of stirring rate and pH 4, which resulted in 77.88 % of yield and a 1.13 distribution of coefficient for the total phenols. The findings of this research will contribute to the better separation of phenolic compounds in bio-oil for improving its fuel characteristics as well as producing value-added chemicals.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42955710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-08DOI: 10.21924/cst.8.1.2023.1049
R. Pratiwi, M. Ibadurrohman, Eniya Listiani Dewi, S. -
Studies that seek to improve the performance of photocatalyst continue to develop. Several observations have been made on the effect of using ultrasonic waves during the synthesis process of CdS/Titania Nanotubes Array (CdS/TiNTA) nanocomposites on an ability to degrade ciprofloxacin solution (CIP) and produce hydrogen. Therefore, the nanocomposite synthesis process uses the Successive Ionic Layer Adsorption and Reaction (SILAR) method, with (CH3COO)2Cd and Na2S as the precursors. During the SILAR process, sonication was applied for 60 minutes and carried out in the amorphous phase of TiO2 to increase the effectiveness of contact between the two semiconductors. The synthesis results were confirmed in term of their crystallinity, morphology, the presence of components on the surface, and the shift of bandgap by means of XRD, FESEM, FTIR, and UV-Vis DRS characterization, respectively. Photocatalytic activities of the nanocomposites were evaluated in a system containing 10 ppm CIP solution, on the purpose of observing their ability to degrade CIP and produce hydrogen. Our findings revealed an improvement in crystallinity, successful semiconductor coupling, and a band gap narrowing in the synthesized nanocomposites. Furthermore, the photocatalysts synthesized in the amorphous TiO2 and by sonication during SILAR offered doubled production capacity of hydrogen (0.191 mmol/m2) as compared to photocatalysts synthesized without sonication (0.092 mmol/m2). Compared to similar photocatalysts synthesized using the SILAR method in the crystalline phase, photocatalysts synthesized in the amorphous phase exhibited four-fold higher hydrogen production (0.044 to 0.191 mmol/m2). This prominent ability of the nanocomposites is related to the success of CdS adhering well to TiO2 surface to form nanocomposites, so that the bandgap energy position of CdS that is strong in the reduction reaction greatly contributes to improve the performance of the resulting photocatalyst, which is very advantageous in terms of its ability in water-splitting reactions.
{"title":"A novel approach in the synthesis of CdS/titania nanotubes array nanocomposites to obtain better photocatalyst performance","authors":"R. Pratiwi, M. Ibadurrohman, Eniya Listiani Dewi, S. -","doi":"10.21924/cst.8.1.2023.1049","DOIUrl":"https://doi.org/10.21924/cst.8.1.2023.1049","url":null,"abstract":"Studies that seek to improve the performance of photocatalyst continue to develop. Several observations have been made on the effect of using ultrasonic waves during the synthesis process of CdS/Titania Nanotubes Array (CdS/TiNTA) nanocomposites on an ability to degrade ciprofloxacin solution (CIP) and produce hydrogen. Therefore, the nanocomposite synthesis process uses the Successive Ionic Layer Adsorption and Reaction (SILAR) method, with (CH3COO)2Cd and Na2S as the precursors. During the SILAR process, sonication was applied for 60 minutes and carried out in the amorphous phase of TiO2 to increase the effectiveness of contact between the two semiconductors. The synthesis results were confirmed in term of their crystallinity, morphology, the presence of components on the surface, and the shift of bandgap by means of XRD, FESEM, FTIR, and UV-Vis DRS characterization, respectively. Photocatalytic activities of the nanocomposites were evaluated in a system containing 10 ppm CIP solution, on the purpose of observing their ability to degrade CIP and produce hydrogen. Our findings revealed an improvement in crystallinity, successful semiconductor coupling, and a band gap narrowing in the synthesized nanocomposites. Furthermore, the photocatalysts synthesized in the amorphous TiO2 and by sonication during SILAR offered doubled production capacity of hydrogen (0.191 mmol/m2) as compared to photocatalysts synthesized without sonication (0.092 mmol/m2). Compared to similar photocatalysts synthesized using the SILAR method in the crystalline phase, photocatalysts synthesized in the amorphous phase exhibited four-fold higher hydrogen production (0.044 to 0.191 mmol/m2). This prominent ability of the nanocomposites is related to the success of CdS adhering well to TiO2 surface to form nanocomposites, so that the bandgap energy position of CdS that is strong in the reduction reaction greatly contributes to improve the performance of the resulting photocatalyst, which is very advantageous in terms of its ability in water-splitting reactions.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46262955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.906
U. Chasanah, W. Trisunaryanti, Triyono, H. Oktaviano, I. Santoso, D. A. Fatmawati
The study of the green reductant effects to produce reduced graphene oxide (rGO) has been completed successfully. The reduction of graphene oxide (GO) was carried out chemically using various reductants such as ascorbic acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate (rGO-NS). The GO was prepared using the Tour method at a temperature of 65 ? for 6 hours with potassium permanganate: graphite weight ratio 1:3.5. The results showed that rGO-AA had the highest electrical conductivity value of 755.70 S/m, with characteristics such as a surface area of 255.93 m2/g, a pore volume of 0.61 cm3/g, an average pore diameter of 7.10 nm, ID/IG ratio of 1.93, and three graphene layers in the material nanostructure stack. Therefore, it can be concluded that the reduction of GO with ascorbic acid (rGO-AA) is the most effective in producing rGO.
{"title":"Study of green reductant effects of highly reduced graphene oxide production and their characteristics","authors":"U. Chasanah, W. Trisunaryanti, Triyono, H. Oktaviano, I. Santoso, D. A. Fatmawati","doi":"10.21924/cst.7.2.2022.906","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.906","url":null,"abstract":"The study of the green reductant effects to produce reduced graphene oxide (rGO) has been completed successfully. The reduction of graphene oxide (GO) was carried out chemically using various reductants such as ascorbic acid (rGO-AA), gallic acid (rGO-AG), and trisodium citrate (rGO-NS). The GO was prepared using the Tour method at a temperature of 65 ? for 6 hours with potassium permanganate: graphite weight ratio 1:3.5. The results showed that rGO-AA had the highest electrical conductivity value of 755.70 S/m, with characteristics such as a surface area of 255.93 m2/g, a pore volume of 0.61 cm3/g, an average pore diameter of 7.10 nm, ID/IG ratio of 1.93, and three graphene layers in the material nanostructure stack. Therefore, it can be concluded that the reduction of GO with ascorbic acid (rGO-AA) is the most effective in producing rGO.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45413950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.1001
Sehah Sehah, U. N. Prabowo, S. A. Raharjo, Aina Zahra Ikhwana
Slamet Volcano (3,432 m) is the highest volcano in Central Java, Indonesia, with a weak explosive type of eruption compared to other active volcanoes. Designing the magma chamber model may help reveal the characteristics of Slamet Volcano. The modelling uses the gravimetric satellite data from GGMplus, which is best in spatial resolution compared to other satellite data, i.e. 220 m. Data processing begins with Bouguer correction and terrain correction and has resulted in complete Bouguer anomalies data, with values ranging from 11.068 – 117.451 mGal. Further, residual Bouguer anomalies data were obtained after data reduction to the horizontal surface and removal of regional anomalies data, to obtain values ranging from -67.569 – 38.808 mGal. The residual anomaly contour map shows the lowest anomalous value is under the volcanic cone at positions of 109.21967° E and 7.24281° S which is estimated to be the location of the magma chamber of Slamet Volcano. However, the inversion modeling resulting from the residual Bouguer anomalies data shows that the magma chamber of Slamet Volcano can be observed clearly at positions of 109.22053° E and 7.24719° S. The location of the magma chamber is not perfectly vertical under the volcanic cone but has a slight slope. The obtained model of the magma chamber has a relatively small volume and shallow depth, i.e. about 1 – 4 km. The obtained physical parameters of the magma chamber impact the characteristics of the eruption of Slamet Volcano which tend to be weak explosive.
{"title":"Physical modeling of magma chamber of slamet volcano by means of satellite gravimetric data","authors":"Sehah Sehah, U. N. Prabowo, S. A. Raharjo, Aina Zahra Ikhwana","doi":"10.21924/cst.7.2.2022.1001","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.1001","url":null,"abstract":"Slamet Volcano (3,432 m) is the highest volcano in Central Java, Indonesia, with a weak explosive type of eruption compared to other active volcanoes. Designing the magma chamber model may help reveal the characteristics of Slamet Volcano. The modelling uses the gravimetric satellite data from GGMplus, which is best in spatial resolution compared to other satellite data, i.e. 220 m. Data processing begins with Bouguer correction and terrain correction and has resulted in complete Bouguer anomalies data, with values ranging from 11.068 – 117.451 mGal. Further, residual Bouguer anomalies data were obtained after data reduction to the horizontal surface and removal of regional anomalies data, to obtain values ranging from -67.569 – 38.808 mGal. The residual anomaly contour map shows the lowest anomalous value is under the volcanic cone at positions of 109.21967° E and 7.24281° S which is estimated to be the location of the magma chamber of Slamet Volcano. However, the inversion modeling resulting from the residual Bouguer anomalies data shows that the magma chamber of Slamet Volcano can be observed clearly at positions of 109.22053° E and 7.24719° S. The location of the magma chamber is not perfectly vertical under the volcanic cone but has a slight slope. The obtained model of the magma chamber has a relatively small volume and shallow depth, i.e. about 1 – 4 km. The obtained physical parameters of the magma chamber impact the characteristics of the eruption of Slamet Volcano which tend to be weak explosive.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43600587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.868
R. M. Iqbal, W. Supriadi, R. Burhan, S. D. Nurherdiana, Ririn Eva Hidayati, S. Subaer, R. Bayuaji, H. Fansuri
In this study, the geopolymer from fly ash as based-raw material has been examined on the ability of several heavy metal ions immobilization. The fly ash has been provided from PT IPMOMI which firstly analyzed the physical and chemical properties. Fly ash and heavy metals were mixed with an activator base until homogeneous, then cast into a cylindrical shape mold following ASTM C 39-86 and left for 7 days. After that, the geopolymer was characterized by SEM, FTIR, XRD, compressive strength test and TCLP. The diffractogram of PT. IPMOMI fly ash exhibited the existence of mullite, alumina and iron oxide phase, which were suitable with XRF result. From FTIR spectra, the vibration on finger print area appeared indicating the vibration of T-O-T from geopolymer network. The observation revealed that the addition of Pb2+ cations caused microcracking from SEM image and affected the compressive strength of the geopolymer. Sr2+ was an ion that was very easilyleached compared to other three ions, and it caused a weak interaction between Sr2+ and geopolymer network. The higher amount of metal ions into the geopolymer network reduced the compressive strength of geopolymer. Sr2+-geopolymer had a lower compressive strength compared to Pb2+, Cd2+, and Co2+.
本研究以粉煤灰为原料,考察了地质聚合物对几种重金属离子的固定化能力。粉煤灰是由PT IPMOMI提供的,该公司首次对粉煤灰的物理和化学性质进行了分析。将飞灰和重金属与活化剂基体混合直到均匀,然后按照ASTM C 39-86铸造到圆柱形模具中并放置7天。然后,通过SEM、FTIR、XRD、抗压强度测试和TCLP对地质聚合物进行了表征。IPMOMI粉煤灰的衍射图显示出莫来石、氧化铝和氧化铁相的存在,与XRF结果相吻合。从FTIR光谱来看,指纹区出现了振动,表明T-O-T的振动来自地质聚合物网络。观察表明,Pb2+阳离子的加入引起了SEM图像中的微裂纹,并影响了地质聚合物的抗压强度。与其他三种离子相比,Sr2+是一种非常容易浸出的离子,它导致Sr2+与地质聚合物网络之间的相互作用较弱。进入地质聚合物网络的金属离子的量越高,地质聚合物的抗压强度就越低。与Pb2+、Cd2+和Co2+相比,Sr2+地质聚合物具有较低的抗压强度。
{"title":"Fabrication and characterization of fly ash-based geopolymer and its performance for immobilization of heavy metal cations","authors":"R. M. Iqbal, W. Supriadi, R. Burhan, S. D. Nurherdiana, Ririn Eva Hidayati, S. Subaer, R. Bayuaji, H. Fansuri","doi":"10.21924/cst.7.2.2022.868","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.868","url":null,"abstract":"In this study, the geopolymer from fly ash as based-raw material has been examined on the ability of several heavy metal ions immobilization. The fly ash has been provided from PT IPMOMI which firstly analyzed the physical and chemical properties. Fly ash and heavy metals were mixed with an activator base until homogeneous, then cast into a cylindrical shape mold following ASTM C 39-86 and left for 7 days. After that, the geopolymer was characterized by SEM, FTIR, XRD, compressive strength test and TCLP. The diffractogram of PT. IPMOMI fly ash exhibited the existence of mullite, alumina and iron oxide phase, which were suitable with XRF result. From FTIR spectra, the vibration on finger print area appeared indicating the vibration of T-O-T from geopolymer network. The observation revealed that the addition of Pb2+ cations caused microcracking from SEM image and affected the compressive strength of the geopolymer. Sr2+ was an ion that was very easilyleached compared to other three ions, and it caused a weak interaction between Sr2+ and geopolymer network. The higher amount of metal ions into the geopolymer network reduced the compressive strength of geopolymer. Sr2+-geopolymer had a lower compressive strength compared to Pb2+, Cd2+, and Co2+.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44974604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.977
A. N’diaye, M. Kankou, B. Hammouti, A. B. Nandiyanto, Dwi Fitria Al Husaeni
This paper presents a review of adsorption isotherms of some dyes from aqueous solutions by biomaterial. In this paper, we reported Typha waste as a model of biomaterial classified as a low-cost adsorbent. The paper also briefly discusses about the literature information from the definition of dyes and adsorbents, bibliometric analysis, adsorption phenomena, adsorption isotherm models, and factors affecting the adsorption, to the use of Typha species waste as a low-cost adsorbent. The operational parameters factors are explained in terms of pH, adsorbent dosage, contact time, and initial dye concentration that will affect the process of removing textile dye. The solution of pH turns out to be the most important condition in the adsorption process for anionic dye, a low pH value are preferable in contrast to cationic dye where the suitable pH value is high. For the adsorbent dose, the adsorption capacity increase along with the increment of adsorbent dosage due to the increase of theavailable amount of adsorption site. The contact time between the adsorbent and dye affects the efficiency of dye removal where a strong attraction force will shorten the time. As for the effect of dye initial concentration, increasing the initial concentration enhances the increment of adsorbent surface area to adsorb dyes. Several isotherm models are described. The Langmuir model is frequently used to evaluate the adsorption capacity of the Typha species waste as adsorbents. This review paper suggested that the accuracy level obtained from adsorption processes is greatly dependent on the successful modeling of adsorption isotherms. Typha biomaterial wastes can be considered as the new useful low-cost natural adsorbents for dye clean-up operations in aquatic systems.
{"title":"A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent","authors":"A. N’diaye, M. Kankou, B. Hammouti, A. B. Nandiyanto, Dwi Fitria Al Husaeni","doi":"10.21924/cst.7.2.2022.977","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.977","url":null,"abstract":"This paper presents a review of adsorption isotherms of some dyes from aqueous solutions by biomaterial. In this paper, we reported Typha waste as a model of biomaterial classified as a low-cost adsorbent. The paper also briefly discusses about the literature information from the definition of dyes and adsorbents, bibliometric analysis, adsorption phenomena, adsorption isotherm models, and factors affecting the adsorption, to the use of Typha species waste as a low-cost adsorbent. The operational parameters factors are explained in terms of pH, adsorbent dosage, contact time, and initial dye concentration that will affect the process of removing textile dye. The solution of pH turns out to be the most important condition in the adsorption process for anionic dye, a low pH value are preferable in contrast to cationic dye where the suitable pH value is high. For the adsorbent dose, the adsorption capacity increase along with the increment of adsorbent dosage due to the increase of theavailable amount of adsorption site. The contact time between the adsorbent and dye affects the efficiency of dye removal where a strong attraction force will shorten the time. As for the effect of dye initial concentration, increasing the initial concentration enhances the increment of adsorbent surface area to adsorb dyes. Several isotherm models are described. The Langmuir model is frequently used to evaluate the adsorption capacity of the Typha species waste as adsorbents. This review paper suggested that the accuracy level obtained from adsorption processes is greatly dependent on the successful modeling of adsorption isotherms. Typha biomaterial wastes can be considered as the new useful low-cost natural adsorbents for dye clean-up operations in aquatic systems.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46317132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.940
Puspa Sari, Suci Noerfaiqotul Himmah, A. Hardian, N. Aini, A. Prasetyo
SrBi4Ti4O15 is one of four-layered Aurivillius compound family member that can be used as photocatalyst material that works in the violet light region. To expand its work function range can be conducted by doped with metal elements to SrBi4Ti4O15 as results reduced its band gap energy. In this research, we synthesized vanadium doped SrBi4Ti4O15 (SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, and 0.15)) by molten salt method (used KCl salt). The diffractogram sample showed that the target compounds SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, and 0.15) had been successfully synthesized with the space group A21am without impurities. The SEM micrographs showed the particle shape of SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, and 0.15) was plate-like (sheets) and V dopant did not cause agglomeration. The result of Kubelka-Munk equation calculation showed that the V dopant can reduced the band gap energy value from 3.04 eV (408 nm) to 2.84 eV (437 nm)
SrBi4Ti4O15是四层Aurivillius化合物家族成员之一,可作为紫外光区的光催化剂材料。通过向SrBi4Ti4O15中掺杂金属元素,可以减小其带隙能量,从而扩大其功函数范围。在本研究中,我们采用熔盐法(使用KCl盐)合成了掺钒SrBi4Ti4O15 (SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, 0.15))。衍射图样品表明,目标化合物SrBi4Ti4-nVnO15 (n= 0、0.05、0.1和0.15)已成功合成,其空间基团为A21am,无杂质。SEM显微图显示,SrBi4Ti4-nVnO15 (n= 0、0.05、0.1和0.15)的颗粒形状呈片状(片状),V掺杂并未引起团聚。Kubelka-Munk方程计算结果表明,V掺杂剂可使带隙能量值从3.04 eV (408 nm)降低到2.84 eV (437 nm)。
{"title":"Synthesis and characterization of plate-like vanadium doped SrBi4Ti4O15 prepared via KCl molten salt method","authors":"Puspa Sari, Suci Noerfaiqotul Himmah, A. Hardian, N. Aini, A. Prasetyo","doi":"10.21924/cst.7.2.2022.940","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.940","url":null,"abstract":"SrBi4Ti4O15 is one of four-layered Aurivillius compound family member that can be used as photocatalyst material that works in the violet light region. To expand its work function range can be conducted by doped with metal elements to SrBi4Ti4O15 as results reduced its band gap energy. In this research, we synthesized vanadium doped SrBi4Ti4O15 (SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, and 0.15)) by molten salt method (used KCl salt). The diffractogram sample showed that the target compounds SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, and 0.15) had been successfully synthesized with the space group A21am without impurities. The SEM micrographs showed the particle shape of SrBi4Ti4-nVnO15 (n= 0, 0.05, 0.1, and 0.15) was plate-like (sheets) and V dopant did not cause agglomeration. The result of Kubelka-Munk equation calculation showed that the V dopant can reduced the band gap energy value from 3.04 eV (408 nm) to 2.84 eV (437 nm)","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45027379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.937
Ari Sulistyo Rini, Ari Purnomo Aji, Y. Rati
In this paper, the flower-shaped ZnO particles have been prepared via microwave-assisted biosynthesis technique using an aqueous extract of Sandoricum koetjape peel at various irradiation powers, i.e. 180, 360, 540, and 720 Watt. The synthesized flower-shaped ZnO particles were characterized using UV-Vis spectroscopy, x-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The UV-vis spectra exhibited ZnO absorption peaks in the UV region with band gap energy in the range of 3.25 - 3.29 eV. XRD analysis confirmed the hexagonal wurtzite crystal with the high purity of ZnO particles. The flower-shaped morphology of ZnO was evident in FESEM images with the decrease of particle diameter as the radiation power increased from 257 to 447 nm. ZnO prepared at 720 Watt (Z-720) succeeded in degrading 4-nitrophenol with the highest efficiency of 84.8 % after 240 min. Consequently, biosynthesis ZnO will have a great opportunity to be applied in degrading wastewater pollutants.
{"title":"Microwave-assisted biosynthesis of flower-shaped ZnO for photocatalyst in 4-nitrophenol degradation","authors":"Ari Sulistyo Rini, Ari Purnomo Aji, Y. Rati","doi":"10.21924/cst.7.2.2022.937","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.937","url":null,"abstract":"In this paper, the flower-shaped ZnO particles have been prepared via microwave-assisted biosynthesis technique using an aqueous extract of Sandoricum koetjape peel at various irradiation powers, i.e. 180, 360, 540, and 720 Watt. The synthesized flower-shaped ZnO particles were characterized using UV-Vis spectroscopy, x-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The UV-vis spectra exhibited ZnO absorption peaks in the UV region with band gap energy in the range of 3.25 - 3.29 eV. XRD analysis confirmed the hexagonal wurtzite crystal with the high purity of ZnO particles. The flower-shaped morphology of ZnO was evident in FESEM images with the decrease of particle diameter as the radiation power increased from 257 to 447 nm. ZnO prepared at 720 Watt (Z-720) succeeded in degrading 4-nitrophenol with the highest efficiency of 84.8 % after 240 min. Consequently, biosynthesis ZnO will have a great opportunity to be applied in degrading wastewater pollutants.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44246021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.21924/cst.7.2.2022.1009
N. Yuliasari, Amri, R. Mohadi, Elfita, A. Lesbani
Pristine layered double hydroxide (LDH) in the form of clay Mg/Al LDH was enhanced its catalytic ability by impregnating metal oxides to form Mg/Al-metal oxide composites in congo red (CR) degradation. The composite was calcined at a not high temperature of 300 oC and characterized using SEM and DRUV. In this report, the photodegradation of CR as anionic dye was optimized based on the variables of pH, catalyst weight and time radiation. The stability of the catalyst was studied from the percent degradation in the recycling test. The characterization of the catalyst that has undergone 5th regeneration cycles was carried out using XRD and FTIR. The results of this study revealed that catalysis by Mg/Al-metal oxide composites resulted in a better percent degradation, rate constant and materials stability than pristine Mg/Al LDH. Mg/Al LDH, Mg/Al-TiO2 and Mg/Al-ZnO catalyzed the photodegradation of CR by 65.97%, 73.06 % and 86.86%, respectively.
{"title":"Modification of pristine layered double hydroxide to form metal oxide composites as an anionic dye photodegradation catalysts","authors":"N. Yuliasari, Amri, R. Mohadi, Elfita, A. Lesbani","doi":"10.21924/cst.7.2.2022.1009","DOIUrl":"https://doi.org/10.21924/cst.7.2.2022.1009","url":null,"abstract":"Pristine layered double hydroxide (LDH) in the form of clay Mg/Al LDH was enhanced its catalytic ability by impregnating metal oxides to form Mg/Al-metal oxide composites in congo red (CR) degradation. The composite was calcined at a not high temperature of 300 oC and characterized using SEM and DRUV. In this report, the photodegradation of CR as anionic dye was optimized based on the variables of pH, catalyst weight and time radiation. The stability of the catalyst was studied from the percent degradation in the recycling test. The characterization of the catalyst that has undergone 5th regeneration cycles was carried out using XRD and FTIR. The results of this study revealed that catalysis by Mg/Al-metal oxide composites resulted in a better percent degradation, rate constant and materials stability than pristine Mg/Al LDH. Mg/Al LDH, Mg/Al-TiO2 and Mg/Al-ZnO catalyzed the photodegradation of CR by 65.97%, 73.06 % and 86.86%, respectively.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48829394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}